7 rd Y X A 19—-1
(199,1. 1. 29)

IH T RE 7T 7 LR
B p AT ATy X 4

wEwy milsEE AR RS
BRI Lo

FE_DQRESF 71, S. B. Akers BX U R. E. Bryant KXo THREX WA T 7€

SHRBBEMORBRIETD b, TERMERRI XA L ORTFCHEHIL TV 5, AFiT
BICHTNREY 7 7 ONIMETHHL T 5, <7 WA E 0T A=) X 0%k
RET 5, chid, ERIBERTHRDIT I ZHRE Y 5 7 O EREE DL
Emﬁ%&it«&bwkbxﬁkm5%o<bsoébKﬁ%Lk?&%«?kwlﬁﬁ
HITAC S-820/80 LCSER, FTMi L 72 &R d R o

A Breadth-First Vector Algorithm
for Mampulatmg SBDD

Hiroyuki OCHI Nagisa ISHIURA Naofumi TAKAGI Shuzo YAJIMA
Department of Information Science
Faculty of Engineering, Kyoto Umversny
Kyoto 606, Japan :

Shared Binary Decision Diagram (SBDD) is a graph representation of Boolean func-
tions proposed by S. B. Akers and R. E. Bryant which is used in various applications of
computer-aided design (CAD) of digital systems. We propose a high-speed algorithm of
manipulating SBDD, which is suitable for vector super computers. The proposed algo-
rithm is based on, so called, breadth-first manipulation to utilize the high performance of
vector super computers, while the conventional algorithms are based on depth-first ma-
nipulation. This paper also shows some bcnclmmrk results on a vector super computers

HITAC S-820/80.

(1)

1 Introduction

Boolean function manipulation is one of the most
essential operations in various applications of
computer-aided design (CAD) of digital systems.
Because the efficiency of Boolean function manip-
ulation is closely connected with the representa-
tion of Boolean functions, various representations
of Boolean functions have been proposed. Shared
Binary Decision Diagram (SBDD) is a graph rep-
resentation of Boolcan functions [1][2]. Because
of its excellent propertiés' which enable us eflicient
Boolean manipulation, SBDD is now widely used
in various applications such as design verification
[3][4], test generation [5], logic synthesis {6] and so
on.

At present, SBDD manipulators are, in most
cases, implemented on work stations [7}[8]. Ac-
cording to the recent progress of the VLSI tech-
nology, it is Tequired to manipulate larger and
larger scale Boolean functions; which will exceed
the computational .power of work stations. In or-
der to fulfill this reqmrcment the use of parallel

machines or connection machines is studied 9.

In this paper, we propose an algorithm suitable
for vector processors, a kind of super computer
with pipelined processors. The proposed algo-
rithm is based on, so called, breadth-first manip-
ulation to utilize the high performance of vector
processors, while the conventional algorithms for
work stations are based on depth-first manipula-

tion. We 1mplemented and evaluated the proposed .

algorithm on a vector processor HITAC S-820/80°
at the University of To];:yo TlleZ vector a.ccelera‘ -

tion ratio on $-820/80 was 3.8 to 14.3.' Our manip:
ulator on S-820/80 was faster than that of Minato
et al. on Sun3/60 up to 70 times.

‘In ‘the following ‘section, basic explanation on’
SBDD and vector processor.are, described. In sec- ;

tion 3, a new algorithm will be proposed.. In sec-

tion 4, experimental results will be shown. Section

5 provides some concluding remarks, = * 7517 °

.2 Preliminaries

2.1 SBDD

A Shared Binary Decmon Dzagram (SBDD) is .

a representation of Boolean functions using an

acyclic directed graph.. ' An example of SBDD
is shown .in Fig. 1(b). . The graph represents
four Boolean functions corresponding to four root
‘edges. Edges other than root edges are labeled ei-
ther '0’ or'1’.
edges, respectively. SBDD is defined as the graph
obtained from the binary decision trees (Fig. 1(a))

(2)

“They are called ’0’ édges and 1’

by repeating the following transformations until
they are not applicable. '

(a) Share isomorphic sub-graphs.

(b) Delete every node both of whose '0’
'V edge point to the same node.

edge and

SBDD’s have excellent properties as follows;

(1) If the ordermg of the variables is fixed for the
whole graph, the graph is canonical, i.e. there
is no two root edges of a graph which point

~“to different nodes and yet represent the same
* Boolean function [1][2].

(2) The size of the graph is feasible for many of
the practical Boolean functions [10].

(3) The manipulations for various operations on
Boolean functions represented by an SBDD
. can be done in time proportional to the num-

“ ber of the nodes of the graph [2].

(4) The equivalence of two Boolean functions can
be tested by simply comparing the root odgc«a
‘corresponding to the functions.

Once thic.ordering -of the variables is fixed, an
integer number called level is assigned to all the
variables corresponding to the ordering (i.e. the
smaller nuinber for the variables nearer to the leaf
nodes). We indicate the level by the subscript of
the variable such as X;s.

We denote the sub-function of a Boolean func-
tlon f:obtained by substituting 0 (1) to variable

X-as (X = 0) (f(X'= 1)) or simply fo (/1) if X
J‘; obvnous from.context.”Note that if f depends
on variable X (ie. fo ;ﬁ fl) and X is the variable
of the root node (i.e. the node pointed by the root
edge)‘of f, Jo and f; are represented by the graph

-with: the root edges pointing to the nodes pointed

by- the 0] edge and the '1' edge, respectively, of
the root node of:f.. On the other hand, if f is
mdependent of X (ie. fo=fr = f), foand f1

" are repfesented by the graph with the same root

edge as f's itself.

In order to reduce the number of the nodes
and/or the time for manipulation of SBDD, vari-
ous atlriduted edges are proposed, such as output

. inverters, input inverters, variable shifters, and so
. on [7]. Among them, output inverter is effective

to Tealize high- speed SBDD rnampulatlon, wluch
is the aim of this’ paper. -Output inverter is the at-
tribiite indicating to complement: the function: of
the subgraph pomted by the edge (Flg 2). Using

" this attribute, we can.reduce the size of SBDD’s

‘to d hall in the beést ‘case’and can execute NoT
operation without traversing the graph. Abuse of
output inverters break the important property of

SBDD’s giving unique representations of Boolean
functions. The following limitations are placed in
order to keep this property;

(A) Output inverters must not be used in ’0’
edges, i.e. output inverters are used only in
'1”" edges or in the root edges.

(B) The leaf node (constant) must be unique, i.e.
only O can be used, for example, as the leaf
node.

2.2 ‘A Conventional Algorithm for Manip-
ulating SBDD

" Principal tasks of Boolean function manipulators
are v SE
(1) comparison of two Boolean functions,

(2) the unary operation for a, Boolean function,
ie. NOT, .

(3) binary operations for Boolean functions, such
.as AND, OR, EXOR, and

{(4) substitution of 0 or 1 for a varlable of a
Boolean function. e

If the Boolean funictions are represented by an
SBDD, (1) can be achieved only by comparing two
root edges of the given functions, and (2) is also
easily realizable if “output mverters are employed
(4) can be realized by the method ‘analogous to
(3) The rest of this paper is, t]\crefore. devoted
to consider the lugh speed algorithm for (3).

For example, let us consider the conventional
recursive algonthm ["][8] for genentmg the graph
representmg Boolea.n functlon R = AND(f,g)
where f and’'g are Boolean functlons represented
by an SBDD. Here we denote the levels of the
root nodes of f and g as Ly and Ly, and let
Ly = maz(Ly, ,) Recall that the root edges
for fo, f1, go and gy can be immediately obtained.

[Conventional Algorithm for. AND]
Examine the given root edges for f and g and
execute either of the followings; -

(casel) I£ f= Oorg=0, then return 0 \

(case2) 1 f=1 (g = 1), then return the' oot
-edge of g (f).

(case3) It f 9 then return the root edge for f.

(case4) I f NOT(_q), then return 0.

(case5) Otherwlse, computé ‘the Toot edges for
‘h(Xp, =0y = AND(f(X1; '= 0), o(Xp, =
0)) and h(Xp, = 1) = AND(f(Xp, =
“1),9(Xg, = 1)) recursively. Then examine

the root ‘edges for A(Xy, = 0) and h(Xf, =
1) and execute either of the folowings; '

(3)

.. to this table

(case5.1) I XL, = 0) = A(Xg, = 1), then
return the root edge for h(Xr, = 0).

(case5.2) Otherwise, gencrate a new root node

for h whose level is Lj, and whose '0” edge and

'1’ edge point to the root node of h(Xh =0)
~and KX, = 1) respectlvely

Before generatmg a new node in case 5.2 of the
above algorithm, one must check whether there
exists a node -‘whose level is L, and "0’ edge and
’1’ edge point to the root node of hg and Ay, re-
spectively. I such a node exists, this old node
must be used as the root node of h instead of gen-
erating a new node.’ This task is essential to keep
SBDD: canonical: For this purpose; a hash table
called a node table is introduced which manages
all nodes of the graph. The keys of the node table
are the level, '0’ edge and '1’ edge of a node.

Another hash table called an operation result ta-
ble is mtroduced to avoid repetitions of the same
operations. The keys of the operation result ta-
ble are a Boolean operator and ,giverltvtivo root
edges. Every time when case 5 of the above
algorithm is completed, the result is registered
. One can. save the time for exe-
cutmg case 5 if the result. 15' l'ound in this ta-
ble before executing case 5. This table is es-
sential, rather than merely effective, especially
when there are Jmany reconyergences in the sub-
gmphs of lhe given functions. The qllnple ex-

‘ample is shown in Flg 3. Let ‘us conslder the

case of computing AND(f,g) Accor(lmg to the
above algorithm, one must obtain AND(f(X35 =
0),9) and AND(f(X3s W T, 1),g). To obtain
AND(f(X35 = 0),9), both AND(f(Xss =

X33 = 0) q) and AND(f(4Y35 = 0,.4Y33 =
l) g) are required, while to obtain AND(f(X3s =

:l),g), both AND(f(X35 = 1,X33 = 0),9) and

AND(](Ygs = 1,X33 .= _1),g), are. required.
Because f(X35 = ,X33 = 0).is equal to
f(X3s = 1, X33 = 0), we can reuse the result of
AND(f(X35 = 0, X33 = 0),9) as the: result for
AND(f(XaS =.1,X3 = 0) g) if the operatxon
result table is mtroduced.

2.3 Vector P‘roooss’or‘

A vector processor is a highly pipelined super com-
puter which is primarily used for large scale scien-
tific and engineering computatlon k has, in ad-
dition to a conventional processmg unit (a scalar
unit), several function pipelines’(a vector unit) to
yield more than GFLOPS (Giga FLoating Opera-
tions Per Second) of computation power. In order
to support large scale computation, it has a large

main memory unit (usually a hundred mega bytes
or more) and powerful load/store pipelines.

In addition, vector processors have many ad-
vanced features in order to make it versatile
enough to be used in a wide range of applica-
tions. For example, the HITAC S-820/80 at the
University of Tokyo on which we have developed
our SBDD manipulator provides the following vec-
tor operations.

(1) Element-wise Vector Operations
The HITAC S-820/80 can handle integer and
logical data as well as floating-point data
by function pipelines. For example, integer
arithmetic operations, bit-wise (32 bits per
word) logical operations and logical shift op-
erations are vectorizable.

(2) Conditional Vector Operations
Above operations can be masked by condi-
tions, i.e. operations work only on elements
which satisfy a specified condition. For exam-
ple, the following program can be vectorized
by this function.

DO 10 I=1,%

IF (IM(I).EQ.0) IACI)=IB(I)+IC(I)

10 CONTIRUE

(3) List Vector Access
The HITAC 5-820/80 provides indirect mem-
ory access (referred to as list vector access) as
" well as contiguous vector access.

D0 20 I=1,
IA(1)=IB(IL(I))
20 CONTINUE

For example, this operation can be used for

vectorizing the access of grandbrother nodes

by brother nodes. Another application of the
" list vector access is table look-ups.

(4) Compress operations
Compress operation, which constructs new
vector IA from vector :IB by collecting ele-
ments which satis{ly a specified condition, can
be vectorized. An example program for com-
press operation is as follows. '

k=0
DO 30 I=1,X
IF (IN(I).EQ.0) THEN
K=K+1
IA(K)=IB(I)
ENDIF
30 COXNTINUE

(4)

Discussions in the following section is common to
all vector processors which have above four fea-
tures. . :

In order to utilize vector processor efliciently,
we must tune up the coding schemes and /or mod-
ify the basic algorithms so that our programs are
suitable for vector processing. The features of the
programs required for efficient vector processing
are

(1) high vectorization ratio, i.e. almost all the op-
erations in the program should be processed
by a vector unit.

(2) long vector length, i.e. sufficiently many ele-
ments should be processed at a time.

3 A Vector Algorithm for manipu-
lating SBDD .

As mentioned in the preceding section, the con-
ventional algorithm for manipulating SBDD’s is
bascd on a recursive procedure (or depth-first op-
eration), which is not suitable for vector process-
ing. In this section, we propose a breadth-first
algorithm for manipulating SBDD's.

The proposed algorithm consists of two parts;
an ezpansion phase and a reduction phase. In the
expansion phase, new nodes sufficient to represent
the resultant function are generated in a breadth-
first manner from the root node toward leaf nodes.
In the reduction phase, the nodes generated in the
expansion phase are checked and the redundant
nodes and the equivalent nodes are removed in a
breadth-first manner from nodes nearby leaf nodes
toward the root node. The nodes generated in
the expansion phase are called temporary nodes,
while the nodes which alrcady exists are called
permanent nodes.

3.1 Expansion Phase

The input for the expansion phase is a triple (op,
f, g), where op is a Boolean operator to be exe-
cuted, and f and g are the root edges for operand
Boolean functions. We refer to this triple as a
requirement. The requirement (op, f, g) requires
to compute the root edge for the resultant func-
tion of op(f, g). During processing a requirement,
new requirements will be generated for computing
the operations between subfunctions or subsub-
functions ... of the operand functions. Actually
a requirement corresponds to a procedure call in
the depth-first algorithm. We introduce a queue
called a requirement queue to manage these re-
quirements, which makes our procedure breadth-

first. (The procedure would be depth-first if we
use a stack instead of the queue.)

For given requirement (op, f, g), a new root
node is not always generated. We should not gen-
erate a new node if a node representing the result
of op(f,g) already exists. For example, if the re-
sult of op(f,g) is found trivially (the case 1-4 in
the algorithm in section 2.2), or found by looking
up the operation result table, we do not gener-
ate a new node. In these cases, the judgement
can be done immediately from f and g. How-
ever, in general, there are cases where one can not
tell the existence of the node of the same function
- as op(f, g) until we construct the whole graph for
the subfunctions of op(f, g). In our breadth-first
algorithm, we once generate a temporary node in
such cases. Whether the temporary node is actu-
ally essential or not is examined in the reduction
phase.

Following is the procedure of the expansion
phase. Initially, the requirement queue is empty,
and there is no temporary node.

[Expansion Phase of the Proposed Algo-
rithm]
Put the given requirement (op, f, g) to the re-
quirement queue and repeat the following opera-
tions for every requirement in the quene until the
queue becomes empty.

(1) If the root node representing the result of
op(f,g) is trivially found, then return the
edge pointing to the node.

(2) I the root node representing the result of
op(f,g) is found in the operation result ta-
ble, then return the edge found in the table.

(3) Otherwise, generate a new temporary node
and return the edge pointing to the tempo-
rary node.. At the same time, register the
edge pointing to the temporary node to the
operation result table as the result for op(f, g)
and put new requirements (op, f0, g0) and
(op, f1, g1) to the requirement queue, whose
result will be '0’ edge and '1’ edge, respec-
tively, of this temporary node.

Note that the temporary nodes must be regis-
tered to the operation result table in the expan-
sion phase in order to avoid repetitions of the same
operations (recall the example of Fig. 3). On the
otheér hand, the registrations to the node table are
done in the reduction phase because the node ta-
ble is not referred in the expansion phase.

Also note that the total number of require-
ments processed in the above procedure is exactly
the same as the number of procedure calls in the

depth-first algorithm in section 2.2 and thus there
is no serious increase on the computation cost.
The only drawback of our algorithm is the increase
of the storage required for temporary nodes.

This procedure is suitable for vector processing
because of

(1) long vector length. All requirements existing
in the queue can be processed at a time.

(2) high vectorization ratio. All of repeated op-
erations are vectorized.

Manipulations according to the requirement queue
are easily vectorizable by referring to the queue
as a list vector. Above thrce cases can be ex-
clusively executed using conditional vector oper-
ations. New requirements. are put to the queue
using compress operations. Registrations of the
operation result table is also vectorizable.

3.2 Reduction Phase

After the expansion phase is finished, there may
be the following temporary nodes;

(1) Redundant node: A temporary node both of
whose '0’ edge and '1’ edge points to the same
node.

(2) Equivalent node: A temporary node whose
level, '0’ edge and '1’ edge are the same as
one of the permanent nodes. '

The main tasks of the reduction phase are to find
redundant nodes and equivalent nodes and to re-
move them. In our algorithm, above tasks are
done in a breadth-first manner from the nodes
nearby the leaf nodes toward the root node. In
addition, temporary nodes which are neither the
redundant nodes nor the equivalent nodes are reg-
istered to the node table.

In practice, the removal of the redundant nodes
and the equivalent nodes must be done at the end
of the reduction phase because there are edges
pointing to these nodes. Tn our algorithm, the
redundant nodes and the equivalent nodes are
marked as slave nodes. Every slave node has a
pointer to its master node which takes the place
of the slave node. When a slave node is pointed to
by '0’ edges or '1’ edges of other nodes, the edges
are modified to point to the master node.

The reduction phase is formalized as follows;

[Reduction Phase of the Proposed Algo-
rithim]
Repeat the following operations while there are
temporary nodes. For every temporary node both
of whose '0’ edge and 1’ edge are not temporary

(5)

nodes (i.e. permanent nodes or leaf nodes), test as
follows;

(1) Ifits '0’ edge and '1’ edge are the same, mark
the node as a slave node whose master node
is the node pointed to by its '0’ edge.

(2) If there is an equivalent node registered in
the node table, mark the temporary node as
a slave node whose master node is the node
registered in the node table.

(8) Otherwise, register the node to the node ta-
ble, and change its attribute to permanent
from temporary.

This procedure is also suitable for vector pro-
cessing because all temporary nodes whose '0’
edges and '1’ edges are not temporary nodes can
be processed ‘at-a time, and almost all operations
are vectorizable.)

3.3 Breadth-First mampulatlon of Out.put
Inverters

As mentioned in section 2.1, various attributed
edges are proposed and the output inverters are ef-
ficient to reduce the time for manipulation. In the

- conventional recursive algorithm, the attributes of
the edge pointing to a new node can be easily de-
termined using the result of the recursive steps
for its sub-functions. In this section, we present
a method to compute the output inverters of the
edges without using the'result of its sub-functions.
This enables us to compute the output inverters
in every step. of the breadth-first operation in-the
expansion phase. ‘

We denote the state of the output inverter of
edge € as oi(e), whose value is 'true’ if the output
inverter is'attached and 'false’ otherwise. The pro-
cedures to be added to the expanslon pllase are as
{follows;

(a) Attach an output inverter to the root edge
 of op(f,g) iff op(oz(the root cdge of f),ot(the
root edge of g)) is 'true’.

(b) For the requirement (op, fo, go), attach an
output inverter to the root edge fo (go) iff
'oz(the root edge of f (g)) istrue’.

(c) For the requirement (op, fl, gl), attach an
output inverter to the root edge f1 (g1)
iff oi(the root edge of f (g)) is different from

. 0i(’1’ edge of the root node of f (g)):

(d) Never attach an output inverter to the '0’

edge correspondmg to the requirement (op,

va gO)

(6)

(e) Attach an output inverter to the 1’ edge cor-
responding to the requirement (op, f1, g1) iff
op(oi(the root edge of fy), oi(the root edge of
1)) is different from op(oi(the root edge of
fo),0i(the root edge of go))-

One can prove the correctness of this method
using the fact that oi(the root edge of f) is ’true’
iff the value of f is 1 when 0 is substituted to all
the variables.

4 Implementatlon and Evaluatlon

‘We implemented the SBDD mampulator based on
the algorithm proposed in the preceding section
on the vector processor HITAC $-820/80 at the
University of ‘Tokyo. The program is coded in
FORTRANTT.

In Table 1, benchmark results on S-820/80
are shown. This table shows the required CPU
time for constructing the graph representing tle
Boolean functions of all the nets from a circuit
description. ' The benchmark circuits are chosen
from ones in ISCAS'85 [11]. For the ordering
of the variables, the dynamic weight assignment
method [7] is‘employed (the computation time for
the ordering is not contained in the Table 1). Vec-
tor ezecution time (V) is the required CPU time
using all the features of. S-820/80, while scalar
erecution time (S) is the required CPU time us-
ing only the conventional scalar processing unit of
the S-820/80. The same source program is used
for both scalar exécutions and vector executions.
The vector acceleration ratio (S/V) shows how our
program is suited for the vector processor. From
Table 1, we can see.that 3.8.te 14.3 acceleration
ratio is gained. Especially, the circuits with large
number of,nodes and small nnmber of nets, such
as ¢432; c499, c1355 and ¢3540, are highly accel-
erated. Compared with. the results-on the work
station Sun3/60 by Minato et al. {7], our results
are up to 70 times faster. For example, 21.5 sec.
and 51.4 sec. were required for ¢499 and c1355 re-
spectively in [7}, while only 0.305 sec. and 0.750
sec. respectively, are required in Table 1.

The required storage is 7 words (28 bytes) for a
permanent node (including the space for the node
table and the operation result table) and the addi-
tional rcqulred temporary storage fora temporary
node is 5 words (2() bytes). Since we can use up to
128 mega byte Tain memory on HIITAC S-820/80
at the University of Tokyo, we can Imanage an
SBDD of more than 2 million temporary nodes or
more than 4 million penﬁm\ent nodes.

5 Conclusion

We have proposed a high-speed algorithm for ma-
nipulating an SBDD on vector processors, and
shown benchmark results of the proposed algo-
rithm on the vector processor HITAC S-820/80 at
the University of Tokyo. The vector acceleration
ratio on 5-820/80 was 3.8 to 14.3. Our manipu-
lator on S-820/80 was faster than that of Minato
et al. on Sun3/60 up to 70 times. The developed
SBDD manipulator is expected to be used for var-
ious applications of CAD systems such as design
verification, test generation, logic synthesis and so
on.

The future works on the vectorized SBDD ma-
nipulator are as follows;

(1) The reduction of the required storage. This
includes the implementation of attributed
edges other than output inverters.

(2) The improvement of the parallelism of the
processing. If we put two or more require-
ments to the requirement queue at the first

step of the expansion phase, two or more op-*

erations are processed at a time with longer
vector length, which may produce more vec-
tor acceleration ratio.

Acknowledgment

The authors would like to express their sincere ap-
preciation to Mr. Shin-ichi Minato'for-his valuable
suggest:ons and ‘advices.. The authors would like
to thank all the members of Yajima Laboratory at
the Kyoto University for their valuable discussions
and comments. :

References

[1] S. B. Akers: "Binary Decision Diagrams”,
IEEE Trans. Comput., vol. C-27, no. 6, pp. 509-
516, (June 1978). AT L

[2] R. E. Bryant: "Graph-Based Algorithms
for Boolean Function Manipulation" IEEE Trans.
Comput., vol. C-35, no. 8, pp 677—691 (Aug
1985).

[3] M. Fujita, ‘H. Fujisawa and N. Kawato:
"Evaluation and Improvements of Boolean Com-
parison Method Based on Binary Decision Dia-
grams”, Proc. IEEE ICCAD-88, pp. 2-5, (Nov.
1988).

[4] N.
jima: "Coded Time-Symbolic Simulation Using

‘ Shared Binary Decision Diagram”, Proc. 27th
ACM/IEEE DAC, pp. 130-135, (June 1990).

(7)

Ishiura, Y. Deguchi and 8. Ya-

[5] K. Cho and R. E. Bryant: "Test Pattern
Generation for Sequential MOS Circuits by Sym-
bolic Fault Simulation”, Proc. 26th ACM/IEEE
DAG, pp. 418-423, (June 1989).

(6] H. Sato, Y. Yasue, Y. Matsunaga and M.
Fujita: "Boolean Resubstitution with Permissible
Functions and Binary Decision. Diagrams”, Proc.
27th ACM/IEEE DAC, pp. 284-289, (June 1990).

[7] S. Minato, N. Ishiura and S. Yajima:
"Shared Binary Decision Diagram with At-
tributed Edges for Efficient Boolean Function Ma-
nipulation”, Proc. 27th ACM/IEEE DAC, pp. 52-
57, (June 1990).

[8] K. S. Brace, R. L. Rudell and R. E. Bryant:
"Efficient Implementation of a BDD Package”,
Proc. 27th ACM/IEEE DAC, pp. 40-45, (June
1990).

[9] S. Klmura, E. M. Clarke: "A Parallel Al-
gonthm for Constructing Binary Decision Dia-
grams”, Proc. IEEE ICCD'90, (Sep. 1990).

[10] N. Ishiura, T. Tohdo and S. Yajima:
"A Class of Logic Functions Expressible by a
Polynomial-Size Binary Decision Diagram”, Proc.

. 39th ‘Annunal Convention IPS Japan, pp- 1808-

1809, (Oct. 1989)

[t1} F. Brglez and H. Fujiwara: "A Neutral
Netlist of 10 Combinational Circuits”, Special Ses-
sion on ATPG and Fault Simulation, Proc. 1985
IEEE International Symposium on Circuit and
Systems, Kyoto, Japan, {June 1985). .

g&

0 1 0 1 0 1 0 1 0, 0 1 1

Lo [o]t]{o]{of[+]{s]{o](1] (][] |
(a) Binary Decision Trees .

1,=AND(Xo, NOTCX D)

fb=EXOR(X2,Xl)

£.=NOTCX))
£4=O0R(Xy, NOTCX,))

(b) A Shared Binary Decision Diagram

Fig.1 Binary Decision Tree and SBOD

Xy,

(X350, X35=0)
1(Xg5=1,X3570)

Fig.2 Output inverters

&

Fig.3 Exanple on the Effect of the Operation Result Table

Table 1. Experimental results.

Circuit size Number CPU time Acceleration

Circuit of [msec] : Ratio

In. Out. Nets.] nodes | Scalar (S) Vector (V) (8/v)
c432 36 7 203 104,066 8,269 734 - 113
c499 41 32 275 65,671 2,767 305 9.1
c880 60 26 464 31,378 1,919 351 5.5
~¢1355 41 32 619 208,324 - 6,210 750 8.3
c1908 33 25 938 60,850 2,894 567 5.1
c3540 50 22 1741 | 1,029,210 67,841 4,747 143
c5315 | 178 123 2608 48,353 5,843 1,531 3.8

(8)

