7o Yy X A 21—-7
(1991. 5 29)

Ev) B TRIREICX T 5 MRk

a5, E E
HAT 4 - ¥— « = AHIEEERIZERT

SEETHYS 77 (T'=(A,B), |Al=n, |B|=k) KBFARNaA b 130%E<yF v/ RE
TN & FASE R BT (Brha A P ABIY Y CRIE) KB &» X, randomization DF 2
=Y 7EHCHIEIEY, O(kn4E5n®) HOT VT A8 FR LI, Zhid, k< nd
D YOI, $TIRAIS TV S O(kn? + nllogn) RO 7TV TY XL 2B H DT
b5,

Geometric algorithms for a minimum cost
assignment problem

Takeshi Tokuyama and Jun Nakano
IBM Research, Tokyo Research Laboratory,
5-11 Sanbancho, Chiyoda-ku, Tokyo 102, Japan.

We consider the minimum cost M-assignment problem, which is equivalent to the minimum
weight one-to-many matching problem in a complete bipartite graph I' = (A4, B), where A and
B have n and k nodes respectively. Formulating the problem as a geometric problem, we give an
O(kn+k*°n%)-time randomized algorithm, which is better than existing O(kn?+n?logn)-time
algorithm if k£ < n%, '

1

1 Introduction

We consider the following transportation problem
named the minimum cost A-assignment problem:
Suppose a company has n employees and k sites. For
each i = 1,2,...,k, the i-th site needs)\; workers,
satisfying ELl); € n. The commutation cost for
the employee u to the site v is defined by w(u,v).
The problem is to minimize the total commutation
cost. '

We can assume 21';1 A; = n without loss of gen-
erality, since we can consider an imaginary site with
capacity n—2f=1); to which any employee can com-
mute with cost zero. The problem can be mathemat-
ically formulated as follows:

Let I' = (A, B) be a complete bipartite graph,
where A has n nodes uy,us,...,%, and B has k
nodes vy, vs,...,v;. We assume that n > k. A real
number w(u, v), called the weight of e(u,v), is asso-
ciated with each edge e(u,v). A capacity vector is a
sequence A = (Mg, Ag,. .., Ax) of nonnegative integers
of length k such that 2:;1 i =n.

Definition 1. (Figure 1) Given a capacity vector -

), a subgraph H of T is called a A-assignment if the
node set of H is AU B, the degree of each node of A
is 1, and the degree of v; is); foreachi =1,2,...,k.

Definition 2. The minimum cost A-assignment
is the A-assignment H that minimizes the total cost

Z(m)eﬂw(u, v).

Problem 1.
assignment.

Find the minimum cost A-

Problem 1 can be transformed into a minimum
cost flow problem, and solved in O(kn? + n? logn)
time by Fredman and Tarjan’s algorithm {FT], and in
O(kn!-5lognL) time by Gabow and Tarjan’s scaling
algorithm [GT], where log L is the bit length to rep-
resent weights. However, if the order of magnitude
. of k is much smaller than that of n, which often oc-
curs in practical applications, it seems that the study
of efficient algorithms has not been well done. For
instance, a comparatively naive O(k®n + k?nlogn)
time algorithm shown in Section 2 often outperforms
above sophisticated algorithms.

In this paper, the problem is formulated as a ge-

2>

ometric problem named splitter finding, and an ef-
ficient randomized algorithm, which terminates in
O(kn + k35n%5) time with probability 1 — e~
(for any constant c), is given. This algorithm is
faster than the Fredman-Tarjan’s algorithm and the
Gabow-Tarjan’s algorithm if £ < n®% and k <
(nlog nL)%*, respectively. Further, if k can be con-
sidered as a constant, an O(n) time deterministic
algorithm is given. Table 1 shows the time complex-
ities of strongly polynomial algorithms to solve the
minimum cost A-assignment problem depending on
the relation between n and k (co is a suitable con-
stant).

2 A geometric interpretation

The minimum cost A-assignment problem is equiv-
alent to a geometric problem named the A-
splitter finding, essentially defined by Numata and
Tokuyama [NT]. For each node u of A4, we asso-
(‘:’(u’”‘))i=1,2,...,k’ where
@(u,v) = w(u, vi) - 71;2;;1 w(u, vj).

Thus we obtain a set S of = points on the hy-
perplane L(0) : zy + @3 + -+ + 2 = 0 in the
real k-dimensional space R*. For a given point
G = (g1, 92,---,9x) in L(0), the half space defined
by z; — zj < g; — g; is denoted by H(Gji,j). The
(closed) region T'(G;d) = [); H(G;i,j) is called the
i-th region split by G.

ciate the vector p(u)

Let A be a capacity vector (which is called an or-
dered partition of n in [NT]). A partition of the
point set S into {Si}i=1,2,...k is called a A-partition

k deterministic | randomized
k> 0 O(kn?) —
k < n08 O(kn?) | O(k>5n05)
k < n0® O(k3n) O(k35n0-5)
k < 002 O(k*n) O(kn)
k<logn O(k?nlogn) O(kn)
k< pRERER | O((kY)?n) O(kn)

Table 1: Time complexity

if S; contains exactly A; points. Obviously, there is
a natural one-to-one correspondence between the set
of A-partitions and that of A-assignments.

A A-partition is called a A-splitting if there exists
a point G in L(0) such that S; C T(G;i) for each
i=1,2,...,k. The point G is called the A-splitter
(Figure 2).

Theorem 1. A A-partition corresponds to a min-
imum cost A-assignment if and only if it is a A-
splitting.

Proof. Let {S;} be a A-partition correspond-
ing to a minimum cost assignment. We fix a -
splitter G. Without loss of generality, we can as-
sume there is no element of S located on the bound-
ary face of the splitting. Assume there is a point

7(i,j) € Si in the region T(G;j) such that j # i.

If we denote the s-th coordinate value of r(i, j) by
T(i,j)_,, T(ivj)j - T(iaj)i < 9 — g by definition
of the splitter. We write 1 = 01,7 = 03. Since
T(G, o4) contains A,, elements, there is at least one
element (denoted by r(o2,03)) of Sy, which is lo-
cated in T(G;o03) for a suitable 03 # 0o, If we
continue this chain (pruning it if necessary), we find
a cycle (01, 02),7(02,03),...,7(01—1,0:) of length
t < k, satisfying 0, = o7. If we re-assign the point
7(0;,0i4+1) for the S,,..;, for each i = 1,2,...,t - 1,
we obtain a new A-partition. Since

t—-1

Z{r(a;, (7.'+1)¢7,-+, - T‘(Ui, Tit+1)di }

i=1
t—1)
< Z(gdi-n - gﬂ-‘) = 01
=1

the corresponding new assignment has a smaller
weight, which contradicts the hypothesis.

It is easier to show that a A-splitting always makes

a minimum cost A-assignment. In particular, -
splitting is unique if the point set satisfies certain
non-degeneracy conditions [NT]. 1

We present an incremental algorithm for finding

A B
uy
U,
Vi
U
u, V2
Usg
V3
Ug
U, Vs
Ug
Figure 1: (3,2,2,1)-assignment
T(G:1) T(G;2)

T(G:3)

a A-splitter. Suppose we have already inserted m

points of S. The set of inserted points is denoted
by 5. We consider a partition g = (p1,...,ux) of
m satisfying the condition that p; = [Z;] (called
a short part) or [Z)A;] + 1. Assume that we have
computed a p-splitter Gg of S. §; denotes the set

Figure 2: (5,5,5)-splitter

(3)

of points of 5 assigned to the i-th region T(Go;1).
p(i,7) (j # i) is defined by the point of S5; satisfying
p(i,5)i — p(i,§); = max,c5 {zi — ;}. We use cer-
tain priority queues to maintain these k(k—1) points.
When we insert a new point p, we first determine in
" which region of this splitting the point is located.

Lemma 1. The region containing p is determined
in O(k) time.

Proof. Compute the vector p — G, and find the
coordinate ¢ with the minimum value. Then, p is
contained in the i-th region T'(Gg;¢). This operation
obviously takes O(k) time. 1

Next, we add the point p to the corresponding

part, say, S;. If g, is a short part, then we can

add another new point without updating the splitter.
m:l Aq]+2 points, and
there must be at least one short part. We update the

Otherwise, the part contains |

splitter to ‘reduce the number of points in S, by 1,
and increase the number of points of one of the short
parts. The following is the algorithm for updating
the splitter (Figure 3 on the next page): Let J be a
subset of K = {1,2,...,k}. X(J)is the vector in R*
such that its 4-th component is 1 if i € J and 0 oth-
erwise. By projecting X (J) on the hyperplane L(0),
we obtain a vector X(J). Initially, J = {a}. We
consider the line £(J) passing through Go with the
direction vector X (J). For each point p(i,j),i € J
and j € K — J, we consider the intersection g(i, j) of
the hyperplane z; — z; = p(i, j)i — p(i,7); and £(J).
We replace Gy by the nearest point (say, g(s,h))
among g(4,j) to Go. If fi, is a short part, we put the
point p(s, h) into Sy, assign other boundary elements
(computed so far) suitably, and return. Otherwise,
we replace J by JU{h}, make p(s, k) as a boundary
element, and continue.

Let us consider the time complexity of an insertion.
In order to find the indices s and A, it suffices to find
- maxiesjex—-s{p(i,3)i — p(,7); — (9 — 9;)}. Thus,
it takes c|J| - |K ~ J| arithmetic operations to find
g(s,h) (cis a constant). In the worst case, the total
number of such operations is‘cglfz_l1 i(k—1) = O(k%)
for an insertion. Besides, since at most k elements
are re-assigned, k(k—1) priority queues are updated.
Hence, we have the following lemma:

(4)

Lemma 2. The insertion of a point takes O(k3 +
k?logn) time.

Remark.
though it is not always fair) that the probability that
an index & is added to J is independent of the choice
of h € K — J, the amortized complexity of an inser-
tion is reduced to O(k*® + k*-®log n).

If we can make an assumption (al-

We obtain the following proposition immediately
from Lemma 2:

Proposition 1. The incremental algorithm finds
a A-splitter in O(k®n + k?nlogn) time and O(kn)
space.

Above algorithm outperforms the Fredman-
Tarjan’s algorithm [FT), if k < n®5.

Note 1. At an incremental step, we find a min-
imum weight path on a complete digraph K on k
nodes. Each node a; of K represent a region T'(G; 1)
of the current splitting, and the directed edge from a;
to a; has the cost c(4,) = p(4, j)i — p(i, j); — gi + 95
This graph has no negative cycle because of The-
orem 1. The famous Bellman-Ford algorithm [FF|
finds a minimum weight path in O(k®) time. Cur-
rently, the best time complexity is O(k%38) applying
the fast matrix computation [CW]. However, it still
needs O(k®+k? log n) time to update g and I in the
worst case. We can design an O(k*38n + k?nlogn)
time algorithm by another approach, which we omit
in this version.

3 A naive randomized algo-

rithm

In this section, we give a randomized algorithm with
time bound O(kn + k'%312/3) based on the incre-
mental algorithm in Section 2. Let us consider a set
S consisting of m randomly chosen points from S.
We consider the splitting of S such that the num-
ber of the points in the i-th region T; is [ZA;] or
[Z2A]+1 ‘

We would like to estimate the number n; of points
of S contained in T;. For a real number a, we use the

(a) (2,3,3)-splitting (b) (2,4.3)-splitting

T(G,1) x T(G,2) W x
Add a point ' e
G X
X
° o ° o
o [+]
T(G,3)

() J=(2}) (d) J={2,3}
m@ - w L«
Update the i .
splitter g

Figure 3: The insertion operation

(5)

notation |[e|| to represent max(a,0). The summation
ELI lln; = Al is called the excess.

Consider a sequence of m Bernoulli trials, where
the success occurs with probability p. Let X be the
random variable denoting the total number of suc-
cess. The variable X follows the binomial distribu-
tion, and it is well known (see [CLR]) that

Pr(lX - EX)| 2 1‘) < e, (3.1)

Here, o is the variance, which is equal to
Vmp(1 = p).

Suppose we have a splitting of S such that its -
th region T; contains n; points. Consider a random
sampling of m points from S. Let X; be the random
variable denoting the number of sample points con-
tained in T;. The variable X; almost follows the bi-
nomial distribution of success probability p; = n;/n.
Although the distribution of X; is not a true bino-
mial distribution, (3.1) holds for it too (we omit the
details). Thus, the probability that X; is smaller
than p;m — r; is bounded by e~ /4mpi(l=pi),

Therefore, the expected number of || E(X;) — X;||
is bounded by

d

" _p 8 =2 ampi(1~p)) < 1 — n
/0 To—e dz < /mmpi(l —pi)
< /mmn;/n. (3.2)

Thus, the expected value of the difference between
A; and the number n; of pdints of S in T is less than
2y \/mmme]m, which is v/7Rm/m + o(y/Nnfm).
The summation 2?___1 V/mAin/m attains its maxi-
mum n+/7k/m when X; = n/k for all i. This number
is larger than the expected value of the excess of the
splitting. Thus, we obtain the following proposition.

Proi)osition 2. The expected number of the ezx-

cess is less than ny/mk/m.

On the basis of above observation, setting m
k!/3n?/3) we design the following algorithm:

Algorithm 1;

1: Randomly choose k'/3n?/3 points of S;
2:
3:

Find the splitter of these points;

Add all points to the splitting without
updating the splitter;

Remove excess points (until excess = 0);
Insert the removed points, incrementally

(6)

updating the splitter;
end

If we use an O(log n)-time priority queue to main-
tain the order of elements in each region, the ex-
pected performance of this algorithm is O(knlog n-+
£10/302/3 4 k7/3p2/3 logn). If we use the Fibonacei
heap [FT], which is a priority queue performing an in-
sertion in O(1) amortized time (other operations are
done in O(log n) amortized time), the complexity can
be improved to O(kn + k'%/3n2/3 4 k7/3p2/3 log n).
Since the term k7/3n?%/3 log n never becomes the lead-
ing term'in the above expression, we obtain the fol-
lowing:

Theorem 2. The expecied time complexity of Al-
gorithm 1 is O(kn + k'%/32%/3),

Note 2. If k = 2, the problem is equivalent to
the selection problem of the A;-th largest element in
a set of n real numbers. Therefore, Algorithm 1 can
be regarded as a higher dimensional version of the
“randomized selection algorithm”, although its one-
dimensional version (k = 2) is different from known
such linear time algorithms [FR].

Note 3. The classical assignment problem, where
A=(1,1,...,1,n—k+1) can be solved in O(nk+k*)
deterministic time by applying Algorithm 1, if we
define the initial splitter such that every point is in-
volved in the k-th region.

Let us consider the tail distribution analysis of Al-
gorithm 1. From now on, we assume \; = n/k for
anyi=1,2,...,k. Itiseasy to see the general prob-
lem can be reduced to this special case by increasing
k and n to at most 2k and 2n respectively.

Because of the assumption, E(X;) = m/k. We
would like to compute the probability

k .
P(r) =Pr (Z IEX:) - Xill 2) :

i=1

The following is the key proposition:

Proposition 3. If c > 32, P(Vckm) < e—ck/8,

Proof. We define the function F(r) = e—kr?/am
Then, from (3.1),

Pr(E(X,-)-—X.- > 'r) < et < gmke? am F(r).

Because of the unimodality of the binomial distribu-
tion function,

00 k
OF(r;)
< f / 98 gvay, (33)
y=r FGQvil;Il 37‘1’ ’
where ¥ = (rl,rz;...,rk),dl/ = drydry---dry, and

Qy is the simplex defined by 0 < z; < y for ¢

kand ¢y + x4+
although X;(i = 1,2,...,k) are not independent of
each other, (3.3) certainly holds. The right hand of

(3.3) is

+ z = y. We remark

oo . i '
/ / (H ﬁr_) e P/ amaydy (3.4)
y=r JTEQy \ =1 2m

4=

Since both [T_, r; and —|7|? attain their maximums
(on Qy) ifandonly if m; = y/kfori=1,2,...,k, we
have
“ v (L) emviam
P(r) < /,, R (2m) e dy, (3.5)

where V, = vky*¥~1/(k - 1)! is the volume of Q,.
If we set © = v/ckm and compute (3.5), we obtain

_ A= S WA
ol)]

(3.6)
If ¢ > 4, the right hand of (3.6) is smaller than
k-1 }

k-1 ~ck{4
2 ‘/E{e (k- 1)ar1

Applying Stirling’s formula,

e(1—c/9k
P(Vekm) < ——— i \/_ EER)
If ¢ > 32, the right hand of (3.7) is smaller than

€~°k/8; hence we obtain Proposition 3. I
Corollary 1. The number of updating of the split-

ter in Algorithm 1 is less than /ck'/3n?3 with o

probability larger than 1 — e=<*/8 if ¢ > 32,

(7

4 More efficient implerhenta—
tion

From Proposition 3, we have the following lemma
(proof is omitted):

Lemma 3. Suppose that we have a splitting of
n® points. Let ¢ be a constant larger than 32. If we
add points until the excess becomes 3v/cknf=2/2 for
B > a, the number of added points is more than nf
with a probability larger than 1 — 3e—°F/8,

On the basis of the above observation, we design
the following algorithm (c > 32 is a constant):

Algorithm 2;

1: Choose /n elements at random;

2: G = splitter of the above elements;
3: t = |loglognl;

4: i=1;
repeat
5.1: while the excess is less than 2'~*3v/ckn do
5.1.1: Randomly add points;
end do
5.2: Remove the excess points;
5.3: Insert the removed points, updating
the splitter G;
54: i=1i+4+1;
until no point remains;
end

Proposition 4. The number of updating op-
erations of the splitter in Algorithm 2 is less
than 15v/ckn with a probability larger than 1 —
3e~*/8log log n.

Proof. Initially, we have a splitting of \/n points.
From Lemma 3, more than 2!17*n3/4 points are added
before the excess becomes 2!~*3+/ckn with a proba- 7
bility of at least 1 — 3e~*/8, Similarly, suppose that
2-hn1=2"" point has been already inserted; then, the
algorithm adds more than 2(-h/D—t+i+lpl-27/=
points before the excess becomes 27 *++13/ckn with
a probability larger than 1 — 36"‘“"/8 Thus, after
the first ¢ recursxons, M > 2-¢pt-2" pomts, where
E=30C i? i, are added. Since t = log log n and
€ <2, M <n/(2x22) =n/8. The probability that
all these t steps succeed is larger than 1 — 3te—c*/8,

The total excess in these ¢t recursions is less than
6v/ckn. After we have found the splitter of n/8
points, the excess caused by the addition of the re-
maining points is less than 3+/8ckn with a probabil-
ity larger than 1 — 3¢™¢*/8,

Proposition 4 has been
proved.

The probability 1 — 3¢~°*/8loglogn is small if
n > k. However, the complexity of the algorithm
is not affected by the loglog n factor, as seen below:

Lemma 4. The performance of Algorithm 2 is
O(kn+~v°3k35n05) with probability 1 —3e~7*, where
v is any real number larger than 4 and less than
n/(loglogn)”.

Proof. If k > loglogn, Lemma 4 immediately
follows from Proposition 4. If k < loglogn, replac-
ing the constant ¢ by ¢ = yloglogn in the algo-
rithm, the number of updates of splitters is less than
15/knloglogn with probability 1 — 3e™7*. Since
kn > 4%8k35093 loglog n if k < loglogn, Lemma 4
holds for this case too. |

Theorem 3. The performance of Algorithm 2 is
O(kn+ k33n05) with probability 1 — 3e=<n"? for any
constant c. The space complezity is O(kn).

Proof. If k > n%%, Theorem 3 is an immediate
corollary of Lemma 4. If k < n%2, we set v = cn®2/k

and apply Lemma 4 to obtain the theorem. 1

5 Concluding remarks

We have developed a new method to find the mini-
mum cost assighment on a complete bipartite graph
between n nodes and k nodes. Our method is effi-
cient if n is large enough compared with k. The time
complexity shown here is the worst case one, and it
is expected to be better in practice. We would like
to apply the framework to several other optimization
problems. Moreover, we have given a new type of the
applications, which was presented as an open prob-
lem in [FT}, of the Fibonacci heap. For our purpose,
its lazy deletion version seems to be advantageous.

(8)

Acknowledgement

Akihisa
Tamura, and Komei Fukuda for helpful discussions,

We wish to thank Kazumiti Numata,

which stimulated our interest on assignment prob-
lems. Xazuo Iwano of IBM Tokyo Research Lab. en-
couraged this work and gave helpful comments.

References

[CLR] Cormen, T., Leiserson, C., and Rivest, R.,
Introduction to Algorithms, The MIT Press,
1989.

[CW] Coppersmith, D. and Winograd, S., “Ma-
trix multiplication via arithmetic progres-
sions,” Proc. 9th ACM Symposium of Theory

of Computing, pp.1-6, 1987,

[FF] Ford, L. and Fulkerson, D., Flows in Net-

works, Princeton University Press, 1962.

[FR] Floyd, R. and Rivest, R., “Expected time
bounds for selection,” Communications of

ACM., 18, pp.165-172, 1975.

[FT] Fredman, M. and Tarjan, R., “Fibonacci
heaps and their uses in improved network
optimization algorithms,” J. ACM., 34,

pp.596-615, 1987.

[GT] Gabow, H. and Tarjan, R., “Faster scaling
algorithms for network problems,” SIAM J.

Comput., 18, pp.1013-1036, 1989.

[NT] Numata, K. and Tokuyama, T., “Splitting
a configuration in a simplex,” submitting,
a preliminary version is in Springer Lec-
ture Notes in Comput. Sci., 450, pp.429-438,
1990.

