TNTY XL 2817
(1991. 9. 20)

FEO 7oy YEEAEEESWHT Y Y FAD
Y A2 75T OlET®

oo #

Bl #

(EmA¥EIEEH)

HBOEL BYVIPTE-HOAYE-VRREETEZIATY 20 OoERBAMWEI LS Tury ¥

VAT ALEND, YRV TS TOHENEEFEEIBET 3,
ET. BXADNELS TV I RHEOT T, Sxohr7uwy ¥y LT, BEE
R, CORBBREZRNATIIR IS JOBNEEF

ETHMTH B,
ERNOREEEZRDDEDDFEIEERT,
HBERT,

FIERER. EERMOEDEI A IO

MAPPING A TASK GRAPH ONTO A PARALLEL MACHINE
WITH AN ARBITRARY TOPOLOGY

TSUYOSHI KAWAGUCHI and HIROSHI MASUYAMA

Department of Electronics Engineeing

Miyazaki University

Miyazaki, 889-21 Japan

ABSTRACT In this paper we study the problem of scheduling a task graph onto an MPS(message
passing multiprocessor system) so as to minimize the total execution time. Each link in the
interconnection network of the MPS has a memory which can store one message. An algorithm for finding
a route which minimizes the communication delay between processors is first given. Next, we present a
heuristic scheduling algorithm which uses the above routing algorithm. The performance of the
proposed algorithm is estimated by using simulation experiments.

1. INTRODUCTION

Execution of a parallel program requires a
partition of the program into modules and a schedule
of these modules on multiprocessors.

In this paper we study the problem of scheduling
program modules onto a multiprocessor system so as
to minimize the total execution time. This problem is
known to be strongly NP-hard even if communication
delays between processors are assumed to be
infinitely small [1]. Kruatrachue et al. [2] presented
two approximation algorithms for the case when all
are fully connected, that is, all
processors can communicate directly with all others

processors

without contentions.

The scheduling problem on an MPS(message
passing multiprocessor system) is considered in this
paper. An MPS is assumed to consist of m
homogeneous processors interconnected in an
arbitrary way. (The most typical topologies used in
MPS’s are binary tree, hypercube, mesh, and torus.)

If there exists a data dependency between two
modules placed on different processors,
communication is needed between these modules. A
message between these modules is transmitted along
a route on the interconnection network of an MPS.
More than one messages cannot pass through a
common link of the network at the same time. Thus,

—145—

the communication delay between two processors is
not always minimized by the shortest path between
them.

A routing algorithm is shown in [3]. However, it is
assumed in this algorithm that each link of the
network has a queue of an infinitely large capacity
to store messages waiting for the transmission on the
link. Further, although the communication delay as-
sociated with a route depends on both the queuing
delay and the length of the route, the algorithm
estimates the communication delay by only the
former.

In this paper, an optimal routing algorithm is
presented for the case when each link has a memory
which can store one message. The time complexity of
this algorithm is O(e-C) where e is the number of
links in the network and C denotes the minimum
communication delay obtained by this algorithm.

Next we present an approximation algorithm for
scheduling program modules onto an MPS with an
arbitrary interconnection network topology. The
algorithm wuses the routing algorithm described
above. Simulation experiments showed that, for the
most of the test problems, the total execution times
obtained by the ©proposed algorithm were
considerably smaller than those obtained by an
algorithm in which the communication between each
processor-pair is performed by using the shortest
path between them.

2. SCHEDULING MODEL
2.1 Task Graph

Given a program P which is already partitioned
into modules, the task graph G(P) is a digraph
defined as follows.

(1) Each node in G(P), which is called a task,
corresponds to a module of P. Weight of a task i
denotes the number of instructions to be executed in
task i.

(2) G(P) has an arc (i,j) if and only if the
processing of task j needs the data of task i. Weight
of the arc (i,j) denotes the size of the data to be sent
from task i to task j.

2.2 MPS

We make the following assumption about an MPS.

(1) The MPS- consists of m homogeneous
processors PE(i), 1Sigm.

(2) Each processor has an I/0 processor and so
each processor can execute tasks and communicate
with another processor at the same time.

(3) Some pairs of processors are directly

connected each other by links. The network con-
structed by these links is called the interconnection
network of the MPS. The link directed from PE(i) to-
ward PE(j) is called link (i,j). Further, if a link (1,))
exists in the interconnection network, we say that
PE(J) is adjacent to PE(D).

(4) Let M be the data of task a needed by task B
for its processing. If tasks a and g are placed on

processors PE(i) and PE(j), respectively, PE(i) is
called the sender of M and PE(j) is called the re-
ceiver of M. Further, M is called a message to be sent
from PE(i) to PE(j). Each message is sent from its
sender to its receiver along a route on the
interconnection network of the MPS.

(5) Each processor PE(i) has a memory for each
entering link (k,i), which stores messages entering
to PE(i) through link (k,i). The memory, which is
called the memory of link (i,j), cannot store more
than one message at a time. If the receiver of a mes-
sage M stored in the memory of a link (k,i) is PE(i)
itself, PE(i) receives the message. Otherwise, PE(i)
selects one of its outgoing links according to the
information about the route of M. Let (i,j) be the
selected link. If the link (i,j) is idle, PE(i) sends M to
PE(j) through the link, and otherwise PE(i) keeps M
in the memory of link (k,i) until link (i,j) becomes
idle.

Fig.1 illustrates the communication mechanism de-
scribed above. It is assumed in this figure that a
processor PE(i) has entering links from PE(N)),
PE(E:), PE(W:) and PE(S:) and has outgoing links to
them. SN denotes a switching network.

2.3 System Parameters

The following notation is used in the remainder of

PE E1i)

Fig.1 The communication mechanism of the MPS
considered in this paper

— 146 —

this paper.

n: the number of tasks,

m: the number of processors,

E: the set of links on the interconnection network,

| E | : the cardinality of E,

INS(i): the number of instructions to be executed
in task i,

p(i): the execution time of task i on each
processor, which is given by INS(i)/S if the speed of
each processor is S,

data(i,j): the data of task i needed by task j,

size(i,j): the size of data(i,j),

R: the transmission rate over a link of the
interconnection network,

I: the time to initiate message passing on a link,

d(i,j): the time needed by data(i,j) to pass through
a link,

LENGTH(x,y): the length of the shortest path
between processors x and y in the interconnection
network, where the length of a path denotes the
number of links on the path.

p(i) depends on only INS(i) since all processors
have the same speed S and p(i) is given by INS(i)/S.
Further, d(i,j) depends on only size(i,j) because R
and I are both constants and d(i,j) is given by
(size(i,j)/R+I). Thus, under an appropriate normali-
zation, we can view p(i) as the weight of task i and
d(i,j) as the weight of arc (i,j) in the task graph.

2.4 An Example

As an example, we consider the problem of
scheduling the task graph shown in Fig.2 onto the
MPS shown in Fig.3. In Fig.2, the number put by the
left side of each task i, which is underlined, denotes
the parameter p(i) and the number put on each arc
(i,j) represents the parameter d(i,j).

First, task T, is put in the interval [0,1] on PE(1).
Tz to Te need the data of T. for their processing.
Since T= is placed on the same processer as T,
communication between T. and T= is not needed. But,
Ts to Te have to communicate with T, because they
are not placed on the same processor as T.. We
assume the routes between T, and the tasks Tz to Te
are constructed in the order of their indicies.

The data of T, is sent to Ts through link (1,2) and
to T. through link (1,4). As the result, links (1,2) and
(1,4) becomes busy during the interval [1,2].

Since links (1,2) and (1,4) are both busy during
the interval [1,2], communication between T, and Ts
starts at time 2 and the data of T. is sent to Ts along
the route consisting of links (1,4) and (4,5). As the
result, the interval [2,3] on link (1,4) and the
interval [3,4] on link (4,5) become busy. Repeating
the above procedure, we have the schedule shown in

PE(1)
PE (2)
PE (3)
PE (4)
PE (5)
PE (6)
(1, 2)
(1, 4)
21
2,3)
(2, 5)
A, 2)
(3, B)
4, 1)
(4, 5)
5, 2)
(s, 4)
(5, 6)
(6. 3)

(8, 5)

— 147 —

Fig.2 A task graph

PE (1) PE (2) PE (3)
1,2

7.13 3.8 4,12
4,9 5,10 11

PE (4) PE (5) PE (8)

Fig.3 A mapping of the task graph of Fig.2
onto an MPS)

Fig.4 A schedule obtained by the mapping
shown in Fig.3

T1 T2 T7 T13
T3 T8 ’
Tb‘l Tz
T4 T9
TS TIOI
Til
13 (16
1-4 (125
37 813 12-13
1-8
i2-13 -
61 0[6-11
9131013
15| 4->10
1013
6-10

Fig.4.

Note that the communication delay between two
processors is not always minimized by the shortest
path between them.

3. ROUTING BETWEEN A PROCESSOR-PAIR

In this paper, a route in a network means any
sequence of links where the final node of a link is
the initial node of the next link. Further, a path is a
route which does not use the same node more than
once. For example, in the network of Fig.3, a
sequence of links ((1,2), (2,5), (5,2), (2,3)) denotes a
route. Note that while the shortest route between a
processor-pair is always a path, the route which
minimizes the communication delay between a
processor-pair is not always a path.

3.1 Formulation of the Routing Problem

We assume p(i) and d(i,j) are all integers.(This
assumption is valid because the original values of
p(i) and d(i,j) can be rounded according to the
required accuracy.) Let T denote an upper bound on
the length of the schedule obtained by the proposed
algorithm.

Assuming that the first task in the schedule
starts at time 0, we divide the interval [0,T] into T
unit intervals I.=[t-1,t], 1£t<T. Each link Lkx€E is
said to be idle during an interval I. if no messages
pass through Ly during I., and otherwise Ly is said
to be busy during I..

For each link L. €E and each interval I., define
TC(k,t) as follows: TC(k,t)=idle if L« is idle during I.,
and otherwise TC(k,t)=busy. Each TC(k,t) is called a
traffic condition of a link L. during an interval I..
Further, let TC be a table with |E| rows and T
columns whose elements are TC(k,t). TC is called a
traffic condition of the network.

Let a message be denoted by M(x,y,d,s) where x is
its sender processor, y is its receiver processors,
d is the time needed by the message to pass through
a link, and s is the time when the transmission of the
message becomes ready on processor Xx.(If M(x,y,d,s)
is the data of a task i placed on x which is needed for
the processing of a task j placed on y, s is the
completion time of task i.) If M(x,y,d,s) is received by
y at time t under a traffic condition TC of the
network, the difference between t and s is called the
communication delay of M(x,y,d,s) under TC, which is
denoted by C(TC,x,y,d,s). Further, let a sequence of
processors (v.,Vs,«-:--,V:+1), Where v, is x and
'V-+1 is y, denote a route between x and y in the
network. If M(x,y,d,s) can be transmitted from x to y
using idle intervals [t,ti+:], 1L£i£r, on links

(V,,Vi+1), the sequence ((vi,t.), =+ +,(Vrei,trst)) is
called a transmission pattern for M(x,y,d,s). We
consider the following problem in this section.

Problem RF. Given a message M(x,y,d,s) and a
traffic condition TC of the network, find a
transmission pattern which minimizes the
communication delay of M(x,y,d,s) under TC.

Specially, a pattern
{(vi,t1), o« (Vesr,trey)) is said to be a_ no-wait
transmission pattern if t:..-t:=d for all i, 1<i<r. As
described in section 2, each link in the network has a
memory to store a message. Thus, if a link (v;, v+,) is
busy when the message M reaches vi, M can wait on
link (vi-1,v:) until link (v:,vi+:) becomes idle. There-
fore, we need not to impose no-wait conditions on
transmission patterns. But, if our final goal is to
schedule the whole task graph onto the network,
no-wait transmission patterns have a desirable
property. For a transmission pattern P, let 1(P)
denote the sum of lengths of the time intervals used
in P. Then, a no-wait transmission pattern P satisfies
I(P)SI(P’) for any other transmission pattern P’
which uses the same route as P. Since no-wait
transmission patterns have such a desirable
property, we consider the following problem in
addition to the problem RF.

Problem NWRF. Given a message M(x,y,d,s) and a
traffic condition TC on a network, find a no-wait
transmission pattern which minimizes the
communication delay of M(x,y,d,s) under TC.

transmission

receiver

Fig.5 An interconnection network
among processors

link —time

{1 2)

{1, 3)
(2, 4) |
(3, 4)

(3, 5) i

{4, 5)

Fig.6 A traffic condition of the network
shown in Fig.5

—148—

Below, we will explain these problems using an
example. Fig.5 shows a network where each node i,
15i£5, denotes a processor PE(i). Fig.6 gives a
traffic condition TC of the network over the time
interval [0,10], where the clear segments mean the
link is idle and the dark segments denote the link is
busy.

Let M be a message to be sent from PE(1) to PE(5)
which needs two time units to pass through a link.
Further we assume the transmission of M becomes
ready at time 0.

The route consisting of links (1,2), (2,4) and (4,5)
connects between PE(1) and PE(5). If M departs from
PE(1) at time 4, M can pass through each link of this
route during its idle interval. Thus, the sequence
((1,4), (2,6), (4,8), (5,10)) is a transmission pattern
for M, and the communication delay of M determined
by this pattern is 10 time units. Further, this
transmission pattern is a no-wait one. We can show
that if no-wait conditions are imposed on
transmission patterns for M, the minimum
communication delay of M is 10 time units. Therefore,
the above transmission pattern is an optimal no-wait
one.

On the other hand, if M is allowed to wait on link
(2,4) after its arrival at PE(4) until link (4,5) becomes
idle, M can be placed on links (1,2), (2,4) and (4,5)
during the intervals [1,3], [3,6] and [6,8],
respectively. Thus, the sequence ((1,1), (2,3), (4,8),
(5,8)) is a transmission pattern for M, which is not a
no-wait one. Using an optimization algorithm for the
problem RF which will be shown later, we can show
that the minimum communication delay of M is 8 time
units. Therefore, the above transmission pattern is
an optimal one.

3.2 An Algorithm for Finding an Optimal No-Wait Trans-
mission Pattern

Let a message be denoted by M(x,y,d,s) where the
meanings of x, ¥, d and s are the same as those
previously defined.

Given a processor v in the network, let a
sequence of processors (wW.,wWz,« - « * W, +;), where w,
is x and w-+: is v, denote a route between x and v in
the network. For an integer time t, sSt<T, if each
link (w:,wi+1), 1Si€r, is idle during the interval
[ti,ti+1] where ti=t-d(r-i+1), the sequence of (wi,t:),
15iSr+l, is called a no-wait (v,t) pattern. Further,
(wi,t:), 1<i<r, is called the immediate predecessor
of (Wi+s,ti+), respectively. Our objective is to find a
no-wait (y,t) pattern with the smallest t.

For each integer time t, sSt<T, let V(t) be the set
of processors v such that there exist no-wait (v, t)
patterns. The smallest t such that YEV(t) gives the

minimum communication delay of M(x,y,d,s) for the
no-wait case. If veV(t) and a link (v,w) is idle
during the interval [t,t+d], we have weV(t+d).
Further, when the above if-condition holds, we say
that a no-wait (v,t) pattern can be extended to a
no-wait (w,t+d) pattern. In addition, if P can be
extended to Q and Q can be extended to R, we say
that P can be extended to R.

A procedure for finding a no-wait (y,t) pattern
with the smallest t is shown in Fig.7. The procedure
continues to construct the sets V(t), t2s, in the
increasing order of t until it finds the smallest t
such that yeV(t). If a no~-wait (v,t) pattern can be
extended to a no-wait (y,t) pattern with the smallest
t, all no-wait (v,t) patterns can be extended to it.
Therefore, for each vEV(t), the procedure of Fig.7
keeps only one no-wait (v,t) pattern, which is the
pattern earliest found. For each integer time t and
each veV(t), IMP(v,t) denotes the immediate
predecessor of (v,t) in the no-wait (v,t) pattern kept
by the procedure.

Let CT denote the communication delay obtained

procedure NO_WAIT_ROUTING
{this procedure finds an optimal no~wait
transmission pattern for a message M(x,y,d,s)
begin ‘
for t:=s to T do
insert x into V(t)
after making V(t) empty;
ti=s-1;
FOUND:=false;
repeat
ti=t+1;
while V(t) is not empty do begin
let v be the first element of V(t);
delete v from V(t);
for each link (v,w) directed from v do
if link (v,w) is idle during the interval
[t,t+d] then
begin
IMP(w,t+d):=(v,t);
if w=y then
FOUND:=true;
else
if weV(t+d) then
insert w into V(t+d)

end
end
until FOUND=true
end;

Fig.7 The procedure NO_WAIT ROUTING

—149—

by the procedure NO_WAIT_ROUTING. Further, using
IMP(v,t) obtained by the procedure, let
(w1,t:)=(y,CT) and (Wi+i,tiv1)=IMP(w,,t:) for 1LiLr,
where WwWr+: is X. Then, the sequence
((Wreisteer),» =+ -,(wi,t1)) is an optimal no-wait
transmission pattern.

Theorem 1. The procedure NO_WAIT_ROUTING
solves the problem NWRF in time O(m-d-C) where C
denotes the communication delay obtained by the
procedure.

3.3 An Algorithm for Finding an Optimal Transmission
Pattern

As in the last subsection, let a message be
denoted by M(x,y,d,s). Given a processor v in the
network, let a sequence of

(W1,Wa, " -

processors
©+,Wrs+1), Where w, is x and w-., is v,
denote a route between x and v in the network.
Further for an integer time t, sSt<T, let t;, 1SiSr+l,
be times such that t...=t and t:.+.-t;2d for all i,
1<isr. If each link (w,wi+:), 18i<r, is idle during
the interval [t;,ti+.], the sequence of (wi,t:),
1L5i€r+1, is called a (v,t)-pattern. Further, (wi,t:),
1<i<r, is called the immediate predecessor of
(w:is1.tie1), respectively. Our objective is to find a
(v,t)-pattern with the smallest t.

For each integer time t, sSt<T, let V(t) be the set
of processors v such that there exist (v,t)-patterns.
The smallest t such that yeV(t) gives the minimum
communication delay of M(x,y,d,s).

Below, we consider an extension of a
(v,t)-pattern. Given an integer time t and a
processor veV(t), let P be a (v,t)-pattern and let u
denote the first component of the immediate
predecessor of the last element (v,t) in P. If a link
(v,w) is idle during an interval [to,ta+d], to2t, and
link (u,v) is idle during the interval [t,tc], then we
have weV(totd). when the above two
conditions hold, we say that a (v,t)-pattern P can be
extended to a (w,to+d)-pattern.

As in the no-wait case, even if some processor v
of V(t) has more than one (v,t)-patterns, we need
only to keep one of such patterns. But, for solving
the problem RF, we need to choose a (v,t)-pattern
according to a rule, which is shown below.

Let P;, 1£j<q, denote the (v,t)-patterns, and let
(us,ts), 1£j<q, represent the immediate predecessor
of the last element (v,t) in P, respectively. Further
for each j, 1£j<q, define IDLELENGTH((u,,v),t) as
follows: if [a, 8 ;] is the longest idle interval on link
(u;,v) which includes time t,
IDLELENGTH((u;,v),t)=8;-t. (For example, we have
IDLELENGTH((1,2),5)=2 in Fig.6.) For each processor
veV(t), we keep only a (v,t)-pattern P; with the

Further,

procedure ROUTING(M(x,y,4,8))
{this procedure finds an optimal transmission pattern
for a message M(x,y,d,s)}
begin
for t:=s to T do
insert x into V(t) after making V(t) empty;
t:=s;
FOUND:=false;
repeat
ti=t+1;
if yeVv(t) then
FOUND:=true;
while V(t) is not empty do begin
let v be the first element of V(t);
delete v from V(t);
for each link (v,w) directed from v do begin
let to be the smallest k(2t) such that link
(v,w) is idle during the interval [k,k+d];
u:=the first component of IMP(v,t);
if link (u,v) is idle during the interval [t,to]
then
if weV(to+d) then begin
insert w into V(to+d);
IMP(w,to+d):=(Vv,t)
end
else begin
w:=the first component of
IMP(w,tot+d);
if IDLELENGTH((V,w),tot+d)>
IDLELENGTH((u,w),to+d)
then
IMP(w,totd):=(v,t)
end
end
end
until FOUND=true
end.

Fig.8 The procedure ROUTING

greatest IDLELENGTH((u;,v),t).

A procedure which finds a (y,t)-pattern with the
smallest t is shown in Fig.8.

Theorem 2. The procedure ROUTING solves the
problem RF in time O(e:C) where e is the number of
links in the network and C denotes the
communication delay obtained by the procedure.

4. A SCHEDULING ALGORITHM

In this section we present an approximation algo-
rithm for scheduling a task graph onto an MPS so as
to minimize the total execution time. The algorithm

—150—

uses the procedure ROUTING. shown in the last
section.

In addition to the symbols defined in section 2.2,
we use the followings.

PROC(i): the index of the processor assigned to
task i in some schedule,

F(i): completion time of task i in some schedule.

The scheduling algorithm proposed in this paper
is shown in Fig.9.

The function SELECT_TASK(R) returns a task of R
with the highest priority. Priority assignment to
tasks results in different schedules because tasks
are selected in different order. According to [3], pri-
orities of tasks are given by their levels in the
graph. The level of a task i in a task graph, which is
denoted by level(i), is given as follows: level(i)=p(i)

if task i has no successors, and otherwise

procedure SCHEDULING
begin
repeat
let R denote the set of unscheduled tasks
whose all predecessors have been scheduled;
AN:=SELECT_TASK(R);
{the function SELECT_TASK returns a task of R
with the highest priority}
PROC(AN):=SELECT_PROCESSOR(AN);
{the function SELECT_PROCESSOR returns a
processor on which AN is to be scheduled}
arrange the parents of AN in nondecreasing
order of their completion times and let L be the
obtained list;
amax(AN):=0;
while L is nonempty do begin
v:=the first element of L;
delete v from L;
let M(x,y,d,s) denote the data to be sent from
v to AN where x is PROC(v), y is PROC(AN),
d is the time needed by the data to pass
through a link, and s is the completion time
of v; '
ROUTING(M(x,y,d,s));
a(v,AN):=the time when M(x,y,d,s) is received
by AN;
if amax(AN)<a(v,AN) then
amax(AN):=a(v,AN)
end;
put AN in the interval [amax(AN),amax(AN)+p(AN)]
on PROC(AN);
until all tasks are scheduled
end;

Fig.9 The procedure SCHEDULING

level(i)=p(i)+maximum of {level(j)+d(i,j)}, where the
maximum is taken over all tasks j which are the
immediate successors of task i.

For a given task AN, the function
SELECT_PROCESSOR selects a processor which can
earliest start task AN. Let I., 1S£k<r, denote the
indices of the immediate predecessors of task AN in
the task graph. Further for each processor PE(j),
1£jSm, let ST(j) represent the maximum of
{F(I.)+LENGTH(PROC(I«),j)*¥d(I.,AN)} over all I,
1£k<r, (ST(j) approximates the earliest start time of
task AN on PE(J). If all links of the network are idle,
ST(j) exactly denote the earliest start time of task AN
on PE(j).) The function SELECT_PROCESSOR selects
PE(j) with the smallest ST(j).

5. EXPERIMENTAL RESULTS

We performed simulation experiments in order to
estimate the performance of the procedure ROUTING
shown in FIg.8. The task graph and the MPS shown
in [3] were used in these experiments. The task
graph has 18 nodes and 36 arcs, and the MPS is a
hypercube machine with 8 processors. Further, node
weights and arc weights of the task graph were var-
ied throughout the experiments.

Table 1 shows the results of the simulation
experiments. Each row of this table corresponds to a
problem instance. The columns of this table denote
the followings:

RSCH:(LSCH—LB)/LB,

Rsrr=(Ls»+-LB)/LB,
where

Lscu: the schedule length obtained by the proce-
dure SCHEDULING, in which the procedure ROUTING
is used for finding a communication route between a
processor-pair,

Table 1. Performance evaluation
of the procedure ROUTING

No. | Rscu Rser
[%] [%1

1 3.8 11.5
2 6.3 15.6
3 0 5.6
4 5.1 15.4
5 (¢} 11.1
6 3.0 9.1
7 3.8 11.5
8 5.9 11.8
9 3.6 3.6
10 5.9 14.7
Average —> 3.7 11.0

—151—

Lse+: the schedule length obtained by an algo-
rithm, called SPT, which is the same as the procedure
SCHEDULING, except that the communication between
a processor-pair is made by using the shortest path
between them,

LB: the schedule length obtained by the algorithm
SPT on an ideal interconnection network such that
an arbitrary number of messages can pass through a
common link of the network at the same time.

6. CONCLUSIONS

We presented an approximation algorithm for
scheduling a task graph onto an MPS in which each
link of the interconnection network has a memory to
store one message. A routing algorithm which is used
in the above scheduling algorithm always generates
an optimal route between any processor-pair under a
given traffic condition of the network.

REFERENCES

[1] M.R.Garey and D.S.Johnson, "Computer and
Intractability: A Guide to the Theory of
NP-Completeness", Freeman, San Francisco (1979).
[2] B.Kruatrachue and T.G.Lewis, "Grain size deter-
mination for parallel processing", IEEE Software,
1988, No.1, pp.23-32.

[3] H.E.Rewini and T.G.Lewis, "Scheduling parallel
program tasks onto arbitrary target machines"”,
Journal of Parallel and Distributed Computing, Vol.9,
No.2, pp.138-153 (1990).

—152—

BRIt ENRIFR

