THNITYXL 23-5
(1991. 9. 19)

by FIy 7HEERBEOHEE

810 B, PEF
H4 I BM B ZEEnT5EmT

BE5EL nflOV-RLHMEDOY Y7 & FEOL Yy F Oy 2 EHHERBEICBWT, n At kiR T
THIERENEEDBEICONTEL S, COMERTTIAS N TRIRNRAROT IV
TYXLEH5 L O(nPklogn + n’log’ n) BT S LATELD, o> klog kDEFIZIE
O(k*nlog’n) KEETE BT EFRT. & 5IT splitter finding & IHTN B 8T FRE L 5+
FeAE—va AL, BAUHER L RMEROM ¢ 2R X) /NS U ERORHE

WHESHLACTHIENTED. File < it ORAIBMBRA 77 1TV THD
O(kn) REHI T 2.

Efficient Algorithms for the Hitchcock
Transportation Problem

Takeshi Tokuyama and Jun Nakano

IBM Research, Tokyo Research Laboratory
95-11, Sanbancho, Chiyodaku, Tokyo 102

Abstract ~ We consider the Hitchcock transportation problem on n supply points and k& demand
points when n is much greater than k. The problem is solved in O(n*klogn+n?log? n) time if
we directly apply an efficient minimum-cost flow algorithm. We show that the complexity can
be improved to O(k®n log? n) time if n > klog k. Further, applying a geometric method named
splitter finding and randomization, we improve the time complexity for a case in which the ratio
¢ of the least supply and the maximum supply is bounded by p—l’gg—n. Indeed, if ¢ < 1?77;'—37';7 the
problem is solved in O(kn) time, which is optimal.

1 Introduction

Imagine a distributed data system with k strage devices
Dy, D,,...,Dy and n data {z1,23,...,2,}. The size of
D; is), and the size of z; is wj. Each data is called
by processors, and if the data z; is placed in D; the
(expected) communication time for calling a unit of the
data z; is known to be a;,;. The problem of how to
find the allocation of data that minimizes the communi-
cation cost is a linear programming problem called the
Hitchcock transportation problem. Its standard form is
as follows:
E =
Minimize Z Z o 3%,)]
i=1 j=1

subject to

DTwi=M (i=12...,k) 2
it

k
Yovi=w; ((=12...,0) 3)

i=1
yi,jZO (i=1v2)~"7k;j=1127""n) (4)
The problem is feasible if and only if Ef=1 A=
E;-'=1 w;. Because of the symmetry of the problem, we
can assume n > k without loss of generality.
We can relax this feasibility condition to Zf-;l A &£

3 7=1w; and replace (2) by the inequality

n
Swixh (=12...,k),

j=1
since by defining Apy1 = TJ_,wj — E:;l Ai, and
ak41,j = 1 for j = 1,2,...,n, the relaxed problem is

transformed into the standard form.

The Hii;chcock transportation problem is a kind of ca-
pacitated minimum-cost flow problem, which is known
to be soluble in strongly polynomial time [9, 3, 4, 8]. In-
deed, we can transform the problem into the minimum-
cost flow problem on a network with N = n + k nodes

and M = kn edges. The best known algorithm [O] for

solving the uncapacitated minimum-cost flow problem is
O(N log N(M + Nlog N)), which solves the Hitchcock
transportation problem in O(kn?logn + n?log® n) time
if n > k. This complexity is more than the square of n
even if k is very small.

In real life, the number n of supply points is often
much larger than the number & of demand points (or
vice versa). Indeed, in the example shown above, the
number of data is usually much greater than the number
of devices. Matsui [6] gives a linear-time solution to the
Hitchcock transportation problem with respect to n if
k can be considered as a constant. However, the time
complexity of his algorithm is O(n(k!)?) if k is not a
constant; thus it is too expensive unless k is extremely
small.

Ifw; =1forany j =1,2,...,n, the problem is named
the A-assignment problem. Tokuyama and Nakano [10]
give a geometrié approach named splitter finding to the
A-assignment problem, and solve it in O(nk + n%-°%%)
randomized time (this result has been recently improved
to O(nk + n%5k%5logn) by the authors [11]).

In this paper, we first give a geometric interpre-
tation of the problem, and show that Orlin’s algo-
rithm can solve the Hitchcock transportation problem in
O(k2nlog? n) time if it is efficiently implemented. Fur-
thermore, if there is a constant csuch that 1 < w; < cfor
1 < j € n, we give a randomized algorithm, which runs
in O(nk + ¢*/3n?/3k1%/310g"/3 n) time with high prob-
ability. If n > ck”log’ ck, the running time is O(nk),

which is optimal.

2 Geometric interpretation

Given the Hitchcock transportation problem defined by
(1),+..,(4), we consider the following geometric model.
For each index j(j = 1,2,...,n), we define a point

p() = (@1,y-++»k,j) in k-dimensional real space R¥.

Let S = {p(1),p(2),...,p(n)}. We call w; the weight of
p(7) (which is often called the supply of p(j) in litera-
ture).

Let G = (91,92,...,9%) be a point on the hyperplane
L defined by the equation z; + 22 +++- + zx = 0. The
region satisfying #; — ¢; < x5 — gp for any h # i is
called the i-th (closed) region split by G. We denote this
region by T'(G;7). The space subdivision into 7'(G;i)
(# = 1,2,...,k) is called a splitting (Figure 1). G is

called a splitter.

Theorem 1. (Existence of A-Splitter) There exists
a splitter G such that the sum of the weights of the points
of § in UiesT(Gii) is greater than or equal to 3, M
forallJ C {1,2,...,k}.

The splitter G defined in the theorem is called a A-
splitter of the point set S. The corresponding splitting
is called a A-splitting, which is a generalization of that

given in [10].

Theorem 2. For a A-splitter G, the Hitchcock trans-
portation problem has a solution satisfying y; ; = w; if
p(j) is in the interior of T(G;d), and y; ; = 0 if p(j) is
outside T(G;i). Conversely, any solution of the Hitch-
cock transportation problem satisfies the above condition

for a A-splitter.

Proof. It is easy to see that, if we divide the boundary
elements of regions suitably, we can find a solution of (2),
(3), and (4) that satisfies the conditions of the theorem.
We will show that this solution minimizes the total cost.
We define §;; = ay,; — gi for i = 1,2,...,k and j =
1,2,...,n. Then, the optimal solution does not change
if we replace a;; by B;; for all i and j. In the new
problem, the splitter is the origin O. The region T'(0; 1)
is defined by z; < z, for each k # i. Thus, it is clear

that the above solution minimizes the total cost. We

omit the proof of the converse statement. m]

This theorem implies that if we find a splitter, we can
solve the Hitchcock transportation problem by finding
the transportation of the points on the boundaries be-
tween regions. We call a A-splitting a A-transportation
if we have already assigned the weights of the boundary
elements.

Each region of a splitting has k — 1 boundary facets.
Thus, there are k(k — 1)/2 facets in total. We say that
S is simple if the number of incidence relations between
the boundary facets and points is at most k — 1 for any
splitter. Since the degree of freedom of G is k—1, we can
always make S simple by giving a small perturbation.
More precisely, we may use the SOS system of Edels-
brunner 1. Further, the algorithm in this paper can
be easily applied to a non-simple case almost directly
without loss of time complexity. Thus, we assume from
now on that S is simple.

Although the splitter is not unique, the following fact

is observed:

Proposition 8. The solution of the Hitchcock trans-

portation problem is unique if S is simple.

3 Scaling method

In this section, we give an efficient algorithm based on
the minimum-cost flow algorithm of Otlin [8]. Our algo-
rithm is an incremental algorithm that uses the scaling

method. The main theorem in this section is as follows:

Theorem 4. The Hitchcock transportation problem is

soluble in O(k*nlog? n) time.

The rest of this section is devoted to proving the the-
orem. In this section, we assume that the weights are
integers. The maximum weight is A, and let | = llog A].
First, we design an O(k%nllogn) time algorithm, which

resembles the Edmonds-Karp’s algorithm [2].

T(G;1) T(G;2)
° 0
boundary element O
o
(-]
(-]
O a—Splitter G

O °

T(G,;3)

The area of each circle represents
the weight of corresponding point.

Figure 1: Splitter and splitting of point set (projected on L)

We decompose a point p at a maximum of ! points

associated with the 2-adic decomposition of the weight.

The created point is denoted by p{'} if it has the weight

2%, Thus, we have a set § of at most =l points, each of

which has a weight that is a power of 2.

1.

end;

Procedure Split(j, G, N)
L = the list of all points of weight 2/~;
2. while L is not empty, and N < Z’“ ,\(."j);

=17

begin

For a number a and an integer j, we define the value

oW =29 |a/27]. We define \() = (/\Ej), ceey /\2")).

2.1.
2.2.

The algorithm is an incremental algorithm, which is

divided into [stages.

Procedure Hitchcock
1. G = origin;
2. N =0; {N is the total weight of points
inserted so far}
3. forj=0tol;
begin
3.1. Split(j, G, N);

end;

2.3.

2.3.1

2.4,

choose a point p from L;

Add p in the region (say, T(G; s)) containing
p in the current splitting;

if the total weight assigned to T(Gjs)

exceeds 2™ then

Update(G);
end ifj
N =N +2-4

end while;

3. split each remaining point in L into two points

* of weight 2/-9-1;

4.

end;

return;

The subroutine Update(G) updates the current
transportation so that no region overflows.

The current splitter is G = (g1,92,..-,gx). The cur-
rent total weight assigned to T'(G;i) is denoted by =;.
Thus, G is a y-splitter of the set of currently existing
points. We are at the j-th stage, a new point is inserted
into T(G;s), and Update is called. Without loss of
generality, we assume at least one point of § is assigned
to each region. We say that an element of T(Gji) is
a proper element if a portion of its weight is assigned
to T(G;i) in the transportation. Clearly, an interior
element is a proper element. We make the following as-

sumptions:

Assumption 1: There exists a region T(G;¢t) such that
<KD g,

Assumption 2: For each proper element of each re-
gion, the portion of its weight assigned to the region is

an integer multiple of 27,

For each ordered pair of two regions T(G;a) and
T(G; b), we compute the point g(a, b), which is the near-
est proper element in T(G; a) to the boundary between
two regions. g¢(a,b) may be a boundary element. We
construct a complete directed graph G on the node set
{v1,93,..., v }. For the directed edge (vayvs), we give
a cost g(a, b}y — ¢(a,b),, where g(a, b); is the i-th coor-
dinate value of g(a,b). It is easy to see that there is no
negative cost cycle in this graph.

We compute the minimum-cost path from v, to all
other nodes, and make the union of the minimum-
cost paths, which becomes a directed tree called the
minimum-cost path tree rooted by wv,. Then, the new

splitter G' = (g{,...,g}), which by definition satisfies

Sk L gt =0, is defined by the following equations:
9o — 95 = q(e,b)a — q(a, d) (5)

for all pairs (a, b) such that (v,,) is a directed edge in
the minimum-cost path tree.
Since there are k — 1 adjacent relations in the tree, G

is uniquely determined. The following is the key lemma:
Lemma 5. A proper element of T(G;i) is in T(G';i).

Proof. As in Figure 2, we can find G' by translating
the boundary facets without going beyond a point. We

omit the details in this version. [m}

Corollary 6. G' is a y-splitter of the point set before

insertion.

We will show there is a transportation after the inser-
tion so that the weight assigned to T(G;t) is 7; + 24
for a fixed region satisfying Assumption 1, and that as-
signed to T(G; z) is ¥; for i #£1¢.

We consider the minimum cost path from v, to v;, and
push a flow of size 2'~7 along it. From the definition of
G', if the flow is pushed from v, to the adjacent node
3, there exists a proper boundary element of 7(G'; a)
on the boundary between T(G';b). From Assumption
2, we can move 2/~ of the weight of the boundary el-
ement from T(G';a) to T(G';b). Thus, we can push
the weight on the splitting so that the weight of T(G; s)
(resp. T(G;t)) is diminished (resp. increased) by 2'~7,

Hence, we can update the transportation so that no
region overflows under Assumptions 1 and 2. It is easy
to see that the update procedure preserves Assumptions
1 and 2. Moreover, if these assumptions hold for one
stage, then they clearly hold for the next stage. Since
the assumptions hold initially, we can assume these as-
Sumptions throughout the algorithm. Now, it is easy
to verify that the algorithm correctly solves the trans-

portation problem.

{a) (b)

O T(G2) O

O

O O
®\ inserted point

T(G,;3)

{c)

Figure 2: Update of the splitter

Proposition 7. The scaling algorithm solves the Hitch-

cock transportation problem in O(k*nllogn) time.

Proof. Let G = (91,92,...,9k) be the current splitter.
When a point p = (p1,pg, ..., pk) is inserted, we find the
index h such that ps — g» = min;{p; — g;}. Then, it is
easy to see that p is contained in T(Gj k). This operation
requires O(k) time. When Update is called, we must
find k(k — 1) points {g(a, b)s, ¢(a, b)s|a,b = L,2,.. . k}.
If we provide k(k — 1) priority queues, these points can
be found in O(k?logn) time. The storage needed for
these priority queues is O(kn), and thus is asymptoti-
cally not more than the input size. The time complex-
ity for computing the minimum-cost path tree of G is
O(k*logk). Thus, the overall complexity for an inser-
tion is O(k? log n). During each stage, at most k points
are split. Thus, the total number of insertions is not

more than nl + kl. Thus, the proposition is proven. O

The above algorithm is not strongly polynomial. In
order to make it strongly polynomial, the technique of
Orlin [8] is applied. We consider a point p in S with
a weight w. fw = Eje.l 24, p is decomposed into
{pl7}]j € J} of §. Suppose the first 1+ [log nk] largest
portions of p have already been inserted.

The size of each inserted point during the current
stage is at most zirw. Thus, the total weights of the
remaining points of § is at most n{gp(1+1/2+1/4+
+++)} < 35 after this stage has been completed.

On the other hand, at least (1 — 527)w of the weight
of p has been inserted. Thus, at the end of the cur-
rent stageé, there exists a region (which we denote as the
f(p)-th region) to which at least grw of the weight of p
is assigned. Thus, the portion of p assigned in the i-th
region is greater than the total weight of the remaining

points, and we can show the following easily:

Claim. In the final splitting, p is in the f(p)-th region.

Thus, we modify the algorithm as follows: If the first
1+ [log nk] portion of a point p has been inserted, we
insert all the remaining portions just after the current
stage.

In this case, the Assumption 2 fails. However, the
following Assumption 2' holds:

Assumption 2': In the j-th step, for each proper ele-
ment of each region, its weight assigned to thé region is
more than 20-9,

It is easy to see that the insertion procedure works
if we replace Assumption 2 by Assumption 2. Thus,
we can reduce the number of insertions from O(nl) to
O(nlog nk). We have Theorem 4.

We remark that the expected performance of the al-
gorithm would be much better than its worst case com-
plexity, since the number of updates of the splitter is
usually much smaller than the number of insertions. An
insertion without updating the splitter is done in O(k)
amortized time, if we use Fibonacci heaps as priority

queues in our date structure.

4 Randomized algorithms for

the c-grain case

The scaling algorithm solves the Hitchcock transporta~
tion problem in O(k*nlog?n) time. However, in the
special case in which w; = 1 for ¢ = 1,2,...,n, the
problem is known to be solved in O(kn + k%5n%% log n)
time by a randomized algorithm [10, 11].

Let us try to use randomized method under more re-

laxed conditions.

Definition. A Hitchcock transportation problem is

called c-grain for a constant ¢ > 1if 1 < w; < ¢ for

1 € i € n. Here, w; are real numbers.

In this section, we show that we can improve the per-
formance of the algorithm by pruning points by using
random sampling for a c-grain transportation problem,

if n > ck*log ck.

Theorem 8. The c-grain Hitchcock transportation
problem is solved in O(nk + c'/3n?/3k1%/310g™/3) time

with probability larger than 1 — & for any constant v.

In particular, if n > ck?log” ck, the problem is solved
in the optimal O(nk) time.
We remark that we can often decompose some large-
weighted points into smaller pieces to reduce ¢. Further,
we will see later that we don’t mind if there exist small
number of points whose weights are less than 1.

Now we give an algorithm. Let us randomly choose
a subset Sy consisting of m points of S. Let G be the
A-splitter that we would like to find.

Lemma 9. The total weight of the points of Sy located
in T(G;j) is less than -"-5,%1- + 5%-)1 with probability

more than 1 — e~

Proof. The random variable X corresponds to the
sum of the weights Qf points of Sy located in T'(G; j).
We define the random variable X (p) as follows: If the
point p is in T(G;), then X(p) = w(p) (the weight of
the point), otherwise X (p) = 0. Thus, the expected
~ valueof X is

E(X) = Y B(X(p) =m (% > w(p)) =%

PES PET(Gij)

Here, for a c-grain case, the following Chernoff-like

bounds hold:

Pr(X > (1 +6)E(X)) < exp {—-—E—‘%{—c)ﬁ} .
Pr(X <@~ 5)E(X)) < exp {— E(fc)‘sz })

The lemma is easily derived from them. u]

We define a vector p(1) = (#(1)1,...,4(1)s) as fol-
lows: p(l); = m—-,-;L'\'-i- ey for j # 1, and p(1) =
m-— EL? 1(1);. Then, we find the p(1)-splitter G(1) of

Sp. We can show the following lemma:

Lemma 10. The probability that G(1) is located in
T(G;1) is greater than 1 —e™".

Proof. If G(1) is located in the interior of T(G}) for
j # 1, then all points in T(G(1); j) are in T(G; j). Thus,
there are more than p(1); points in T(G; j), which can
occur with a probability of less than €™, because of the

previous lemma. [m}

Corollary 11. The probability that all the points of S
in the interior of T(G(1); 1) lie in the interior of T(G;1)

is greater than 1.— ™",

Now, let $(1) be the set of points of S located in
T(G(1);1) (Figure 3). Analogously, we define G(7), u(3),
and S(i) for i =1,2,...,k.

Let v; be the total weight of points of S(¢). The ex-
pected value of v, is Zu1, and vy is more than

R R

i=1

/\1-—1’1.\[27ﬁ
m

with a probability greater than 1 — e~". Similarly, we

IA

can estimate v; for i = 2,...,k.

Our randomized algorithm is as follows: We choose a
sample of size m, set » = logk + vlog n for a constant
7, and find G(1),...,G(k).

For each point p of S, we find the region containing it
in the splitting with respect to G(1). If it happens to be
in T(G(1);1), pis a point in S(1). Ifitisin T(G(1); i) for

an i # 1, we check whether it is contained in T(G(3);%).

Figure 3: The set S(1)

This operation needs O(k) time for each point. Thus, we
find a subset S'() of S(i). It is easy to show that there
is no point of Sy in T(G(3);i) — T(G(1);4). Thus, from
the e-net theory [5], the number of points in UL?(S(i) -
S'(7)) is O(ﬂ-’"—"'fl’i) with probability 1 — e™". Thus, we
can find almost all points of U?=1 S(q).

Now we define the set § = § ~ U?=1 S'(3). Let v} be
the total weight of points in S'(7), and let &€ = A — /.
Then,

Proposition 12. A ¢-splitter of S is a A-splitter of S
with probability 1 — ke™".

Thus, we can find the A-splitter of § by computing
the £-splitter of S by applying the scaling algorithm.

Let us analyze the complexity of the algorithm.
The probability 1 — ke™" is 1 — ”L.,, since we chose

r = logk 4+ ylogn. Since the weight of points in

—49—

S - Uﬁ;l S@) is kn\/-%, the number of points there
is also bounded by kn\/:%“ + 5”—"-':‘—°5~’l Thus, it costs
O(K?log? n{kn(ZI2Ek 1 /ekr}) time to compute the
splitter of 5. On the other hand, using the scaling al-
gorithm to compute the splitters of the sample, it costs
O(k3m log? m) time. If we set m = L 3pBEAI3R23 | e

obtain the Theorem 8.

This algorithm is a Monte-Carlo-type algorithm, since
it may output a wrong answer. However, we can make

it Las-Vegas. The following is the key lemma.

Lemma 13. Suppose G be a v-splitter of a point set
S. We insert a point p of weight w. Let) satisfy that
N> vand D\ =w+ 5 . Then, if no point
;)fS has a weight less than w, we Ca;l find a A-splitter
in O(k®log® k+ k? log n) time, if we permit O(nklog n)

preprocessing time.

We omit the proof of this lemma in this version. Using
this lemma, we can design an O(k3nlog? k + k?nlogn)
time algorithm by inserting points in the largest-first
fashion.

Moreovef, for the c-grain case, even if the output of
the randomized algorithm is not a correct splitter, we
can delete a small number of points from the overflow
regions and re-insert these points. When we insert a
point of size a, we decompose it into [a] points of size
less than or equal to 1, and apply Lemma'13. Then a
point is inserted in O(ck® log? k+ ck?log n) time, and we
can obtain the correct transportation in a small update
time plus the preprocessing time. We can reduce the
preprocessing time to O(nk) in this case (we omit the
details). Thus, we obtain a Las-Vegas algorithm.

Furthermore, we can generalize Theorem 8 as follows:

Theorem 14. If there are h = o(n) points each of
whose weight is less than 1, and other n — h points
satisfy the c-grain condition, the Hitchcock transporta-
tion problem is solved in O(nk+ c'/3n2/3k10/310g™/3 n 4
h{k®log? k+ k?log n}) time with probability larger than

1— X for any constant .

References

[1] Edelsbrunner, H., Algorithms in Combinatorial
Geometry, ETACS Monograph in Theoretical Com-
puter Science 10, Springer Verlag (1986).

[2] Edmonds, J., and Karp, R. M., Theoretical Im-
provements in Algorithmic Efficiency for Network
Flow Problems, J. ACM 19, pp.248-264, (1972).

[3] Fujishige, S., An O(m3logn) Capacity-rounding
Algorithm for the Minimum Cost Circulation Prob-
lem: A Dual Framework to Tardos’s Algorithm,

Math. Prog. 35, pp.298-309, (1986).

=

[4] Galil, Z. and Tardos, E., An O(n%*(m +
nlog n) log n) Min-cost Flow Algorithm. Proc. 27th
IEEE FOCS pp.136-146, (1986).

[5] Haussler, D. and Welzl, E.,
range queries, Disc. Comp. Geom. £ pp.127-151,
(1987).

e-nets and simplex

[6] Matsui, T. Linear Time Algorithm for Hitch-
cock Transportation problem with Fixed Number
of Supply Points, Preprint (1991).

Numata, K., and Tokuyama, T., Splitting a Con-
figuration in a Simplex, Lecture Notes in Computer
Science 450, pp.429-438, Springer-Verlag (1990).

—
|

[8] Orlin, J., A Faster Strongly Polynomial Minimum
Cost Algorithm, Proc. 20th ACM STOC, pp.377-

387, (1988).

[9) Tardos, E., A Strongly Polynomial Minimum Cost
Circulation Algorithm, Combinatorica 5, pp.247-

255 (1985).

-

[10] Tokuyama, T. and Nakano, J., Geometric Algo-
rithms on an Assignment Problem, Proc. 7th ACM
Symposium on Computational Geometry pp.262—
271 (1991).

[11] Tokuyama, T. and Nakano, J., Unpublished result.

