TNTY X4 23— 3
(1991, 9. 19

A VA

51

\//

of

S ot
N\,
«§
&

RN
=B\
O
S
o~ M

o el A H 5 B # ol e
(B |l A 2 L% %)

» 5 ¥ L 7°E157‘7i/a‘/~‘/xilx0:2’5h‘5§57&ﬂ0)¢'0‘ Yow oF M2
ETHEOXEEZ 5D 3, OPS 5 T i, V — %X Y bI - HEBELLT S
EWR L2 T Yy FUBEOEHENMEZR T H b, O FHEBERe t eV TY X
LB EIMLDZ, AXBEXTHEH. Rete 7 i J X LD X FHEERET B, o
D F % 0B TR, Reteff\vI~'7—7(D/-—FETDtv*)‘G:%ﬁB’J&:EﬁE?%
O DOFENILIERETAT WY B,

A PARALLEL MATCH ALGORITHM FOR OPS5 PRODUCTION SYSTEMS

Tsuyoshi Kawaguchi Etsuro Honda Hiroshi Masuyama
Faculty of Engineering, Miyazaki University

Abstract. The most time consuming step in the execution of production systems is the match step. The
match algorithm used in OPS5 uses a special kind of data-flow network, called Rete network. In this paper we
present a scheme for allocating the nodes of a Rete network onto processor Pi,- * +,P,. The scheme finds an
allocation minimizing the maximum of 7(Ps), 1<i<m, where z(P.) denotes the probability that more than one nodes
assigned to P; are simultaneously activated by the same working memory change. When hash tables are used
for storing tokens on memory nodes, minimizing the maximum of #(Ps), 1gi<m, approximately leads to the
minimization of the execution time of a match cycle.

1. Introduction In this paper we study the implementation of
the Rete algorithm on general purpose
OPS5 is the most popular language for multiprocessor systems which include both the
programming production systems [1]. OPS5 shared memory multiprocessor systems and the
production systems perform the inference by message passing multiprocessor systems.
cycling over three steps - match, Especially, for the message passing architectures,
conflict-resolution and act. memory nodes of the Rete network need to be
It is known that current OPS5 production statically allocated onto multiprocessors before
system interpreters spend almost 90% of their starting the execution of the production system
execution time in the match step [2]. Thus, although activations of two-input nodes can be
parallelism within the match step is especially dynamically —scheduled onto multiprocessors
important for the speed up of the execution of a during the execution [4].
production system although we can use parallelism Oflazer [5] and Dixit et al.[6] proposed schemes
within each of the three steps. The match for statically allocating production (or rules) of a
algorithm used in OPS5 is called Rete and the production system onto multiprocessors. However,
algorithm uses a special kind of a data-flow as indicated by Gupta[2], the speedup obtained
network compiled from the left hand sides of rules by node-level parallelism is much larger than that
[3]. And so, in OPS5, parallelism within the match obtained by production-level parallelism.
step means a parallel implementation of the Rete The node-level parallelism requires a scheme
algorithm. for scheduling nodes of the Rete network onto

multiprocessors so as to minimize the execution
time of the match step in each cycle. Takeda et
al.[7] proposed a static node allocation scheme.
After assigning weights to nodes, the scheme
schedules the nodes onto processors so as to
balance the total weight of the nodes assigned to
each processor. However, what procedure was
used for weighting the nodes is not clear from
their paper.

In this paper we present a new scheme for
static node allocation. After dividing a given set of
processors into two subsets to perform separately
the allocation of constant-test nodes and the
allocation of two-input nodes, the scheme does the
followings for each of these allocation steps.

The scheme first gives weights p(v,w) to all
node-pairs v and w where the weights p(v,w) are
computed by using a probabilistic model of match
cycles. (More generally, p(v,w) can be viewed as a
penalty cost incurred by assigning v and w to the
same processor.)

Next, the scheme divides the nodes into several
blocks Bi,* - :,Bm 80 as to minimize the maximum
of z(Bx), 1<k<m, where z(Bx) denotes the sum of
p(v,w) over all node-pairs v and w assigned to
block Bx. =n(Bx), lgk¢m, approximates the
probability that more than one nodes assigned to
Bk
working memory change.

When hash tables are used for storing tokens on
memory nodes, minimizing maximum of z(Bx)
approximately leads to the minimization of the
execution time of each match cycle.

are simultaneously activated by the same

2. A Brief Overview of OPS5 Production Systems

2.1 0PS5

An OPS5 production system is composed of the
production memory (PM) and the working memory
(WM). PM is a set of "if-then" rules (productions)
and WM is a set of data-items, called working
memory elements (WMEs).

The WMEs are divided into several classes
Ci,- - +,Cm and all WMEs of the same class have
the same set of attributes. Each WME consists of
the class name followed by pairs of attribute
names and values. Fig.1 shows examples of WEMs.

The "if" part of a rule, which is called LHS,
consists of a conjunction of condition elements
(CEs). There are two types of CEs: the positive
CEs and the negated CEs. A positive CE is a

t.: (C. "status= act “ob=ladder)
tz: (Cz "name=ladder “on=floor)

Fig.l1 Examples of WMEs

(P(C1 “status=act “ob [x])(C2 “name=[x])
-->(modifyl “ob=nil))

(P(C1 oper[x])(C2 "weight=light “hold=[x])
-->(make(Cl “status=act "oper=move)))

Fig.2 OPSS5 rules

specification of restrictions on a WME and the CE
matches a WME

satisfied by the values of the attributes of the
WME. A negated CE, which is indicated by a minus

if all of the restrictions are

matches only if no WMEs match the
In a CE,
attribute value may be a variable. Although a
all

occurrences of the variable must match identical

sign(-),
corresponding non-negated CE. an

variable can match any constant value,

values.

The "then" part of a rule, which is called RHS,
consists of a set of actions. The RHS actions can
make, remove or modify WMEs.

Fig.2 shows examples of OPS5 rules, where
For

each variable is bracketed by [and 1.

example, the first rule states the following:

if there are two WMEs t, and tz such that
(1) the class of t. is C. and t. has the value
"act" for the "status" attribute,
(2) the class of tz is C=z,
(3) the "name" attribute value of tz equals the
"ob" attribute value of t.,
then change the "ob" attribute value of t. to
"nil".
The inference engine of the production system

cycles over three steps match,

conflict-resolution and act. The match step
determines the set of rules that are matched by
WMEs and inserts the instantiations of the rules
into the conflict set. (When all CEs of a rule P are
matched by a list of WMEs (t.,- -
P and (t.,- -

The

*,tm), the pair of
+,tm) is called an instantiation of P.)

conflict-resolution step selects an

instantiation of a rule from. the conflict set
according to a selection strategy. The act step
executes the RHS actions of the rule chosen in the
conflict-resolution step.

2.2 The Rete Algorithm

The most time consuming step in the execution
of production systems is the match step[2]. The
match algorithm used in OPS5 is called Rete and
the algorithm uses a special kind of a data-flow
network compiled from the left-hand sides of
rules(3]. The network for the rules of Fig.2 is
shown in Fig.3.

At the beginning of each cycle, the changes
to WM, which are called tokens, flow down the
network from the root. There are two types of
tokens: plus tokens and minus tokens. A plus
token, which is generated by a make command,
corresponds to the insertion of a WME. A minus
token denotes the deletion of a WME and it is
generated by a remove command.

There are four types of nodes in the network.
(1) Constant-test nodes: These are used to
perform the constant tests of the CEs and always
appear in the top part of the network. Specially,
constant-test nodes which are the immediate
successors of the root check the class names of
tokens.

(2) Memory nodes: These store the tokens that
match a part of the LHS of the associated rule. As
can be seen in Fig.3, memory nodes appear on
both inputs of a two-input node. If a plus token
arrives at a memory node, it is simply sent to the
successor two-input node. On the other hand,
when a minus token enters into a memory node,
the corresponding token is deleted from the

memory node.

(3) Two-input nodes: Both inputs of a two-input
node come from memory nodes. There are two
types of two-input nodes: the and-nodes and the
(While the test the

consistency of variable bindings between two

not-nodes. and-nodes

positive CEs, the not-nodes implement the

semantics of the negated CEs.) When a plus token

@ -‘ Weight=1ight

AND1 AND2

Fig.3 The Rete network for the rules of Fig.2

arrives at an and-node from the left memory or
the right memory, it is compared to each token in
the opposite memory for consistent binding of
variables. If the compared token pair has
consistent variable bindings, they are bound into
a new token, called a composite token. On the
other hand, a not-node checks whether or not an
input token has inconsistent variable bindings
with any token in the opposite memory. If so, a
copy of the input token is sent to the successor
node.

(4) Terminal nodes: Each terminal node
corresponds to a rule in the OPS5 program. When
a plus token flows into a terminal node, the pair
of the token and the rule associated with this
terminal node, which is called an instantiation, is
inserted into the conflict set. On the other hand,
if a minus token enters into a terminal node, the
corresponding instantiation is deleted from the

conflict set.

3. Data Structures Used in the Proposed Paraliel
Rete Algorithm

The parallel Rete algorithm proposed in this
paper assumes the use of a multiprocessor system
like that in reference [4]. The
multiprocessor system consists of a control
processor, conflict-set processors, constant-test

shown

node processors and two-input node processors.
Constant-test nodes and two-input nodes in the

Rete network are divided into several parts by

using the scheme proposed in the next section,

and these are placed on constant-test node
processors and two-input node processors,
respectively.

The control processor sends WM changes to the
constant-test node processors. Further, WM
changes that were successful in constant-tests
are sent to the two-input node processors. The
conflict-set processors perform
conflict-resolution.

In the remainder of this section, we describe
the data structures used in the proposed
algorithm.

Let Ci, 1¢&i<m, denote class names used in a
production system and let Ni, 1<i<m, be the number
of attributes used in class Ci. Further, let A:j,
1di<m and 1¢j<Ni:, represent the attributes used in
class Cs.

The following data structures are used in the
proposed algorithm. :

(1) Attribute values, which are character strings
or constant numbers, are stored in a table, called a
symbol table. The table is kept only by the control
processor. Reference to the symbol table is not
needed during the match step.

(2) Each WME of class Ci, 1¢igm, is represented by
(Ns+1)-tuple (%o0,X1,°* *,Xwi+1) Where Xxo is the
index of class C: and x;, 1¢j<N:+1, is the pointer to
the value of attribute Ai; stored in the symbol
table. The table storing WMEs is called a WME
table.

(3) Each processor has a copy of the token table
in its local memory. Each time a WME is inserted,
the control processor sends copies of the WME to
all processors.

(4) Composite tokens consisting of t(22) WMEs are
represented by t-tuple (yi.,---,y:) where y;,
1¢j¢t, denotes an address of the corresponding
WME stored in the WM table. If T is a composite
token to be stored in a memory node v and v is
assigned to a processor Px by using the node
allocation procedure shown in the next section,
then T is placed on only Pi.

(5) For match with LHSs of rules, the data shown
in (2) and the data shown in (4) flow down the Rete
network as a WM change (or a token) and as a
composite token, respectively.

(6) Hash tables are used for storing tokens (or
composite tokens) on memory nodes.

As indicated by Gupta [2], using hash tables, we
can remarkably cut down the variance in
processing times of two-input nodes.

Let T be the processing time of a two-input
node activated by a token arrival and let t be the
time required for a matching of a token-pair. When
a hash table is used for each memory node, T can
be approximated by T=max(st,t) where s denotes
the number of successful matchings. Further
Guptal2] reported that the average values of s
measured in six production systems were 1.41,
0.90, 1.06, 0.83, 0.60 and 0.71, respectively. Thus,
we can assert that the average of T is nearly equal

tot.

4. Static Allocation of Nodes onto Processors

In this section we describe a procedure for
allocating the nodes of a Rete network onto
multiprocessors.

For each two-input node v, let L(v) be the
memory node on the left input of v and R(v) be the
memory node on the right input of v. The proposed
procedure places both L(v) and R(v) on the same
processor as v. Further the procedure initially
divides a given set of processors into two subsets
S, and S: to allocate constant-test nodes on
processors of 8. and two-input nodes on
processors of Sz.

We can use the same scheme for the allocation of
constant-test nodes and for the allocation of
two-input nodes. Therefore, in the remainder of
this section, we will describe the scheme for the
case when two-input nodes are allocated onto
processors of Sz. The scheme uses a cost function
derived from a probabilistic model of match cycles
to evaluate the goodness of allocations. We first
describe this model.

4.1 A Probabilistic Model of Match Cycles

The following notation is used.

P: a given OPS5 production system,

RN(P): Rete network compiled from the
LHSs of the rules of P,

{C1,* + *,Ca}: set of class names used in P,

Nj, iigm: the number of attributes of a WME
included in class Ci,

Ay, 1IKI<m and 1¢j<N:i: attributes of a WME
included in class Cs,

n;;, 1<igm and 1¢j<Ni: the number of values
of As; taken by WMEs included in
class C;,

a:5(k), 1<i<ns 5: values of As; taken by WMEs
included in class Cs.
Further we use the following assumptions.

(1) An input token to the Rete network, which
corresponds to a WM change, is randomly selected
from a population where tokens of class Cs, 1<igm,
distribute according to probabilistic density q(Cs),
respectively.

(2) If a randomized token is included in class C.,
1dam, a value ass(k), 1gkengs, is found in attribute
Ai; according to probabilistic density q:;(k),
independently of other attributes.

Although we cannot estimate the exact values of
q(Csi) and qss(k) before completing the execution of
a production system, approximate values of these
can be obtained through a test run of the
production system. In the simulation experiments
shown later, we roughly estimated a(Ci) and q:;(k)
as follows:

a(Ci)=- - -=q(Cm) =1/m,
Qss(1)=- - - =Qis5{Ni;5)=1/Ns;.

And these experiments showed that even when
such rough estimations are used for q(Ci) and
q:3(k), the proposed scheme gives an allocation
much better than that obtained by a simple
algorithm which, selecting nodes according to the
left to right ordering, schedules these nodes onto
brocessors so as to balance the number of nodes
on each processor.

4.2 The Cost Function Used in The Proposed
Scheme

For each pair of two-input nodes v and w in the
Rete network, let p(v,w) denote the probability
that a randomized token reaches both v and w.
Further given a set of two-input nodes B, let z2(B)
denote the sum of p(v,w) over all node-pairs v and
w included in B. The proposed scheme partitions
the set of two-input nodes into subsets B;: , igigm,
to minimize

maximum of z(B:), 1<i<m.

Let Ni, I1d<m, be a random variable which

denotes the number of two-input nodes in Bi'

activated by a randomized token. If the
probability that N.>2 is sufficiently small, z(B:) is
nearly equal to the probability that N,>1.

If we can assume that nodes have similar
processing times, the number of blocks m is set to
the number of processors. Then, the minimization
of maximum of z(Bx) approximately leads to the
minimization of the execution time of each match

cycle. (The above assumption is valid for
constant-test nodes. Further, in many production
systems, the above assumption also holds for
two-input nodes when hash tables are used for
storing tokens on memory nodes[2].)

For the case when the variance in processing
times of two-input nodes is not small, we set m to
the average number of two~-input nodes activated
by a working memory change and assign the same
number of processors to each block. Then, again,
the minimization of maximum of z(Bx) approximately
leads to the minimization of the execution time of
each match cycle.

4.3 Computation of p(v,w)

In this subsection, we will describe a method
computing p(v,w) for each pair of two-input nodes
v and w. For each two-input node v in the Rete
network, let L(v) and R(v) be its left memory and
its right memory, respectively. It is not possible
that the same token arrives at both the left
memory and right memory of a two-input node.
Thus we have

p(v,w)=% 3 p(xy)

HEILC(VI,R(VI}) yE{L(w):R(w)}

where p(x,y), x € {L(v),R(v)} and y € {L(w),R(w)},
denotes the probability that a randomized token
reaches both x and y.

Further, p(x,y) can be computed as follows.
(i) If a predecessor of x is mutually exclusive to a
predecessor of y, then p(x,y)=0. (Let Ex denocte the
event that a randomized token succeeds in the test
performed on a constant-test node x. If
Pr(ExNEy)=0, nodes x and ¥ are said to be mutually
exclusive.)
(i) Further if a parent of x and/or a parent of y
are two-input nodes, then p(x,y)=0.
(if) Otherwise, let the path from the root to x be
denoted by Xo,X1, - * - ,Xer1(£20) where xo is the root
and X:+1 is X, and let the path from the root to y be
denoted bBY Xo,Xi,’ * *,Xc,¥a, - - ¥s+2(0gr<t,s20)
where ys+. is y and x. is the lowest common
ancestor of x and y. Then we have:;

P(X,¥)=q(Xa)x + - xq(xe)2q(y2)% - + xq(¥s)

where, for each node v, q(v) denotes the
probability that a randomized token succeeds in
the test performed on node v. q(v) can be
computed by using the probability distribution of
the attribute checked on node v.

—25—

As an example, we consider the network of Fig.4
where C: (1<7), As (1¢i<B) and P; (1cigd) dencte
constant-test nodes, and-nodes, and terminal
nodes, respectively, and moreover L: and R: (1gi<6)
represent the left-and the right-memories of A,
respectively. The number put by the left side of
each C. denotes q(C:), which is the probability that
a randomized token succeeds in the test performed
on C:. Further, we assume that {C:,Cz,Cz} and
{C4,Cs} are the mutually exclusive node set in the
network.

Then, p(As,A;), 1i¢j<B, take the values show in
Fig.5. As an example, we consider the computation
of p(Ai,As). Using (ii), we have first p(Li,La)=
a(Ci1)-q{Ca)=1/9 and p(R:,Ra)=q(C=)-q(Ce)=1/12.
Further, p(L1,Rs5)=0 because C, and C. which are
predecessors of L, and Rs, respectively, are
mutually exclusive. Similarly, we have p(R.,L:)=0
because the mutually exclusive node-pair, C. and
Cz, are also predecessors of Ls and R,
respectively. Thus, p(A1,As)=p(L.,L:)+p(R.,Ls)+
p(L1,Ra)+p(R1,R2)=7/36

4.4 Finding an Optimal Partition

The problem introduced in the last subsection is
formally stated as follows.

(¥*1) Given an integer number m and a weighted
complete graph G=(V,E) where V={v,,- . -,va} isits

Fig.4 A probabilistic model of Rete network

node set, E is its edge set and p(vs,vs), 1<igjcn,
are weights of edges (vi,v;),respectively, partition
V into m subset Bk, 1¢kim, so as to minimize the
maximum of z(By), 1<kim.

The decision version of the above optimization
problem is stated as follows.

(¥2) For a real number K, does there exist a
partition of V into m subsets By, 1<k<m, such that
#(Bx)<K for all Bx?

We can show that the graph coloring problem[8]
which is a well known NP-hard problem is reduced
to the above problem. Given an arbitrary graph

&'=(V",E’) where V'={v.’,-:-,v5’'} is its node set
and E’ is its edge set, let G denote a weighted
compete graph with the node set {v.,---,v.}

whose edges (v.,vs;) have weights p(v,,v.) defined
as follows: p(vi,Vvi)=1 if (v.’,vs’)EE’ and otherwise
p(vs,v;)=0. Then, G’ is m-colorable if and only if
the node set of G can be partitioned into m subsets
B, 1<kam, in such a way that #(Bx)<0 for all B..

In the remainder of this subsection,we present
an optimization algorithm and an approximation
algorithm for the problem (¥1).

4.4.1 An Optimization Algorithm

The proposed optimization algorithm is similar
to those shown in references [6] and [9]. The
algorithm uses a branch-and-bound method.

Define variables x.;, 1isn and 1¢jsm, as follows:
x:5=1 if node v; is put in subset B,, and otherwise
X:3=0. Then, the problem (¥1) can be formulated as
follows:

ANAs | Az As Ay As Ag
A 0 |7/36|1/12 0 |1/12
A 0 0 /3| 1/38
A3 1/48 0 |1/12
A4 0 |1/48
As 1/3

Fig.5 p(A;,As) for node-pair A; and A; in the
network of Fig.4

minimize n-1 o
max { 3 ¥ Xwsxusp(k,i)}

1¢3gm k=1 i=k+1

subject to
3 Xis=1 for 1<isn,
d=1
Xi;=0 or 1 for 1<in and 1¢j<m.

Let all variables xi; be initially free. Note that
if a variable x.; is fixed to one, variables xix, 1gk¢m
and kxj, need to be fixed to zero. Let Q denote the
set of indices i, 1.ki<n, such that xi;, 1¢j<m, are
already fixed, and let @={1,---,n}-Q. Further, for
each ieQ, let J(i) denote the index j for which x;;=1.

The search starts with the initial state in which
all variables are free, and it proceeds by
expanding the current state into new states. A
state of the search space is represented by (Q,X)
where X represents the set of pairs (i,J(i)), i€Q.
Further, a state (Q,X) is expanded into new states
in the following way.

(i) We select an index a € Q.

(i) Let 8 be the maximum of J(i),i€Q

(i) if p<m, generate (B+1) new states (QU{a},XU{(a,j)}
), 1¢jsp+1l. Otherwise, generate m new states
(QU{a},XU{(a,))}), 1<jsm.

Associated with each state (Q,X), we compute a
cost £(Q,X). For each j, 1¢j< m, let R(j) denote the
set of indices i € Q such that (i,j) € X, and let S,
represent the sum of p(k,i) over all pairs, k and i,
included in R(j). Further, for each i €
a={1,- - -,n}-Q, let

C:i*=min { ¥ p(,i)}.

13 m keER W

Then, f(Q,X) is defined by:

£(Q,X) = max(g(Q,X), h(Q,X))

where

g(Q,X)= max {S.},

1¢3¢m

h(@,X)=1 { 3S;+3C:"}
n =1 ie g
A state (Q,X) is said to be a goal state if the
cardinality of Q equals n. A goal state (Q,X)
corresponds to a feasible solution for the problem
(*1) and its cost f£(Q,X) gives the objective

function value associated with the solution. For a
nongoal state (Q,X), let £*(Q,X) represent the
minimum of f£(Q:,X:) over all goal states (Qi,X:)
obtained by expanding (Q,X). Then, we have

£7(Q,X) < £"(Q,X).

Therefore, if we obtain a goal state with cost fo,
states (Q,X) satisfying £(Q,X) 2 fo can be eliminated
before their expansions.

4.4.2 A Heuristic Algorithm

Fig. 7 "shows a heuristic algorithm for the
problem (*1), which is called ALLOCATION. The
algorithm uses a function called COLORING, which
is shown in Fig. 6. Given a positive real number o,
the function COLORING returns "true" if it finds a
partition of the node set (Bi,::-,Bm) such that
#(Bx) < 6 for all Bk, and otherwise it returns false.
The time-complexity of this function is 0(n?)
where n denotes the number of nodes in a
weighted complete graph.

Using a binary search method, the procedure
ALLOCATION finds the minimum real number ¢ such
that COLORING(®) returns "true”. The
time-complexity of this procedure is
O(n®-log(M/t)) where M and ¢ are the input
parameters shown in Fig. 7.

5. Performance Evaluation

We performed simulation experiments to estimate
the performance of the node allocation scheme
described in the last section. In these
experiments, we used the following assumptions: if
the time needed by a test performed on a
constant-test node is t, the time required for a
vmatching of a token-pair on a two-input node is 3t
and the time needed for the communication of a
token is t/2.

The result of Fig.8 was obtained from the OPS5
production system for monkey and bananasfi].
The horizontal axis of this figure denotes the
number of processors assigned to the two-input
nodes. (The number of processors assigned to
constant-test nodes was fixed to six.) The vertical
axis of this figure represents the speedup rate
RS(m) given by:

RS(m)=T(1)/T(m)
where T(1) is the execution time by uniprocessor
and T(m) is the execution time by m processors.

The solid Iline denotes the speedup rate

functoin COLORING(®):
begin
make all By, 1 <1< m, empty;
initialize U to the set of all two-input nodes;
i:=0;
while U xgand i< m do begin
for each ve U do
A(V) :=3 weu P(V,W);
select v € U with the greatest A(v);
move v form U to Bs;
7#(Bs) := 0;
while z(B.) ¢ 6 and U = ¢ do begin
for each w € U do
C(w) := 3 vess P(v,W);
select w € U with the smallest C(w),
where tie is broken by
selecting w with the greatest A(w);
move w from U to Bs;
7(Bs) := a(Bi)+C(W)
end; {while}
if U=yp then
return(true)
else
if i=m then
return(false)
else begin
let x be the last node added to Bs;
move X from B; to U;

i=i+1;
end;{while}
end;
Fig.6 The function COLORING

procedure ALLOCATION:

begin
O = 0;
Oy 1= M;

while 6v-6.>¢ do begin
€ := (6.16u)/2;
if COLORING(€) then

By 1= 6;
else
oL 1= 6;
end;
end;
Fig.7 The procedure ALLOCATION

31
3 2 +
8
=%
=
T
@Q
[0}
&
1 -
g 10 20
number of processors
— the proposed scheme
---- a simple node allocation scheme
Fig.8 Comparison of the performance between

the proposed scheme and a simple node allocation
scheme which assigns nodes to processors
according to left to right ordering.

obtained by the scheme proposed in this paper.
The dotted line denotes the speedup rate obtained
by a simple scheme which, selecting two-input
nodes according to the left to right ordering,
assigns the same number of nodes to each
processor. For example, if two-input nodes of the
network shown in Fig. 4 are partitioned into three
blocks by using this scheme, we have a partition
((A1,Az),(As,A4),(As,Al)).

6. Conclusions

In this paper we have presented a scheme for
allocating the nodes of a Rete network onto
multiprocessor. The scheme finds a partition
(Bi,* * *,Bm) minimizing the maximum of #(B:), 1<i<m,
where n(B:) is an approximation of the probability
that more than one nodes of B; are simultaneously
activated by the same WM change. When hash
tables are used on memory nodes, minimizing the
maximum of z(B:), 1gigm, approximately leads to the
minimization of the time needed by a match cycle.

References

[1] L.Brownston et al.: "Programming Expert
Systems in OPS5", Addison-Wesley (1985).

[2] A.Gupta: "Parallelism in production
systems",Morgan Kaufmann (1987).

[3] C.L.Forgy: "Rete: A fast algorithm for many
pattern/many object pattern match problem",
Artificial Intelligence, Vol.19, pp.17-37 (1982).

[4] A.Gupta and M.Tambe: "Suitability of message
passing computers for implementing productmn
systems”, Proc. of AAAI’88, PP. 687-692.

[5] K.Oflazer: "Partitioning in parallel processing
of production systems", Proc. of 1984 Int. Conf. on
Parallel Processing, pp. 92-100.

[6] V.V.Dixit and D.I.Moldovan: "The allocation
problem in parallel production systems”, J.
Parallel and Distributed Computing, Vol.8, pp.20-29
(1990).

[7] K.Takeda et al.: "A prallel implemention of the
Rete algorithm”, Proc. of 1989 Joint Symposium on
Parallel Processing, pp57-64 (in Japanese).

[8] M.R.Garey and D.S.Johnson: "Computer and
Intractability: A Guide to the Theory of
NP-Completeness", Freeman, San Francisco (1979).
[8] C.C.Shen and W.H.Tsai: "A graph matching
approach to optimal task assignment in distributed
computing systems using a minimax criterion",
IEEE Trans. on Computers, Vol. C-34, No.3,
Pp.197-203 (1985).

