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Abstract This paper presents a distributed mutual exclusion algorithm where the se-
rialization of requests is performed in paralle] with the authorization to one of the
serialized requests; moreover, the requests are serialized in parallel. Requesting pro-
cesses are partially serialized into (distributed) sequences of processes, which then is
totally serialized into a (distributed) queue, Q. Because the partial serializations are
performed concurrently in multiple sites, the (total) serialization is in effect carried out
in parallel. Independently of the Q) creation, the authorization is achieved by sending
a single privilege from a process to the next process in the Q. Analytical results show
that this algorithm requires O(log n) messages for a process to enter the critical sec-
tion. Here, ng is the number of sites in a sub-tree of the network, and is determined
depending on the request rate. The performance, which is a speed-up as compared
with a hypothetical sequential algorithm, of the algorithm reaches a few thousand,
when the number of sites equals 64k and the request rate is heavy.
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tion, total serialization, authorization, distributed queue.



I. INTRODUCTION

A distributed system is composed of au-
tonomous n sites which are interconnected by
a communication network. The sites have nei-
ther shared memory nor a common clock, and
communicate with each other only by exchang-
ing messages. The sites undergo indeterministic
message delays in the network. Since an effi-
cient mutually exclusive access to a shared re-
source by a large number of processes is one of
the most crucial needs in the distributed system,
many distributed algorithms for mutual exclu-
sion have been proposed. These algorithms can
be classified as assertion-based algorithms and
as token-based algorithms [5]. The former re-
quire from 2(n — 1) [1] to O(y/n) [2] message
exchanges for each critical section (CS) entry,
while the latter require from n [3] to O(logn)
[4, 6] messages per CS entry. The token-based
algorithm maintains, in the system, a single to-
ken to ensure mutual exclusion; a site is privi-
leged to enter the CS if it has the token.

In Raymond’s algorithm [4], sites in the net-
work are regarded as being arranged in an un-
rooted tree that spans the network, and all mas-
sages are sent along the edges of this (static)
tree. Every site maintains an orientation infor-
mation towards which the current privileged site
is located. When a site wishes to enter the CS,
it sends a request towards the current privileged
site (according to the orientation). The site
whose request reaches the current privileged site
becomes the next privileged site, and a single
privilege token is transferred from the current
to the next privileged sites. The request that
cannot reach the current privileged site must
chase the next privileged site according to the
renewed orientation information until it reaches
the privileged site. Notice that, while chasing
the next privileged site, the location of the site
may alter many times.

An interesting point of Raymond’s algorithm
is that each site holds only local information
about its immediate neighboring sites, that is,
the orientation information. This can be used
effectively for a resilient distributed system.
The chasing and the privilege transfer described
above, however, may affect negatively the per-

formance and cost of this algorithm. In gen-
eral, mutual exclusion comprises two subpro-
cesses, (1) serialization (or ordering) of requests,
and (2) authorization to one of the serialized re-
quests. In Raymond’s algorithm, these two sub-
processes are not distinguished from each other.
To improve the cost and performance of dis-
tributed mutual exclusion, not only the first sub-
process should be executed in parallel with the
second, but also the execution of the first should
be parallelized.

In the algorithm of Y. Chang, et al. [6], a
logical rooted tree is dynamically maintained in
the network, and the root of the current tree is
the privileged site. Every site maintains the ad-
dress of the current root site. Requesting sites
send individual requests to the root site, where
they are put into a distributed queue; the root
sites maintains the address of the tail site in
the queue, and forwards the received request to
the current tail site. Since the current tail site
receives the address of the next tail site, the dis-
tributed queue is constructed. The tail site, at
the time when the current root site finishes the
CS, becomes the root of the new tree. A site
in the queue receives the privilege token, with
the address of the the new root, from the pre-
vious site in the queue. In this algorithm, the
serialization is performed in parallel with the au-
thorization, by using effectively the distributed
queue. However, requesting traffic concentrates
on the root site, and requests are still sequen-
tially serialized.

This paper proposes a token-based distributed
mutual exclusion algorithm, where a logical
spanning unrooted tree such as used in Ray-
mond’s algorithm is assumed. Requesting pro-
cesses are serialized into a distributed queue Q
by a single serializer token that maintains the
address of the tail process in the queue and
travels around the logical tree. Amnother sin-
gle privilege token other than the serializer is
transferred, in parallel with the Q creation (i.e.,
the serialization of requests), from the current
to the next processes in the Q. Moreover, the
requesting processes are partially serialized into
(distributed) sequences of processes before be-
ing put into the Q. This introduces parallelism
in the serialization of requesting processes.
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The rest of this paper is organized as follow.
Section II introduces primitives for the serial-
ization of processes. The mutual exclusion algo-
rithm is described and discussed in Section III.
Correctness, and cost and performance of the
algorithm are presented in Sections IV and V.
Section VI concludes this paper.

II. SERIALIZING PRIMITIVES

Primitive mechanisms for the total and partial
serializations of requesting processes are intro-
duced here. The mechanisms for the total se-
rialization are a primitive SaS(head,tail)  and
a serializer(TAIL), and the mechanism for the
partial serialization is a SaS-combining opera-
tion. Here, the pair of head and tail means a
sequence of processes (head..tail) with arbitrary
length, the addresses of the head and tail pro-
cesses in the sequence being equal to head and
TAIL is the address of the
tail process in a distributed queue Q produced
by the serializer, as described below. A pro-
cess address is assumed to be composed of an
address of a site where the process is located,
and a process identifier local to the site.

When a process X (i.e., a process with ad-
dress X'} wishes to enter the CS, it issues a re-
quest message SaS(X, X), where the pair of two
X’s means a sequence of processes (X..X) with
both the head and tail being equal to X. If
another process issues a SaS(Y,Y), and if the
two SaS’s meet with each other in a site, a SaS-
combining operation takes place in the following
way; address Y is sent to process X, and the two
Sa3’s are replaced by one SaS(X,Y"). Because
process X receives the address of (pointer to)
process Y, a distributed sequence of processes
(X..Y) is produced from (X..X) and (Y.Y)
by the SaS-combining. In general, two SaS’s,
SaS(heady, taily) and SaS(head), tail;) are com-
bined to produce a SaS(heady, tail;), when ad-
dress head; is sent to process taily. Since pro-
cess taily receives the pointer head; to the head
process of the sequence represented by the sec-
ond SaS, a combined sequence (heady..taili) is

tail, respectively.

LA primitive Swap-and-Send (SaS) is a revised version of the
LINKH [7], and has been effectively used for the serialization of con-
current processes in parallel processing algorithms 8, 9]. The SaS
introduced here is a modified version for the distributed system.

produced from the sequences represented by the
two SaS’s. The SaS that is produced via many
SaS-combinings thus represents a long sequence
of processes.

The serializer is traveling around the span-
ning tree (via the route described in the next
section). When the serializer(TAIL) meets
with a SaS(head, tail) in a site, the serializer
executes the SaS to put the sequence of pro-
cesses represented by the SaS into a distributed
queue @Q in the following way: Address head in
the sequence (head..tail) is sent to the process
with address TAIL, and TAIL in the serializer
is replaced by address tail in the sequence. Be-
cause the current tail process in the Q can
kunow the pointer to the head process in the dis-
tributed sequence (head..tail), the sequence is
connected to the tail of the Q.

Note that the sequence of processes produced
by SaS-combining operations is not yet con-
nected with the @Q, and that it is put into the
Q only when the SaS representing the produced
sequence is executed by the serializer. SaS-
combining operations thus partially serialize re-
questing processes into sequences of the pro-
cesses (without connecting them with the Q),
and the processes are totally serialized into the
Q by the serializer. Since SaS-combining oper-
ations can concurrently occur in multiple sites,
the partial serializations of the requesting pro-
cesses are performed in parallel, and in effect the
(total) serialization is parallelized.

An example for the serialization with the
primitives presented here is shown in Fig. 1.
First, two processes with respective addresses
1 and 2 (in sites A and B) are combined (in site
F) to produce a sequence (1..2), and the tail ad-
dress (..2) is sent to process 1 (event number
3). Then, process 3 is SaS-combined with the
produced sequence, and a sequence (1..3) is cre-
ated (in site I). Similarly, a sequence (4..5) is
produced in site G. At this point, the two se-
quences produced so far, (1..3) and (4..5), rep-
resent independent two partial orderings (seri-
alizations) of the current requesting processes,
and are not ordered between the two; the se-
quences are totally ordered when they are put
into the Q by the serializer. The serializer
here is assumed to travel the route shown by



the bold lines in Fig. 1, and to hold TAIL of 0.
When the serializer(0) (..0) executes a SaS(1,3)
(in site J), the head address (1..) of (1..3) is
sent to the tail process (0) in the Q (event num-
ber 13), and the current Q becomes equal to
0 — 1 -— 2 — 3. The renewed serializer(3)
(..3) with TAIL being equal to 3 executes the
second SaS(4,5) (in site K), and the final Q here
is created; 0 — 1 — 2 — 3 — 4 — 5. At this
time, a total ordering of the current requesting
processes is achieved.

@: X = site address, x = process address
®: sequence number of an event

<x.y> SaS(x,y)
x..: the address of the head process in a sequence <x..y>

..y serializer(TAIL); TAIL =y (the bold line shows the path
where the serializer travels)

Fig. 1. Serialization of processes by the SaS,
SaS-combining, and serializer.

III. MUTUAL EXCLUSION
ALGORITHM

This section presents a mutual exclusion algo-
rithm for distributed systems. This algorithm
comprises a main algorithm and a serialization
algorithm.

A. Main Algom'thm

An algorithm that allows only one request-
ing process to enter the CS is shown in Fig. 2.
There are a single sertalizer token and a single
privilege token in a mutual exclusion scheme.
Tt is assumed that an initializer (omitted for
the space of the paper) creates the serializer,
and sets the TAIL equal to the own address

(that is, makes the initializer the first process
in the Q); the initializer sends the privilege to
the first requesting process in the Q. A request-
ing process that wishes to enter its CS issues a
SaS(self, sel f) and wait for the privilege, where
self is the own address of the requesting pro-
cess. When the process receives the privilege,
after finishing the CS and receiving the address
next of the next process in the Q, it sends the
privilege to the process with address next.

requesting_process()
{SaS(self, self);
receive(privilege);
(critical section)
receive(next);
send(privilege, next);}

Fig. 2. Mutual exclusion with SaS.

B. Serialization Algorithm

1) Outline of the Algorithm: The objectives
of the serialization algorithm here are to pro-
duce the path where the serializer travels, and
to combine as many SaS’s as possible into a SaS
before its execution. The logical spanning tree
described in Section I is assumed here. All types
of massages, except for two types, are sent along
the edges of this tree; the privilege and next
shown in the main algorithm above are sent di-
rectly; not along the edges of the logical tree,
but being subject to the routing method of the
original base network.

The serializer is held in only one site, which is
referred to as a holding site, at a time in the sys-
tem. Each site has a variable holder to record an
immediate neighboring site towards which the
current holding site is located, and a request
(SaS) in the site is sent to the holder (that is,
to the site with address held in the holder). The
serializer is transferred from the current hold-
ing site to the next holding site. The transfer
starts when the current holding site receives a
Sa$S from the other site. The site in which the
received SaS originates becomes the next hold-
ing site.
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Assume that every holder is properly initial-
ized as to point a neighboring site towards which
the first holding site is located. Let’s refer to a
directed path from the next to the current hold-
ing sites as the main locked-path, Py. Then,
by reversing the orientation information in the
holder’s in the sites along Py, all holder’s can
keep track of the orientation with respect to the
next holding site. The first objective described
above is thus attained. In Fig. 1, a (non-bold
or bold) solid line with an arrow represents the
orientation in a holder. The bold solid line with
an arrow shows the renewed reverse orientation
in the holder of a site along Py, because the
serializer traverses Py in reverse.

The second objective presented above is
achieved as follows: After a SaS in a site is sent
to the holder; other SaS’s, which are issued in
the site or received from other sites, must wait
in the site. The waiting SaS’s are SaS-combined
into a SaS in the site. Hence, the number of
waiting SaS’s in a site is at most one. The site
where a SaS originates or is SaS-combined is re-
ferred to as a requesting site S, or a combining
site S, for the SaS. When a SaS is combined,
a massage combined is returned from S, to S,.
The combined makes a waiting Sa$ (if it exists)
in each site along the path from the S, to S,
active; an activated (possibly combined) Sa$ is
sent to the holder, and is combined with another
SaS in the other site or reaches the holding site.
Hence, multiple SaS-combinings can occur not
only concurrently in multiple sites, but also se-
quentially in a site while the site is waiting for
the serializer. The serializer thus can connect
a large number of requesting processes into the
Q during one travel to the next holding site.

In Fig. 1, assume that a SaS(1,2) passes
through site I before a SaS(3,3) arrives the site.
The SaS(3,3) then must wait in the site I. A
combined is returned to site I when the SaS(1,2)

is combined with another Sa$ (in this case, com- ~

bined with no SaS) in site J, and the activated
SaS(3,3) is thus combined with the SaS(1,2) in
site J, provided that the serializer(0) does not
vet arrive at site J. A similar situation occurs
with respect to a SaS(4,4) and SaS(5,5), and
sites G and K.

2) Algorithm Structure and Events: The al-

gorithm, which is installed in each site, is pre-
sented in Figs. 3 to 6. The algorithm com-
prises an event processor (Fig. 3) and three
event handlers (Figs. 4 to 6). It is assumed
that the next and privilege packets shown in
the main algorithm above (Fig. 2) are processed
by interprocess communication control. Hence,
the reception of next or privilege is not treated
as an isolated event here. The event processor
pre-processes the detected event and calls event
handlers for the event. Only one event is pro-
cessed at a time, that is, the events are queued
and processed one after another.

8) Data Structure: In every site, the following
data structures are used.

e rsas: A record, (sender,,headr,tailr), that
holds a received SaS. sender, is of the site-
address type.

e wsas: A record, (head,,tail,), that main-
tains a waiting (possibly) combined Sa$S.

e rsas_empty, wsas_.empty: Boolean bits that
show whether rsas and wsas are empty.

e holder: A site-address type datum that
stores the own address of the site (SELF) or
that of the neighboring site towards which
the holding site exists.

o asked_site: A site-address type datum that
holds the address of the site from which a
SaS is received, i.e., SELF or the address of
one of the neighbors.

asked: A boolean tag that shows whether
the site is requesting.

4) Bvent Processor: A SaS(head, tail) is
sent and received in a form of a SaS(sender,
head, tail) message, where sender is the address
of the sending site (SELF or the address of one
of the neighboring sites). An event_processor
shown in Fig. 3 detects one of three events
and calls appropriate handlers to process the
event: (1) When the event_processor detects
a SaS(sender, head, tail), it sets rsas equal to
(sender, head, tail), then sequentially calls a re-
quest handler (req-handler) and a serialization
handler (ser-handler). (2) When receiving the
serializer, the event_processor sets holder equal
to SELF, and calls the ser_handler. (3) If the
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event_processor receives a combined, it invokes
a combining-handler (com_handler), then the
req-handler.

event_processor()

{if receive(SaS(sender, head, tail))
{set((sender, head, tail),rsas);
req-handler(); ser handler();}

else if receive(serializer( TAIL))
{holder := SELF; ser_handler();}

else if receive(combined)
{com handler(); req-handler();}}

Fig. 3. The event_processor.

5) Request Handler: The req handler shown in
Fig. 4 deals with these three cases to produce, to
relay, or to combine request packets as follows.

req-handler()
{if (holder # SELF)
{if (not asked && not wsas_empty)
{send(SaS(SELF,head,, tail,),holder);
asked.site := SELF, asked := true;
wsas_empty := true;}
else if (not asked && not rsas_empty)
{send(SaS(SE'LF,head,.,tail,),holder);
asked_site := sender,; asked := true;
rsas_empty := true;}
else if (asked) (* SaS-combining *)
{if (wsas_empty)
copy(rsas,wsas);
else
{send_directly(head, tail,);
tail, = tail,; rsas_empty := true;}
if (sender, # SELF)
send(combined,sender,);} }
else (* holder = SELF *)
{copy(rsas,wsas);
asked_site := sender,; asked := true;}}

Fig. 4. The request handler.

asked), there are two additional cases: (a) If
wsas is not empty, a SaS(SELF,head,, tail,,) is
produced and sent to the holder, and asked_site
is set equal to SELF. This case occurs after
a combined is received and processed.  (b)
If wsas is empty and rsas is not empty, a
SaS(SELF,head,, tail,) is sent to the holder,
and asked_site in this case is set equal to
sender,. This case occurs when a request is re-
layed by the site to the holding site.

(2) When holder # SELF and asked = true,
a SaS cannot be issued from the site, but a
SaS-combining occurs in the following way. If
wsas is empty, the (head,,tail,) is copied to
wsas; otherwise, the (head,..tail,) is connected
to the tail of the {head,,..tail,) by directly send-
ing address head, to process tail,, and by set-
ting tail, in wsas equal to tail,. Moreover, if
sender, # SELF, a combined is produced, and
is sent to site sender,. This case occurs when
the req_handler is called to deal with a SaS, and
rsas is thus assured to be not empty.

(3) When holder = SELF — this case occurs
when the current holding site receives a SaS, and
it is thus assured that asked is false and wsas
is empty —, the (head.,tail,) in rsas is copied
to wsas, and asked is set equal to true. The se-
quence of processes represented by wsas is then
put into the Q by the ser_handler as shown in
Fig. 5.

6) Serialization Handler: The ser handler
(Fig. 5) puts a sequence of processes
(head,,..tail,) shown by wsas into the Q.

ser_handler()
{if (holder = SELF && asked)

{holder := asked_site; asked = false;

if (not wsas_empty) (* SaS execution *)
{send directly(head,, TAIL);

TAIL := tail,; wsas_empty := true;}

it (holder # SELF)

send(serializer( TAIL),holder);}}

Fig. 5. The serialization handler.

(1) When a site is not holding the serializer
(holder # SELF), and is not requesting (not

Only when holder = SELF and asked = true,
the operation of the ser_handler is activated.
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This case occurs when the holding site receives
a SaS, or when a site receives the serializer.
The ser_handler re-orients holder towards the
next holding site (holder := asked_site), and
resets asked. Moreover, if wsas is not empty,
the SaS(head,, tail,) in wsas is executed by the
serializer( TAIL); that is, directly sends address
head,, to process TAIL, and sets the TAIL in the
serializer equal to tail,. If the current site is
not the next holding site (holder # SELF), the
serializer( TAIL) with the renewed TAIL is sent
to the holder.

7) Combining Handler: A combined token is
used to reset the asked’s in the sites along the
path between a combining site S, and a request-
ing site S,.The com_handler shown in Fig. 6 re-
sets asked in the current site. If the current site
is not the S, (asked_site # SELF), the combined
is sent to site asked_site, that is, towards the S,.

com_handler()
{if (asked)
{asked := false;
if (asked_site # SELF)
send(combined,asked_site);}}

Fig. 6. The combining handler.

IV. CORRECTNESS

This section discusses correctness of the mu-
tual exclusion, and freedom from deadlock and
starvation in the algorithm presented in Section
I11.

A. Mutual Exclusion

Since only omne privilege token is created to
be delivered to the first user process in the Q of
requesting processes, and since only the process
with the privilege can enter the CS, and, after
exiting the CS, the process sends the privilege
to the next process in the Q, it is assured that,
at a time, only one process is privileged to enter
the CS.

B. Deadlock

A deadlock could occur if (1) no SaS reaches
the holding site while there are requesting sites,
(2) even after receiving a SaS, the serializer
stays permanently at the holding site, and even-
tually, all paths to the holding site are locked
(asked = true), or (3) the variable asked is not
reset at a site. The first cannot occur since a
SaS can always reach the holding site by using
the variables holder’s in the sites along the path
from the S, to the holding site, provided that all
the asked’s in the sites along the path are false.
Because asked at a site is undoubtedly reset at
some time (described in the third case below),
there is at least one S, that satisfies the provi-
sion.

The second case is also impossible because the
serializer always reaches the next holding site
by using the variables asked_site’s in the sites
along the main locked-path. The third can-
didate for deadlock cannot occur because the
asked is reset when a site receives the serializer
or combined. The asked’s in the sites along the
path between the current holding site (or the S,)
and the next holding site (or the S,) are reset by
the serializer (or the combined), and a locked
site thus always receives either the serializer
or combined. Accordingly, it is impossible for
asked not to be reset in any site.

C. Starvation

A SaS that originated in an S, reaches the
holding site or an S,, which is located closer to
the main locked-path than the S, is. The S, is in
the locked state when a SaS-combining occurs,
and is unlocked by the serializer or combined,
as described above. The combined Sa$ is put
into the Q in the former case, or is sent to the
holder in the latter case. That is, the com-
bined SaS is never sent back towards the site
where any constituent SaS originated, because
the value of the holder is not changed by the
combined. Owing to the acyclic nature of the
spanning tree of the network, a SaS thus reaches
a site on the main locked-path or the holding
site, and is put into the Q after a finite number
—— at most, the maximum distance between two
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sites in the spanning tree — of SaS-combining
operations. Consequently, starvation cannot oc-
cur.

V. COST AND PERFORMANCE

This section analyzes the mean values for the
cost and performance of the mutual exclusion
achieved through the algorithm presented in this
paper. Some results obtained by the analyses
are also presented.

" A. Cost

The cost C is defined as the number of mes-
sages required for a process to enter the CS.
Let L be the distance between a requesting site
where a non-combined SaS is issued, and the site
of the main locked-path Py where a (possibly)
combined SaS representing a sequence of pro-
cesses reaches, one element of the sequence be-
ing the process represented by the original non-
combined SaS. In addition, let [ be the distance
between the requesting site and the site where
the non-combined SaS is first combined.

All SaS’s, except for one that is issued from
the next holding site, are executed in the sites
of Py, and hence the cost C, on the average,
satisfies C'= 201 + 2 - f(L —{1) + 2, because (1)
the requesting site sends a SaS and receives a
combined from the site in which the first com-
bining occurs (term 211), (2) en route to the site
on Py, the combined SaS is further combined
with other SaS’s and multiple combined’s are re-
turned to the previous combining sites; a request
must thus traverse an effective distance f(L—1{;)
(discussed below) with respect to distance L—1I;
and the corresponding combine must traverse
the same effective distance (term 2 - f(L — 1)),
and (3) the requesting site directly receives the
privilege and next (term 2).

The term f(L — I;) can be estimated under a
condition as follows.
combined SaS is combined %k times with other
SaS’s on the way to the site of Py, that b
SaS’s are combined in every site where a SaS-
combining occurs, that all SaS’s combined in a
site represent individual sequences of requesting

Assume that every non-

processes with the same length, and that the dis-
tance from the (¢ — 1)-th to the i-th combining
sites equals I; (1 <4 < k+1). Then, f(L —1)
equals Ei‘“:l li+1bk_i/bk, where I 1 is the distance
from the last combining site to the site on Py.
Note that L = v, If I; < b for all 4, this
effective distance is less than 1.

It is expected that the assumption described in

the previous paragraph is justified when the re-
quest traffic is rather heavy, and that the condi-
tion {; < bis satisfied when the index of (i.e., the
number of nodes connected with) a node (site) is
rather large, and the combining site is locked as
in the algorithm presented in this paper. In this
case, the cost C' is less than 2D+242 = 2(D+-2)
on the average, where D is the mean value of
I;’s for all non-combined SaS’s. The amalysis
presented in the following induces Dy that is D
when the request rate Ry — the rate of non-
combined SaS invocation — takes discrete val-
ues. .
Assume that n;, d;, and N; are the number
of nodes in the i-th sub-tree, the mean distance
between two nodes in the ¢-th sub-tree, and the
number of nodes in the i-th partition presented
below, respectively, and that the average index
of a node equals s + 2. The spanning tree (the
0-th sub-tree) for the network is then recursively
partitioned as follows:

i 7 d; N;
0 n logny 1

1 (ro—1)/(sdo) logny  sdy

2 (nl—l)/(sdl) log Uy Szdodl

K (nK_.1-1)/(de_1)
K+1 1 1

K k-1
logng " ;2 d;

(711{*1)NK

The diameter of a given arbitrary tree with n
nodes is empirically estimated to be typically
equal to O(logn) [4]. Hence, in the original tree
(0-th sub-tree), ny = n, dy = logng. The i-
th partition is organized by arbitrarily select-
ing one node from each of the i-th sub-trees.
Accordingly, Ny = 1. Let P; be a path of
logn; nodes in the i-th sub-tree. Then, the
(i + 1)-th sub-trees are those sd; units of sub-
trees that are rooted on the nodes along P;.
Hence, ni = (n; — 1)/(sd;), diz1 = logng,
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and N1 = sd;N;. Note that 1in (n; — 1) corre-
sponds to the node of the i-th partition. When
ng > (s +2) and ngyy < (s+ 2) for some K,
the recursion terminates. It is assumed that the
(K + 1)-th sub-tree comprises a single node of
the K-th sub-tree, and dy,; equals 1. In this
case, Nyi1 = (ng — 1)Ng, hence X3 N; = n.

Supposing that Py is the main locked-path,
that P; s a locked path from some site to the site
on Py, and that Py is a locked path from some
site to the site on Py, and so on, the partition
produced when the algorithm presented in this
paper is executed becomes an instance of the
partition presented above. Accordingly, for the
discrete request rate Ry = »¢ Ni/n (0 < k <
K + 1), the mean distance Dy, is given as,

Dy = Thoy(Nidi) /g Ny e (1)
and when &k % I + 1 this can be reduced as
follows;

= Tio(s' M=o dj)/(1 + s T (5 Ty d)))
2 1/s+ 5" Iy i/ Sisg (s Tl dy)
= O(dy).

The order of the cost C' is thus estimated to be
equal to O(d;) = O(logny) when the request
rate equals Ry (0 < k < K).

B. Performance

Speedup Sup = T1/T), is selected as the mea-
sure of performance, where T} is the execution
time with a hypothetical algorithm that sequen-
tially serializes every request in dy units of time,
and T, is the time with the algorithm presented
in the paper. In the latter algorithm, since d;_;
SaS-combinings occur in parallel in the nodes of
the locked path P;_j, the degree of parallelism
(pi) of di_1N;_1 (= N;/s) is achieved with re-
spect to the i-th partition, where p, = 1. If
a message-transfer along the d; sites requires d;
units of time, T4, T, 1, and Sup,, which corre-
spond to T3, Tp, and Sup when the request rate
equals Ry, are formalized as follows:

Ty =dysh, N
Tpi = ko Nidi/p;
Supy =T11/Tpk

C. Analytical Results

The mean distance Dy and speedup Supy with
request rate Ry (0 > k > K + 1) are calculated
by using equations (1) and (2), and shown in
TABLEs I and II. The number of sites in the
network equals 16k (k = 1024) (TABLE I) or
64k (TABLE II), and the index of a site (s+2)
is selected to be equal to 4, 8 or 12.

TABLE I MEAN-DISTANCE AND SPEED-UP
(Number of Sites = 16384)

index of Kk Tequest distance speedup
a site rate (Ry) Dy (Supy)
0 6.1x107% 7.0 1.0
1 9.2x107* 5.2 6.1
4 2 9.6x1072 3.6 4.6x10
3 6.9x1072 22 2.8x10?
4 1.0 1.1 1.8x10%
0 6.1x1073 47 1.0
8 1 1.8x1072 3.1 5.9
2 3.3x107? 1.7 7.7x10
3 1.0 1.0 3.4x107
0 6.1x107° 3.9 1.0
12 1 2.4x1073 2.5 5.5
2 6.0%1072 12 9.7x10
3 1.0 1.0 3.0x10%

TABLE II MEAN-DISTANCE AND SPEED-UP
(Number of Sites = 65536)

index of K request distance speedup
a site rate (R} 109 (Supy)
0 1.5x1075 8.0 1.0°
1 2.6x107* 6.1 6.8
4 2 3.2x1073 44 5.9x10
3 2.8x107% 29 43x10?
4 1.6x107! 1.7 2.3x10?
5 1.0 L1 1.0x10°
0 1.5x107% 5.3 1.0
8 1 5.0x10* 3.7 6.4
2 L1x1072 2.2 9.7x10
3 1.0 1.0 5.8x10%
0 1.5x107% 4.5 1.0
12 1 7.0x107* 3.0 6.0
2 2.1x107? 1.6 1.2x10°
3 1.0 1.0 5.3x10?

When the index equals 4 and k& = 3 in TA-
BLE II, R, Dg, and Supy, are equal to about
0.03, 2.9, and 430, respectively. When k& = 4
(= K), these equal about 0.16, 1.7, and 2,300,
and when k = 5 (= K+1), they equal about 1.0,
1.1, and 10,000, respectively. The cost C ranges
from about 9.8 to 6.2 since the Dy’s range from
2.9 to 1.1.

In both TABLEs, the larger the index is, the
more rapidly Dj decreases. The reason for
this is that the decrease rate of d; is logarith-
mic based on the index. On the other hand,
Supy, reaches a greater value when the index is
smaller. This is because the degree of paral-
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lelism V;/s increases with smaller index.
VI. CONCLUSIONS

This paper presented a token-based dis-
tributed algorithm for mutual exclusion, in
which the serialization (ordering) and authoriza-
tion of the requests are performed in parallel.
The primary mechanism for the algorithms is
a pair of a primitive SaS and a serializer. Re-
questing processes issue the SaS’s, while a single
serializer travels around the network. When a
request (i.e., SaS) and the serializer meet with
each other in the network, the serializer con-
nects the requesting processes represented by
the SaS to a distributed queue Q.

Moreover, because, owing to a SaS-combining
operation, the requesting processes are partially
serialized before being put into the Q, the seri-
alization of the requests is carried out in effect
in parallel. A single privilege token, other than
the serializer, is directly transferred between
the current and next requesting processes in the
Q.
Rough analyses show that the number of
messages required for a process to enter the
CS equals about O(log n;) which, for instance,
ranges from about 10 (at light load) to 6 (at
heavy load) when the number of sites equals 64k.
Here, ny, is the number of sites in the k-th sub-
tree, which is determined depending on the re-
quest rate for entering the critical section. The
performance, which is a speed-up as compared
with a hypothetical sequential algorithm, of the
presented algorithm reaches ten thousand when
the number of sites equals 64k and the request
rate is heavy.
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