7 A 9 ¥y X A 25—5
(1992. 1. 24)

PIRBLERCR DR &I D!
A - EE 2R
FUPHRZFETAEER

NP e2fiBE0BMH I oR-REICH L ¢, FHRBNICRYERIM LERINIZTATY ZLHEEK
ZABR I T3 ThLbOFHAELERFRIMC A I N5, EENTIBEOMEED bIL, HBECHERERCY >
THThbNEREX L OEMNED 5. AFCr, TETGERBE (SAT) KT 2D Lk 5ATATY X ADTHIIKC
s <EFIEEREPICH BREDCDWTRL, W DHOREERT A=) XLkFT. i, EHAEO
et O VHBERT AT) XA BERLAREOEY L E, KownTEBRAMNED bEBEL L 5.

On Securities of Instance-Generation Systems

Kazuo Iwama and Eiji Miyano

Department of Computer Science and Communication Engineering
Kyushu University

Fukuoka 812, Japan

For intractable problems such as NP-complete problems, a lot of algorithms, which are claimed to run fast
on average, have been developed. Usually their performanccé have been demonstrated by mathematical analysis
but, especially for practical purposes, it is also important to investigate them by actually running the algorithms.
To this goal, we discuss how to generate instances of the satisfiability problem. In this paper, our main purpose is
to discuss securities of such instance-generation systems. The system is “secure” if it is hard to generate efficient

algorithms by exploiting the generation system.

VEIZBIFER 01302059, 02302047, 02650278 ORIBIE 20 7.

(1)

1. Problems and Results

Suppose that there is a SAT algorithm M and we
wish to test its performance experimentally, i.e., by mea-
suring M’s average run-time for a certain set / of in-
stances. Note that M’s answer to each instance (CNF
predicate) is yes (a truth assignment satisfying the pred-
icate exists) or no (no such assignments exit). When we
construct such a set I, we usually mix yes-instances and
no-instances in a somewhat intentional fashion, as we do
so in giving decision problems to students. An instance
generator (a deterministic algorithm) G is thus needed
: The input to G consists of answer € {yes,no} and
a binary string 7 € {0,1}* and ‘the output is a CNF
predicate f. f must (not) be satisfiable if answer is yes
(no). G uses the string 7 to select one out of the many
predicates whose satisfiability meets the given answer.

Desirable properties for the generator G should in-
clude : (i) G is fast : G is said to run in polynomial
time if every instance f of length n is generated within
n%M steps. (i) G generates instances under a reasonable
probability distribution. This condition will be discussed
in future articles, not in this paper. (iii) G can generate
a variety of instances. Let J(G) (1(G)) denote the set
of yes-instances (no-instances) generated by G. If I(G)
and /or T(G) are small subsets of the whole yes- and/or
no-instances, they might no longer keep the problem’s in-
trinsic intractability. Two disjoint sets A and B is called
P-inseparable[3], denoted by A ~ B, i{ no set L with the
property A C L C B is in P unless P=NP. G is said to
be secure if I{G) =~ I(G). We assume that the algorithm
G is public. So, if I(G) # 1(G), i-e., il I(G) and I(G)
are P-separable, then one could cheatingly develop very
fast SAT algorithms which works only for I(G) U T(G).
It would be ideal if I(G) and T(G) are the whole sets but
one can think of its difficulty under the condition (i).

Our main objective is to seek such a generator G
as above which runs in polynomial time and is probably

secure by several reasons. It is not difficult to show that

e If G is secure then G is an almost perfect oneway
function[2].

o If G runs in polynomial time then both I(G) and
I(G) are in NP.

e We can achieve the best possible J(G), which is the
set of all satisfiable CNF predicates (denoted by I,q).

Therefore the problem is how close we can make 1(G)

to I

sals

the set of all unsatisfiable predicates which is
known to be co-NP complete. This appears to be equiv-
alent to how hard we can make the set 1(G). Since I(G)
cannot surpass NP, what we can do seems to be limited;
a typical possibility is'to show. that 7(G) is NP-complete.

The result in this paper is slightly better: Our se-
lection as T(G) is called a provable set, denoted by I,,..
Let Iz = I;z; — Ipry. Then it is shown that 1,5 >~ I
and, [, = Iz It should be noted that I,4, % Iz (and
I,y % Iy also) implies that . % Iy, which means G

is not secure. To prove the converse (I,a; % Iy, implies
Lot # I ot Iy # I5m) seems to be extremely hard. If
we could, then it implies that G is secure. The symbol
= is adopted in order to suggest “is similar to” and sim-
ilarity is transitive. Due to this intuition, J,s: = I and
Ipry = Iyry implies I, and I,,, are “similar”, or hard to
distinguish. As for I(G), it is perfect, i.e., we can achieve
HG) = Las.

2. Backgrounds

Many algorithms have been developed for hard (typ-
ically NP-complete) combinatorial problems, which are
claimed to run fast on average (see [7][11] for SAT). How-
ever, the analysis of their average complexities usually in-
volves complicated mathematics, which makes it difficult
to convince possible users of those algorithms. Experi-
me.ntal tests must have merits in this sense. The problem
has been how to generate the proper input on which the
algorithm is actually run.

For example, researchers in the field of logic design

commonly use a fixed bench-mark set of instances, which

* clearly involves such a danger that algorithms can be

(2)

tuned up to those fixed instances. Generating instances

(as a string) at purely random is also common, which
prevents the above cheating. However, it includes other
defects that might be more serious: The pure random
method of course generates only the instances that fol-
low a certain mathematical (truly even) distribution. In
the case of SAT, after evaluating several easy parame-
ters, such as the numbers of variables, clauses and lit-
erals in each clause, one can guess the answer almost
always correctly if he knows that the instance is purely
random. This could reduce a lot of both practical and
theoretical interests.” Another problem is that we cannot
know the answer of each generated instance (unless we
actually solve it). That means it is hard to check the
answer of the algorithm under test, which could again
incite serious'cheating.

Thus we are naturally led to the current way of gener-
ating instances. It has another significant aspect, namely,
applications of the theory of oneway functions. Oneway
functions are widely recognized as important in develop-
ing cryptosystems[9][12](6] but in almost no there arcas.
The instance generation seems to be a simpler and more

direct application. It does not need the tricky trapdoor

systems[13] or the strong pseudo-random sequences[1][10]{4].

The notion of uniformity[8][5] is not so serious either,
since we do not have to produce always hard instances.
All we have to do is, if simply stated, to find, out of a
co-NP set, an NP subset that is as large as or as hard as
possible. ’

3. Generation Algorithms

A generator is a Turing machine M. The input to M
is a binary sequence r € {0,1}". M has the output tape
and the contents on it after M halts, M(r), is called an
output of M. M must halt for all input sequences. A
language L (a set of instances) is said t@) be generated
by Mi{ L={M(r)|re€{0,1}'}. M is said to be T'(n)
time-bounded if for every input sequence an output y is
produced within T'(]y|) steps.

Note that the input of the generator under this def-

inition does not include the answer of the output string

(3)

(instance). We regard that the generator in the sense of
Sec.2 consists of two (independent) generators under the
new definition, one for yes-instance, and the other for
no-instances. The input r may be generated inside M at
random. Note that M must produce some ou:tput string
(instance) whatever r is given (or generated as a random
sequernce).

A literal is a logic variablé z or its negation Z. A
clause is a sum of literals. A (CNF) p'redicaté is a prod-
uct of clauses. A specific assignment of true and false
to all the logic variables is sometimes called a cell. It
is saia that a clause A covers a cell T if the assignment
denoted by T makes A false. A clause A is said to
cover a clause B if all the cell covered by B are covered
by A. (Intuitively, A is larger than B.) The following
four operations for clauses appear frequently : A clause
A is splited into (A + 2)(A 4+) using variable z. Its
inverse operation is called merge‘. A literal z’ is added
to a clause A, which results in a smaller clause (A + z').
Also a literal z’ is removed from (A + z'), which makes
the literal larger.

Now we present a generator for all satisfiable CNF

predicates:

Generator SAT-GEN

Stepl. A single cell T,,, is created at random.
(“at random” means using the input string
appropriately.)

Step2. A clause T is also created at random.

Step3. If T' does not cover Tg,, then T is in-
cluded in the instance. Otherwise, a single
literal 2’ consisting T is selected at random
and it is changed to its negation, i.e., ¥ if
z' =z and z if z' =Z. Such a 7" 1is also
included in the instance.

Step4. Steps 2 and 3 are repeated until the in-

put string has been spent.

Theorem 1. SAT-GEN generates [,4.
Proof. Obvious. T,,, is at least one satisfactory

truth assignment. o

SAT-GEN clearly runs in polynomial time. If we can

take time, we can also generate the whole Iz

Generator m-GEN

Stepl. Select a variable z at random and let
frow = 2T.

Step2. One of the following (2-1) to (2-4) is
randomly chosen and executed:

(2-1) Select a clause A in fno, and select a vari-
able z both at random. f,.,, is modified
by splitting A into (4 + z)(A4 + T).

(2-2) Select a clause A in fuow and a literal z'
in A at random. f,., is modified by re-
moving z’ from A.

(2-3) Select, again in some random fashion, a
pair of clauses A and B in fyo such that A
covers B (if any). We remove the (smaller)
clause B from fpoy-

(2-4) Construct a random clause A and add A
into frow-

Step3. Repeat Step2 until the input string runs
out and halt with f,.,, at that time on the

output tape.

Theorem 2. SAT-GEN generates I
Proof. We can use a common principle called iter-
ated consensus for generating prime implicants. Details
are omitted. m]
One can see that SAT-GEN does not run in polyno-
mial time. To modify it so as to run in polynomial time
is easy:
Generator PRV-GEN
Everything is the same as SAT-GEN but (2-3)

is removed.

Now we define I,,,. Consider the following two op-
erations: (i) A literal is added to a clause A. (ii) Two
clauses (A + z)(A + =) is merged into A. A predicate f
is called provable if, for some variable z, zZ is implied
by applying above (i) and (ii) repeatedly. I, is the sct
of all provable predicates.

(4)

Theorem 3.FPRV-GEN generates [y,,.
Proof. Obvious. m]

Recall that our goal is to claim that I,;,., is reasonably
large or reasonably hard within the limit of NP. Here are
now our main theorems.

Theorem 4. I, and 5 are P-inseparable.

Theorem 5. I,,; and 5y are P-inseparable.

We prove Theorem 4 in the next section. Proof of
Theorem 5 is easier than Theorem 4 and may be omitted.
Note that the NP-completeness of I,,, is an immediate
corollary of Theorem4. Namely, it is at least hard to
show the intractability of the given instance simply by
reversing PRV-GEN. Although details are omitted, the
negation of Theorem 4 (and Theorem 5) would imply the
fact that I,,; and I, are P-separable. There are several
open questions:

(1) Are I,4 and I, P-inseparable? -

(2) Are there similar generators for other problems
such as the Hamilton circuil problem?

We are now devecloping actual instance generators
based on SAT-GEN and SAT-GEN. Those generators
accept, as their input, (i) the number of variables, (ii)
the number of clauses and (iii) the probability that each
literal appears in a clause. They produces yes- and no-
instances that meet the input values (if possible) using
a random sequence generated inside. It is not so easy to
adjust the out-put. so as to meet the parameter values,

which will be reported in future papers.

4. Proof of Theorem 4

Suppose that f is an instance of the 3SAT problem.
We describe how to comstruct a (alway unsatisfiable)
CNF predicate g from f such that g is provable if f
is sé.tisﬁable and g is not provable otherwise. Roughly
speaking, g uses a special variable ¢ and o7 is the only.
one possibility implied by the literal-addition and merge
operations.

For simplicity of description, we take the following

example as f

f

(a7 + o5 + o3) (o7 + az + a4)

(a1 + @ + a5)(az + a3 + @)
(o3 + o + @) (@ + a3 + @s)

(o + @ + o)z + a3 + o)

The clauses appearing in g are divided into four groups,

G, through G4. G, consists of the following single clause:

(si+sa+oy+tzito+nt+rptptuty
I+ I+ TG+ T+ T + I
+Z94 + Zg6 + 237 + Zog + Z31 + Z3g
+%55 + %55 + 738 + Tip + iz + T
+Z7 + Toz + Zos + Tos + Tog + Tes

+a; +ax+az+ag+as + ag+ a7+ ag +7)

Associated with the five variables in f, we prepare z;
through zs, y) through ys. a; through ag are introduced
since f includes eight clauses. As for z;;, we need, for
example, four z;; (211, z13, 713, 217) since the first variable
o appears in the first, second, third and seventh clauses
of f. As mentioned before, & plays an important role.

The second group G is as follows

(FT+7) (T +7) - (T +)T+)T +7) - (T +0)

(s +7) (212 +) (213 + 7Y (217 +)220 +7) -+ (258 +7) (1)

The following observation will be helpful: Suppose hypo-
thetically that all a; to ag are removed from G,. Then,
using the clauses in G,, G; can be reduced into . For
example, z; of G| can be removed by adding literals
Ty, T3, -, Zss t0 (T1 + @) first and then merging it with
G.

The third group Gj of literals are prepared to delete
a; through as as mentioned above. Associated with

ay, @, -, a5, 0 of f, the following clauses are prepared:

ay ¢ (UQQY+ 0+ 213+ z12) (21 + 715 +T3)

(z1 + 717 + a7) ' (2)
ol : (U()+ o+ 21+ z12) (31 + 77 +87)

(+ 72 + @) 3)
ay @ (U(2)+ 0+ 233 + 224 + 225) (22 + 7z + G3)

(z2+ Z21 + @) (22 + Tag + T@3) (4)

@ (U(2)+ 0+ 221 + 226 + 227)(y2 + 7210 + @)
(y2 + 735 + @) (y2 + Fa7 + @) (5)

oy (U(3)+ 0+ 231+ 230 + 235 + 228) (23 + T + @7)

(z3+ Zag+ @)(zs + 725 + @) (s + T + @) (6)
& (U(3)+ 0+ z56)(ys + Zs + Gs) (7)
oy (U(4) + 0 + 242 + 245 + 247) (24 + 713 + @)

(ze + Zg5 + @) (24 + Za7 + @7) (8)
@ (U@) 40+ 20)(ya + Zi5 + T5) (9)
as (U(5) + o + 253 + 256 + 258)(z5 + Z53 + a3)

(zs5 + Zoe + @5) (25 + Zga + T3) - ‘ (10)
& ¢ (U(5) + 0+ 25+ 750)(ys + Tow + T)

(vs + 755 + @) ' (11)

Take a look at, for example, predicate (4). (z2 +Tz§+a—4)'
means that o, appears in the forth clause of f. (y2+Z26+
@) in (5) means @3 appears in the sixth clause of f. Thus
z; corresponds to ¢; and y; to @
U(1),U(2),---,U(k —1),U(k) are clauses
uy, Ur+ug, -, UL+ Upt -+ Uoe-a) T Uk-1),

Uy + Uy + o+ Uge—o) + Uo1),
respectively. Namely,
(F+UM)F+U2)- (F+U)) (12)

can be modified to F' by repeated merge operations.

One can see that

(U()+ =z +as+ar+o) and

W +p+a+am+0) (13)

can be implied from predicates (2) and (3), respectively.

-Now we introduce the following forth group G4 of clauses:

(V) +z1+a)(UD)+ 7+ o)(U(1) +a,+ o)
(U)+as+a)(U(Q)+as+ o) (U(1)+ar+0) (14)
Using those clauses, two predicates in (13) are both re-

duced into (U(1) + o). The rest of G, is similar. For

example
ki

UQR)+z5+0)(U(2)+ 72 +0)

UE2)+a+ o) U2+ az+0)
U2)+as+o)(U(2)+ as +0)

(U(2)+ ar + o) (U(2) + as + o)
are prepared for (4) and (5). Then both are reduced into
(U@2)+0o)
Thus Gj are finally reduced to
(UM + o) U2)+o)(U3) + o) (U(4) + a)(U(5) + 0)(15)

which is then reduced to o by the property (12).

Here is another important observation: Recall that
a; through ag are deleted using the clauses in G;;. Sup-
pose that a; is deleted using (y; + 751 + @7). Then our
interpretation is that the first (denoted by a;) clause of
f is satisfied by letting @ (denoted by y2) be true, i.e.,
ay be false. Note that once (y2 + Zo7 + @p) is used to
delete a; then that clause disappears. Then zy in the
first clause of (5) can no longer be deleted and therefore
(U(2) + o) cannot be implied from (5). If, for exam-
ple, both (yz + Za1 + @1) and (z2 + 721 + @1) are used for
this purpose, then (U(2) + o) cannot be implied either
from (4) or (5). Namely, we can no longer imply (15) or
0. However, one can see t..hat. such a operation does not
make sense under our current interpretation described
above, since it means that we assigned true to both ay
and @s.

Suppose that f is satisfiable. Then there is a satisfi-
able truth assignment for which the confusion described
above does not occur. That means we can delete all a;
through as and at the same time we can leave at least
one of (2) and (3) as it was originally and similarly for
(4) and (5), (6) and (7), and so on. To conclude:

Lemma 1. If f is satisfiable then g is provable.

Recall that g must be unsatisfiable whether or not f
is satisfiable. To prove this is not hard: If we duplicate
each clause in G into two or more same clauses, thén
every clause in, e.g., (2) can survive. Since the duplica-

tion of clauses does not change the satisfiability of the

(6)

predicate and si‘nce a predicate is clearly unsatisfiable if
it is provable:

Lemma 2. g is unsatisfiable whether or not f is
satisfiable.

Now the rtest of the proof is to show that if f is not
satisfiable than g is not provable. Two technical lemmas
are presented first:

Lemma 3. Suppose that ' (a clause consisting of a
single literal) is implied from a predicate D. Then, if =
or T appears nowhere in D, D is unsatisfiable.

Proof. Similarly as in the case of clauses, a predicate
A is said to cover a predicate B if A becomes false for all
the assignments that make B false. One can see easily
that if a predicate A is modified to B by the addition or
merge operation then A covers B. Thus, if z' is implied
from D, D covers z', which means D must be false for
all the assignments making ¢’ false. Sinc¢e D does not in-
clude z or Z, it must be false for all possible assignments.
- .

Lemma 4. Suppose that By,---, B, and Iy, -, F,
are clauses that do not include a literal r orZ. Thenif z
is implied from (Ey+z)(BFa+z) - - - (Bm+z)(FL)(F2) - - - (Fn),
then the predicate EyEy -+ E,Jy Fy- -+ F, must be un-
satisfiable.

Proof. Similarly as Lemma 3. [m}

Now suppose that f is not satisfiable. We first focus
our attention énly to the special variable ¢ and prové 0T
cannot be implied. ’

Let G3; be a set of clauses in G5 that do not include
o or 7. Then we can claim by Lemma 3 that o (or

@) cannot be implied from Gy, since Gy, is satisfied by

assigning z, s=z5 =y, = --- = ys = true. There-
fore, if 7 could be implied, then it could be done so from
G UG, U Gj,. (Any clause including o clearly does not
help.) Now one can see, by Lemma 4, that in order to
imply ¢ we need all the clauses in Gy U G, and at least
cight clauses including each of @y through @;. A crucial
point is, as mentioned before, that if f is not satisfiable,

we can no way select those eight clauses so that the rest

of Gy; will include complete (2) or (3), complete (4) or
(5), and so on. Now we have the following lemma.

Lemma 5. If two clauses, one in (2) and the other in
(3) or one in (4) and the other in (5) or - - -, are removed,
then G3 U G, is satisfiable.

Proof. Suppose, for example, that the third clause
in (2) and the second clause in (3) are removed. Then,
23 = z17 = 1 satisfies the first clauses of both (2) and
(3). z13 = z13 = O satisfies all the other clauses in (2)
and (3). Furthermore, w; = 0 satisfies all the clauses
including U(2),---,U(5). Finally, z; = y; = 0 and 24 =

- = g5 =y = -+ = y; = 1 satisfies all the other
clauses.) O

Thus we can conclude that if 7 is implied then o
cannot. Now here is our final lemma.

Lemma 6. If 0@ cannot be implied, then zZ cannot
be implied either for any variable z other than o.

Proof. The complete proof is tedious. We only give
a short observation on variable z,. Similarly as before,
the set of clauses not including z or 7 is satisfiable. It
should be noted that Z7 appears only once in the whole
g, i.e., (Ty + 7) in G,. Then one can see that in order
to imply 77, we essentially need to imply o exactly as
before. After that, it is not so hard to show that z; can

never be implied from the rest of clauses. a

5. Proof of Theorem 5

Proof. Suppose that A is an instance of the SAT
problem. We describe how to construct a CNF predicate
B from A such that B is satisfiable if A is satisfiable and
B is unsatisfiable and not provable otherwise. The idea
is to construct B using a simple unprovable predicate.

Let X; be a CNF predicate such that:

I

X; XXz Xig

(w1 + zis + 2 (T + Tiz + 2i3)

1

(
(ziz + zi3 + Tig)(za + T2 + Tix)
(

z
(T + T3+ Za) (20 + 52 + T3)
(Tiz + T3 + 2ia) (T + Ti2 + 2ia)

Lemma 6. X; is unsatisfiable and unprovable.

Proof. It is obvious that X; is unsatisfiable. We
prove that X; is not provable. Take a look at arbitrary
two clauses. Then it turns out that the relations of those
two clauses meets one of the following conditions: (a) All
literals appearing in one clause are completely different
from the literals of the other, like (z;; + Z;3 + zi4) and
(zir + T3 + Zi4). (b) There is a variable z such that one
clause includes z and the other clause includes %, and
further more each clause includes different variables, like
(zi1 + 243 + 2ia) and (T7 + Tz + z43). In the case of
(a), the two clauses cannot be merged directly even if
any Hterals are added. In the other case, some literals
must be added to each clause in order to merge the two
clauses. However, if a literal is added to any clauses of
X;, then X; becomes a satisfiable predicate since every‘
cell is covered by only one clause. o

Suppose that the given instance A is A;A4s- - Ay,
where A; is the ith clause of 4. Now B can be con-
structed using the above unprovable predicate X; as fol-

lows:

B = (A1+Xu)(A + Xi2) - (A + Xis)
(A2 + Xa1) (A2 + Xaa) - - - (A2 + Xas)

(An + Xo1)(An + Xoz) - (A + Xns)

Let @ and ¥; be the set of all variables appearing
in A and X;, respectively. Note that ® N ¥; = @ and
U;NW¥; =0 (i # 7). One can see that a satisfiable truth
assignment for A also satisfies B, i.e., B is satisfiable if
A is so. v

Lemma 7. Suppose that Fy, - - -, F,,, are clauses whose

“variables belong to a variable set F and Gy, ---,G,, are

the same whose variable set is G. Suppose also that F'n
G = §. Then if the predicate (F; +G){(F2+Gy) -+ - (Fr+
G,,) is provable then both predicates (F)(F)--- (Fm)
and (G1)(Ga) - - - (Gm) must be provable.

Proof. Suppose that a-clause (F;; + Gy;) is implied
from (F; + G;) and (F; + G;)by applying the two opera-
tions (the addition and the merge operation).Recall that

variables in F;; and those in G;; are elements of the set
F and G r1espectively. Taking F NG = § into consid-
eration, it can be regarded that the clause (F}; + Gij)
is implied by the merge operation after adding some lit-
erals in F to F; and F; and adding those in G to G;
and Gj. For example, the two operations are applied to

(fr+ fa+ fs+g1+g2+gs) and (Fs+ fa+gs+g4) (fi € F,
g: € G) as follows:

(fi+h+fita+g+g)fs+fitg+a)
= (h+h+hi+fitg+gatg+gd)
(fut fot Fat fot g+ gatgs +g4)

- (ith+fita+g+os+a)

However, this implication is simulated by the following

independent implications:

(fi+ fat 5)(fs+ fo)
(it fat ot L)L+ o+ T+t fo)
= {(fi+fat fi)
(g1 + g2 + 93)(gs + g4)
(914 92+ g3+ gs + 95)(g1 + g2+ 93 + 94 + T5)
(

—

g1+ g2+ g3+ g4)

Thus, one can see that the process of implying ¢ from
(Fi+ G1)(Fo+ Gy) - - - (Frn + G) can be simulated by a
sequence of above implications in a step-by-step fashion.
Now we can conclﬁde that ¢ can be implied both from
(FL)(F2) -+ (F) and from (G1)(Ga) -+ - (Gm)-

One can see that B is unsatisfiable if A is unsatisfi-

]

able, since X; is so. Then we can claim by Lemma 6 and
7 that B is unprovable if A is unsatisfiable. a

BEHK

{1] M. Blum and S. Micali. How to generate crypto-
graphically strong sequences of pseudo-random bits.

SIAM J. Comput., Vol. 13, No. 4, pp. 850-864, 1984.

[2} O. Goldreich and L. Levin. A hard-core predicate
for all one-way functions. In Proc. 21st ACM Sym-
posium on Theory of Computing, pp. 25-32, 1989.

(8)

[3] J. Grollmann and A. Selman. Complexity measures
for public-key cryptosystems. SIAM J. Comput.,
Vol. 17, No. 2, pp. 309-335, 1988.

—
)

J. Hastad. Pseudo-random generators under uni-
form assumptions. In Proc. 22nd ACM Symposium
on Theory of Computing, pp. 395-415, 1990.

R. Impagliazzo and L. Levin. No better ways to

—_—
(=l
fhady

generate hard np instances than picking uniformly
at random. In Proc. 81st IEEE Symp. on Founda-
tions of Computer Science, pp. 812-821, 1990.

[6] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-

=

random generation from one-way functions. In Proc.
21st ACM Symposium on Theory of Computing, pp. 12—
24, 1989,

K. Iwama. Cnf satisfiability test by counting and
polynomial average time. SIAM J. Comput., pp. 385-
391, 1989. ’

‘L. Levin. Average case complete problems. SIAM
J. Comput., Vol. 15, pp. 285-286, 1986.

o
)

R. Merkle and M. Hellman. Hiding information and
signatures in trapdoor knapsacks. IEEE Trans. Im-
Jorm. Theory, Vol. IT-24, pp. 525-530, 1978.

{10] N. Nisan and A. Wigderson. Hardness vs. random-
ness. In Proc. 29th IEEE Symp. on Foundations of

Computer Science, pp. 2-12, 1988.

P. Purdom and C. Brown. The purc literal rule

(11]

and polynomial avcrage time. SIAM J. Comput.,
pp. 943-953, 1985.

‘R. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryp-
tosystems. Comm. ACM, Vol. 21, pp. 120-126, 1978.

[13] A. C. Yao. Theory and applications of trapdoor
functions. In Proc. 23rd IEEE Symp. on Founda-

tions of Computer Science, pp. 80-91, 1982.

