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This paper consideres the “open edge” variant of the polygon search problem, which is the
problem of searching for mobile intruders in a simple polygon by a single mobile searcher.
The open edge variant treats the case in which the given polygon must be searched without
letting the intruders reach a given edge u, under an additional assumption that any number
of intruders can leave and enter the polygon through another edge v at any time. We give
a simple necessary and sufficient condition for a given polygon to be searchable.
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1 Introduction

Problems related to visibility inside a simple polygon have been the subject of many
recent papers. Of particular interest to us among these problems is the watchman route
problem [1, 2], which is an interesting variation of the well-known art gallery problem of
stationing guards in a simple polygon so that every point in the interior of the polygon
will be visible from at least one guard[3, 4]. The goal of the watchman route problem is to
construct a shortest tour within a given simple polygon so that every point in the interior
of the polygon will be visible from at least one point on the tour. Note that this goal can be
interpreted as (constructing a path for) finding a stationary intruder located in the polygon
by a single mobile searcher.

Detection of a mobile intruder in a simple polygon was first considered in the searchlight
scheduling problem [5] in which the rays of stationary “searchlights” (i-e., stationary 1-
searchers) are used to find the intruder. Detection of a mobile intruder in a simple polygon
by a mobile searcher was considered in the polygon search problem[7]. In this paper, we
adpot the following formalism in [7]: Both the searcher and the intruder are represented as
points which can move continuously within a given polygon, and the intruder are assumed
to be able to move arbitrarily faster than the searcher. To investigate the capabilities of the
searchers having different degrees of visibility, we introduce the k-searcher for each integer
k > 1 and the co-searcher. The k-searcher is the searcher having k “flashlights” whose
visibility is limited to k rays emanating from his position, where the directions of the rays
can be changed continuously with bounded angular rotation speed. The oco-searcher is the
searcher having the visibility of 360 degrees who can see in all directions simultaneously at
any time.

As was observed in [7], one of the reasons for the difficulty of deciding whether a given
polygon P is k-searchable or co-searchable is that some vertices and edges of P may have to
be recontaminated? repeatedly during the search. This observation suggests us to consider
a restricted version of the polygon search problem in which some vertices or edges of P
must remain clear during the search. Specifically, the variant we consider in this paper is

the following.

Given P and two edges u and v of P, clear P under the following condition B:
(1) » must remain clear throughout the search, and (2) at any time, any point

on v which is not illuminated is considered to be contaminated.

A possible interpretation of this requirement is that (1) v represents an open exit between P
and its exterior through which any number of intruders can leave and enter P at any time,
and (2) the searcher must force all the intruders out of P through v without allowing any
of them to reach u. For this open edge variant of the polygon search problem we present
a necessary condition for P to be co-searchable, and then show that the same condition is

2Intuitively, a point x is contaminated if the intruder can be at x.



also sufficient for P to be 2-searchable. Therefore as far as this variant is concerned, the
2-searcher and the oco-searcher have the same capability.

In the rest of this paper, unless otherwise stated P is an n-sided simple polygon, u =
urug is the edge of P which should remain clear during the search, and and v = Tvg is
the edge of P whose points are assumed to be contaminated whenever it is not illuminated.
We assume that uy, vr, vp and ug appear in this order clockwise in the bounrary P of P.

2 A necessary condition

For a point ¢ € P, define V3(z) = Uyev(z) V (¥), where V(2) is the set of points in P
visible from a point z € P. Note that V(z) C V2(z). If y € V?(z), then we say that y is
2-vistble from z. For regions Q and R C P, we say that Q is weakly 2-visible from R if every
point in Q is 2-visible from some point in R. For points ¢, y and z € P, y and z are said to
be 2-separable from z if every path within P between y and z contains at least one point
in V2%(z). Note that since P is simple, y and z are 2-separable from z iff (y, z) contains
at least one point V?(z), where 7(y, z) is the Euclidean shortest path within P between y
and z.

For points z and y € P, we let 8 P;(z,y) denote the portion of P from z to y taken
clockwise (i.e., the “left” boundary of P from z to y). Similarly, we let Pr(z,y) denote
the portion of P from z to y taken counterclockwise (i.e., the “right” boundary of P from
z to y). 8Pr(ur,vr) and 8Pp(ug,vr) are simply written as 8P, and 8Pg, respectively.
For convenience, we use “<” to denote the order in which the points in 8P (ur,vy) (or
O0Pgr(ug,vR)) appear in a traversal from ur to vy (or from up to vg).

For vertices ¢ € P, and y € 8 Pg, we say that ¢ and y are in conflict with respect to
u if (1) ur and z are not 2-separable from y and (2) ug and y are not 2-separable from
z. Similarly,  and y are said to be in conflict with respect to v if (1) vy and z are not
2-separable from y and (2) vg and y are not 2-separable from z. We say that u (or v)
is conflict-free if there do not exist such vertices which are in conflict with respect to it.
Finally, we say that u and v satisfy the weak 2-visibility condition if O Py, is weakly 2-visible
from 7(ug,vr) and O Pg is weakly 2-visible from n(ur,vr).

Theorem 1 If P is co-searchable under condition B, then (1) u is conflict-free, (2) v is
conflict-free, and (8) u and v satisfy the weak 2-visibility condition.

Proof (1) Suppose that ¢ € P, and y € §Pg are in conflict with respect to u. Then since
up is illuminated at time zero and = ¢ V2(ug), z is contaminated at time zero. Similarly,
y is contaminated at time zero. If z is illuminated y at time t, then y and ug are not
separable from the position of the co-searcher at ¢, and hence up becomes contaminated.
Similarly, if y is illuminated before z, then u; becomes contaminated. Thus P cannot be
cleared without contaminating u. (2) Suppose that = € 8Py and y € 8Pg are in conflict
with respect to v. When z is illuminated, y is contaminated since (1) vg is not illuminated



(and hence is contaminated by assumption) and (2) vr and y are not separable from the
location of the oo-searcher. Similarly, z is contaminated when y is illuminated. Therefore
z and y cannot become clear simultaneously. (3) Suppose that z € 9P is not 2-visible
from 7(ug,vg). Then ug becomes contaminated when z is illuminated, since (1) vg is not
illuminated (and hence is contaminated by assumption) and (2) vr and ug are not separable
from the location of the oo-searcher. Similarly, ur becomes contaminated when y € 0Pg
not 2-visible from n(ur,vy) is illuminated. O

3 Sufficiency

The following theorem, together with Theorem 1, shows that the condition given in
Theorem 1 is in fact necessary and sufficient for P to be searchable under condition B by
the oo-searcher and the k-searcher for any k > 2.

Theorem 2 If (1) u is conflict-free, (2) v is conflict-free, and (3) u and v satisfy the weak
2-visibility condition, then P is 2-searchable under condition B.

Proof To save space we only give an outline of the proof. Let us denote the two flashlights
by Fy (the “left” flashlight) and Fg (the “right” flashlight). Suppose that the 2-searcher is
located at a point s € P aiming F and Fg at points z € 0P and y € O Pg, respectively,
where z, s and y are collinear. Intuitively, we view the segment Ty as a variable-length bar
L determined by the rays of the flashlights, and clear P by sweeping it by £ from u to v, in
such a way that at any time, the subregion of P “below” L, denoted BELOW(z,y) when
L is at T, remains clear. Note that BELOW(z,y) contains edge u which must remain
clear. As is shown in Figure 1, during this sweep £ must occasionally be “bent” to clear
the regions not visible from the “opposite” boundary.

Let C denote the set of nonredundant chords of P induced by a vertex adjacent to a
reflex vertex. We denote by Cr, (or Cg) the set of chords ¢ € C such that both endpoints
of ¢ are in 8Py, (or 8Pg). It is easy to see that if bar £ intersects every chord ¢ € CLUCR
during the sweep, then every point in P will be visible from the 2-searcher at least once
and hence can be illuminated by one of the flashlights. In fact, we sweep P by repeatedly
finding a suitable “next” chord ¢ € Cr U Cg and advancing £ so that it intersects c.

For each chord ¢ € Cf, U Cg, let (c), B(c) and T'(c) be the vertex inducing c and the
“bottom” and “top” endpoints of c, respectively, where B(c) < 7(c) < T'(c). Suppose that
currently bar £ is at 7 for some z € P and y € OPg. First, we find the chord ¢z € Cy
whose B point is encountered first in a traversal of dPr(z,vr) from = to vg. (If such ¢z,
does not exist, then we treat vertex vy, as a chord such that B(vy) =T'(v 1) = vr. A similar
comment applies to cp mentioned next.) We find cg € Cr in a similar manner. Clearly,
either ¢y, or cg must be the next chord to be intersected by £. To decide which of the
two chords should be intersected next, we do the following. For cg, let a(cp) be the first
point encountered in a traversal of 8Pg(y,vr) from y to vg from which at least one point



in cg, is visible, if such a point exists; otherwise let a(cp) be the first point encountered in
a traversal of OPg(upg,y) from y to ug from which at least one point in ¢y, is visible. Then
let p be the point in ¢y, closest to B(cy) visible from a(cr), and let B(cr) € 8P be the first
point at which the ray emanating from a(cg) in the direction from a(cr) to p penetrates
OP. See Figure 2 for illustration. Note that £ will coincide with B(cz)a(cy) if we intersect
it with ¢z with “minimum” advancement. We also define a(cg) € 8P and B(cg) € 0Pr
for cg in a completely symmetrical manner.

It is easy to show that, since v is conflict-free, the conditions e(cr) < y and a{cg) < z
cannot hold simultaneously. If one of the two conditions, say a(cr) < vy, holds, then we can
advance £ from Zg to B(cz)a(cr) as follows. Let g be the intersection of 7 and B(cr)a(cr).
Here, P (z,B(cL)) is 2-visible from g, since otherwise, as is easily shown either (1) there
exists a chord in Cf, between z and B(cz), or (2) there exists a chord in Cy, between B(cy)
and f(cr) and hence cy, is redundant. Thus we move the 2-searcher to ¢ aiming Fy, and Fg
at = and y, respectively, and then sweep 8P (z,3(cy)) from g using Fy, in such a way that
(1) Fr and Fg are aimed in opposite directions whenever the 2-searcher is located at g, and
(2) Fg is aimed through ¢ whenever the 2-searcher is not located at . Since Fj is rotated
only clockwise, BELOW(B(cr), a(cr)) becomes clear when the sweep is completed. Note
that the right endpoint of £ has been moved backward from y to a(cz). Thus we refer to
this case as a back-up case. ‘

Let us consider the case in which y < a(cr) and = < a(cg). In this case at least one
of a(cr) £ B(cr) and a(cg) < B(cg) must hold, since otherwise 7(cz) and n(cg) are in
conflict with respect to u. If a(c;) < B(cg), then we advance £ to B(cz)a(cr) so that it
intersects cz. (If a(cr) < B(cr) then we advance £ to a(cg)B(cg) so that it intersects cg.)
This is done by the following algorithm .A.

Algorithm A;
begin
Compute 7(y,B(cL)) = 5153 - 6m where s1 =y, s;m = B(cz), none of sy,...,8m_1 is
in 0P (B(cL),vL), and no three consecutive points in sy,..., s, are collinear;
fori:=1tom—1do
if s; € OPg and s;y; € Pg then
begin
Ty = SHOOT(S,’,S,‘+1);
L_ADVANCE_BY_SWEEP(z;);
R_ADVANCE.FROM _LID(s;41); {£ is at Z;3;71.}
end
else if s; € OPg and s;41 € 9P then LLADVANCE_BY_SWEEP(s;11); {£ is at 5715;.}
else if s; € 0P and s;y; € dPp then R_ADVANCE_BY_SWEEP(s;,1); {L is at s;5;47.}
else {s; € 8P and s;4; € OP;}
begin
z; = SHOOT(si41, 8:); {zm-1 = SHOOT (s1n, $mn_1) = aler)}



R_ADVANCE_BY_SWEEP (z;);
L_.ADVANCE_FROM_LID(s;+1); {L is at 511%:.}
end;
end;

Algorithm A is written using the following four operations and SHOOT, where SHOOT(r, 5)
is the first point at which the ray emanating from point r in the direction from r to
point s intersects 8P. In the following explanations, assume that £ is currently at Ty
and BELOW(z,y) is clear.

1. LLADVANCE_FROM.LID(z): z is a point in 8Pp(z,vz) such that (1) z, z and y
are collinear and (2) 8PL(z, z) is weakly visible from ZZ. The 2-searcher moves to z
aiming Fy, and Fp at = and y, respectively, and then clears the region whose boundary
is 8Pt (z, z) U TZ using Fy, while aiming Fg continuously at y. When this is done, £
is at g and BELOW(z,y) is clear.

2. RADVANCE_FROM_LID(z): This is symmetric to LLADVANCE_FROM_LID(z),
and can be used to advance £ to Tz.

3. LLADVANCE_BY.SWEEP(z): z is a point in 8P (z,vz) such that (1) z € V(y) and
(2) 8PL(z,z) is 2-visible from y. The 2-searcher moves to y aiming Fr, and Fg at z
and y, respectively, and then sweeps 8Pp(z,z) using Fr, When this is done, £ is at
zy and BELOW(z,y) is clear.

4, RAADVANCE.BY_SWEEP(z): This is symmetric to L_ADVANCE_BY_SWEEP(z),
and can be used to advance £ to ZZ.

The process of advancing £ by algorithm A is illustrated in Figure 3. The fact that the
executions of the four operations always succeed in algorithm A follows from the way we
choose ¢y, and cg, the condition a(cy) < B(cr), and the assumption that u and v satisfy the
weak 2-visibility condition. We leave details to the reader since the argument is elementary.

Note that the endpoints of £ are moved backward toward uj, and ug only when a back-
up case occurs, and hence a back-up case can cause some chords to be intersected by £
more than once. However, it turns out that a chord which is intersected by £ in a back-up
case will never be selected again as the next chord to be intersected. To see this, suppose
that £ intersects a chord, say cz € Cp, in a back-up case, and cy, is selected again as the
next chord to be intersected later. Then there must have been another back-up case which
brings the left endpoint of £ to a point below B(cr). If that back-up case is caused by a
chord cgr € Cr such that a(cz) < B(cr), then n(cr) and 7(cr) are in conflict with respect
to v. Otherwise, by an elementary analysis we can show that there exist chords ¢, € Cr
and cp € Cg such that n(c};) and n(cg) are in conflict with respect to v. In either case,
the assumption that v is conflict-free is violated. Thus there can be only O(n) back-up



cases during the sweep, and hence each chord in Cf, U Cg is intersected by £ only O(n)
times. Therefore eventually £ is advanced to v = T;oR and hence P becomes clear. This
completes the proof of Theorem 2. O

For arbitrary vertices z, y and z of P, y and z are not 2-separable from z iff y and z
belong to the same maximal connected region of P — V2(z). This condition can be tested
for any given vertices z, y and z in constant time, once we construct V2 (z) for each vertex x
and find, for each vertex y ¢ V?(z), the maximal connected region of P — V?(z) containing
y. Since V(z) can be constructed in O(n) time (n is the number of vertices of P) for each
vertex z from a triangulation of P [6], whether there exist vertices which are in conflict
with respect to u or v can be tested in O(n?) time. Since whether u and v satisfy the weak
2-visibility condition can also be tested in O(n?) time by constructing V2(z) for each vertex
z, we can test whether P satisfies the condition of Theorem 2 in O(n?) time.

Theorem 3 If P satisfies the condition of Theorem 2, then a search schedule of the 2-
searcher consisting of O(n?) elementary actions for clearing P under condition B can be
generated in O(n?logn) time. O

As a final note, the length of the schedule generated in the proof of Theorem 2 is
asymptotically worst-case optimal, since there is a polygon for which any search schedule
of the oco-searcher under condition B contains Q(n?) elementary actions.
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