7 =Y X A 26—4
(1992 3 23)

L ATVNRMOKRT HHIZ & 2 EEEHERME~OICH

SAEHR TRERER- REFER

HAL RS T SRS TR
RS T SR TR
KR AR E R

AHE T, SAoNNm ABHRBOT R COREKTI25IET 5 O(K + m + logn) RO 7V
TYXL%EX D, ST KEFEBEINARTFEOBERTHY, nitim AROKES, TibbmAK
Y UETAWHTLERAHOEE, KFE2IANILEVFORESTHS. 361, mBEOHHRNER22E
BB ERE L { O(mlogm + logn) O 7 WV TY A h %525, TITn 3EEMEOHEREN
THIMBATORESEET. TOTNTY) XARBERMONTWAT VT Y XAL W EHMTHY, BN
AEELRELTN S,

Efficient Enumeration of Grid Points in a Polygon
and its Application to Integer Programming

Naoyoshi Kanamaru* Takao Nishizeki** Tetsuo Asano***

*Department of Electorical Communications
Faculty of Engineering, Tohoku University
Sendai 980, Japan
**Department of Information Engineering
Faculty of Engineering, Tohoku University
Sendai 980, Japan
***0Osaka Electro-Communication University
Neyagawa 572, Japan

This paper presents an algorithm for enumerating all the integer-grid points in a given convex m-gon
in O(K + m+ logn) time where K is the number of such grid points and n is the dimension of the m-gon,
i.e., the shorter length of the horizontal and vertical sides of an axis-parallel rectangle enclosing the m-gon.
Furthermore the paper gives a simple algorithm which solves a two-variable integer programming problem
with m constraints in O(mlogm+logn) time where n is the dimension of a convex polygon corresponding

to the feasible solution space. This improves the best known algorithm in complexity and simplicity.

1. Introduction

In a raster graphics a figure is expressed as a set of
grid points, that is, points of integral coordinates. Given
a polygonal contour of a figure whose vertices are speci-
fied by coordinates of floating-point numbers, we wish to
find grid points contained in the polygon.® A naive algo-
rithm for the problem is to examine for each grid line the
intersection with the polygon. When the dimension of a
polygon is n, this algorithm requires Q(K +n) time where
K is the output size, that is, the number of grid points in
the polygon.

In this paper we first present an algorithm for enu-
merating all the grid points contained in an arbitrary tri-
angle in O(K + logn) time. If we are interested only in
whether there exists a grid point in a triangle, it is easy
to modify the algorithm so that it checks the existence in
O(logn) time. The algorithm together with an efficient
triangulation algorithm leads to an efficient algorithm for
enumerating all grid points contained in a polygon. We
then extend the algorithm for triangles, in particular, to
the case of convex polygons. The algorithm enumerates
all grid points in a convex m-gon in O(K + m + logn)
time.

An application to the integer programming problem
is also considered. In fact we give an algorithm which
solves a two-variable integer programming problem with
m constraints in O(mlogm +logn) time. Our algorithm
improves the existing algorithms both in complexity and
simplicity.>* It is known that the integer programming
problem with a fixed number of variables is polynomially
solvable.” In the case of two-variable, the best known one
runs in O(mlogm + mlogn) time.?

A key idea is a grid-point preserving transformation
which is similar to the well-known Euclidean algorithm
for finding the greatest common divisor of two integers.

2. Grid Points on a Line

Throughout the paper we classify lines into two types
depending on the slope. The slope m(L) of a line segment
L, (z1,y1)-(%2,¥2), is defined as follows: m(L) = (y2 —
11)/(z2—z;1). Aline L is called a type V lineif |m(L)| > 1;
otherwise, called a type H line. For a line segment L, its
horizontal and vertical dimensions wy(L) and w,(L) are
defined as follows:

wi(L) = |zz - 21} and wy (L) = [y2 — w1l
The smaller one of the horizontal and vertical dimensions
is called the dimension of a line segment.
Before proceeding to the problem of enumerating all

grid points contained in a polygon, we consider the fol-
lowing simpler problem.

[Problem 1] Given a line segment L : (z1,y1)-(z2,2)
in a grid plane, enumerate all the grid points on L.

This problem can be solved easily if its horizontal or
vertical dimension is sufficiently small. If wa(L) is small,
then the number of vertical grid lines intersecting the line
segment L is also small and hence we can check every
such grid line to enumerate all the grid points. Thus we
hereafter assume that wy(L) and w, (L) are both large.

A basic idea here is to transform a line segment into
another without losing any grid point. As seen later, a
type H line segment is transformed into a type V line
segment and vice versa. After O(logn) iterations we have
a line segment whose dimension is small enough, where n
is the dimension of a given line segment.

One may assume without loss of generality that the
slope of a given line segment 1 is positive, that is, m(L) >
0; otherwise, reverse the y-axis and consider the line seg-
ment (z1, —y1)-(z2, —y2) of positive slope. Then the above-
mentioned transformation can be represented as follows:

Ty : (2,y) = (z,y — kz) for type V, and
Ty : (z,y) = (z — ky,y) for type H,
where an integral parameter k is chosen so that
k= |m(L)] for type V, and
k= [1/m(L)] for type H.
Thus when a line segment L of positive slope is trans-
formed into a new line segment L’, the slope of L’ is non-
negative and more precisely
0<m(L)Y=m(L)—-k<1 if Lisof typeV, and
1<m(L’)=1/(1/m(L) — k) if L is of type H.
Therefore an application of the transformation T, to aline
segment of type V results in a line segment of type H and
vice versa. Figure 1 illustrates the transformations T, :
L =% L' and T} : L' == L". While the transformation is
repeated until the dimension of the resulting line segment
is sufficiently small, the type of a line segment alternates
between types V and H.

The transformation can be expressed in terms of a

matrix. Define a matrix A; for each type t as follows.

Ay = (—1k (1)) for type V, and

1 -k
Ah-—(o 1) for type H.

Then the mapping from a point (z,y) to a point (z',3’)

is expressed as
’
(v)=2(3):

The transformation matrix A, is unimodular, and has the
following integral inverse matrix A;!.

1
A'Tl:(k

A;l = ((1) ,;) for type H.

(1)) for type V, and

Yy
w,(L) L
UTU
” " T
w,(L)=w,(L") L k&h
R e ————————p ,x
wi(L") wy(L)=w,(L")

Fig. 1. Transformations T, and T},.

The following lemma is almost obvious from the defi-
nition of the transformations.

Lemma 1 If a line segment L is transformed into a line
segment L', then there is one-to-one correspondence be-
tween the grid points on L and those on L'. Furthermore,

Wy (L') L wy(L)/2
wa (L) < wa(L)/2

if L is of type V, and
if L is of type H.

Proof. Since A; is unimodular, there is one-to-one
correspondence between the grid points on L and those on
L'. We prove the remaining claim only for the case when
L is of type V (See Figure 1); the proof for the other case
is similar. Since L' is of type H,

wy(L') < wi(L') = wa(L).
Since m(L’') = m(L)—k and k > 1,
wy (L) = wy (L) — kwa(L) < wy(L) — wa(L).
Therefore
wy (L") < min{wy (L), wy (L) — ws D)} < %w.,(L)
a

We are now ready to present an algorithm for enumer-
ating all grid points on a line segment L.

Line(L)

/* L : (z1,41)-(x2,¥2) is a line segment, where the coor-
dinates are real numbers */

let ¢ be a small constant, say 1;
M := a 2x2 identity matrix with 1’s in its diagonal;
while (min(ws(L), wy(L)) > ¢) {

t := type of a line segment L;

calculate the parameter k characterizing the

transformation T3;

M:=M-ATY

apply the transformation T; to L;

let L be the resulting line segment;

} /* end of while */

for (each grid point (z’,3’) on the final line seg-
ment L)

report the coordinate (z,y)T = M - («/,y)7;

} /* end of Line() */

‘We have the following theorem.

Theorem 1 Given a line segment L of dimension n, the
algorithm Line enumerates all the grid poinis on L in
O(K +logn) time, where K is the number of those grid
points.

Proof. The correctness of the algorithm follows from
the discussions above. Lemma 1 implies that the dimen-
sion of L becomes a small constant after O(logn) iter-
ations. The inverse transformation matrix which trans-
forms the coordinate of each point on the final line seg-
ment into that on the original line segment is obtained by
multiplying the inverse transformation matrix A;? of each
transformation from the right at each iteration. Once we
get a line segment which is almost horizontal or vertical,
we can report the coordinates of all the grid points on
the final line segment after applying the inverse transfor-
mation above to those points. Thus the time required is
O(K +logn), where K is the number of grid points to be
reported. 8]

Our algorithm above is quite similar to Euclidean method.

Notice that if (21,y1) = (0,0) and both z, and y, are in-
tegers then our problem can be solved immediately by
finding the greatest common divisor of z; and ys.

3. Grid Points in a Triangle
We next consider the following problem.

[Problem 2] Given a triangle in the grid plane, enu-
merate all the grid points in the triangle.

If a triangle is so skinny that only a few grid lines have
grid points in the triangle, a naive algorithm requires time
proportional to the dimension n of the triangle, which is
sometimes too expensive. The algorithm required here
should enumerate all the grid points in O(X 4 logn) time

(a)

Fig. 2. Easy triangles.

(b)

even in the worst case, that is, with O(logn) time over-
head.

One may assume that a given triangle has a horizontal
or vertical side; otherwise, decompose the triangle into
two triangles by drawing a horizontal or vertical chord
from a vertex, and consider the two triangles separately.
We choose an axis-parallel side of a triangle arbitrarily,
and call it the parallel side of the triangle and the other
two sides the long sides.

As shown in the following lemma, one can easily solve
the problem if a given triangle of an axis-parallel side
satisfies the following (a) or (b):

(a) the triangle is rectangular; or

(b) the two long sides have slopes of different signs.
Such triangles are called easy triangles (See Figure 2).

Lemma 2 All grid points in an easy triangle can be enu-
merated in O(K + 1) time, where K is the number of the
enumeraled grid points.

Proof. We prove the lemma only for the case when
the parallel side is vertical; the proof for the other case is
similar. We sweep vertical grid lines from the parallel side
to the vertex common to the two long sides and enumerate
the grid points on the intersection of the grid line with
the triangle. This operation is repeated until the current
vertical intersection contains no grid point. Since only the
last scan line may contain no grid point in the triangle,
the algorithm runs in O(K + 1) time. o

We thus consider a non-easy triangle having a parallel
side, i.e., a triangle such that the slopes of the two long
sides have the same sign, say plus (See Figure 3). We ap-
ply to the triangle a transformation which is very similar
to one in the previous section.

[Transformation of a Triangle]

(1) Let vy, v, and vg be the three vertices of a triangle.
(2) Choose one of the two long sides arbitrarily.

(3) Calculate the transformation matrix A, for T; con-
cerning the chosen long side.

(4) Transform the three vertices into A; - v, A; - v2 and
Ag - V3.

One can observe the following lemma.

Lemma 3 There is one-to-one correspondence between
the grid points in a triangle and the grid poinis in the
triangle obtained by the transformation above.

S
rd

Fig. 3. Transformations of triangles where trimmed parts are
shaded.

If the transformed triangle is easy, then we have done.
Otherwise, we repeat the transformation. However, be-
fore applying the succeeding transformation, we trim off
an easy part from a triangle: decompose the current tri-
angle into two triangles by drawing an axis-parallel chord
from a vertex so that one of the resulting triangles is rect-
angular, as depicted in Figure 3. All the grid points in this
rectangular triangle can be easily enumerated. We hence
apply the transformation above to the other resulting tri-
angle. We repeat this operation until the triangle becomes
easy or the dimension is sufficiently small. Clearly the it-
eration is done at most O(logn) times. Therefore all the
grid points can be enumerated in O(K + logn) time.

Since there are two long sides, two different transfor-
mations are possible. However there is no much differ-
ence whichever side is chosen to determine the parameter
k characterizing the transformation. It should be noted
that if one of the two long sides is type V and the other
type H then the new triangle obtained by the transforma-
tion is necessarily easy. :

We are now ready to present an algorithm for enumer-
ating all grid points in a triangle A.

Triangle(A);

/* One may assume that A is a triangle having a parallel
side */

let ¢ be a small constant;

M := a 2x2 identity matrix with 1’s in its diagonal;

while (the dimension of A is greater than ¢){
if (Aiseasy) {
enumerate all grid points (after multiply-
ing M) in A;
return,
} /* end if ¥/
choose one long side L of A arbitrarily;
t := type of the line segment L;
if (t = V (resp. H) and the parallel side of
A is horizontal (resp. vertical)) {
trim off A vertically (resp. horizontally);
enumerate all the grid points (after multi-
plying M) in the trimmed rectangular
triangle;
let A be the resulting triangle having a
vertical (resp. horizontal) side;
} /* end if ¥/
calculate the parameter k for L;
M:=M. A7Y
apply the transformation defined by k to the
current triangle;
let A be the resulting triangle;
} /* end of while */
using a brute-force algorithm, enumerate all grid
points (after multiplying M) in the final trian-
gle A of small dimension;

} /* end of Triangle() */

We have the following theorem and corollary.

Theorem 2 Given a triangle of dimension n, all the grid
poinis in the triangle can be enumerated in O(K + logn)
time, where K is the {otal number of those grid points.

Corollary 1 Given a iriangle of dimension n, it can be
determined in O(logn) time whether there is a grid point
in the triangle.

A naive extension of the argument above is as follows.
Given a polygonal region, we first partition it into trian-
gles. Ifit is a simple m-gon, the triangulation can be done
in O(m) time.! If it has holes, the triangulation can be
done in O(mlogm) time.® This results in O(m) triangles.
So, if we apply the algorithm above for each triangle, we
can enumerate all the grid points in the polygonal region.
The time required is O(KX +mlogn) plus the time for par-
tition, where K is the total number of those grid points.

4. Grid Points in a Convex Polygon

In this section we present an algorithm for enumerat-
ing all the grid points in a convex polygon. The algorithm
is very similar to that for a triangle. As described later,
we will define an “easy” convex m’-gon for which all the
grid points can be enumerated in O(K + m’) time. We
first check whether a given convex polygon is easy. If

so, we have done. Otherwise, we trim off easy parts and
apply to the remaining part the transformation similar
to the one in the previous section. This operation is re-
peated until the remaining part is sufficiently small. The
iteration is done O(logn) times. This is a rough sketch of
the algorithm.

We shall describe the algorithm in detail. An “easy”
convex polygon is defined as follows: a convex polygon P
with a horizontal side S), is easy if there is an axis-parallel
rectangle which encloses P and has Sy, as a horizontal side.
(The two shaded regions in Figure 4 are easy polygons.)
Then we have the following lemma.

Lemma 4 All the grid poinis in a given easy conver m'-
gon P can be enumerated in O(K + m') time where K is
the total number of those grid points.

Proof. We prove the lemma only for the case where
the horizontal side S} is the upper side of the axis-parallel
rectangle enclosing P; the proof for the case of the lower
side is similar. If we sweep horizontal grid lines from up to
down and enumerate all the grid points on the intersection
of the sweep line with P until the intersection contains
no grid point, we can enumerate all the grid points in
P. Intersections of the sweep line with P are found by
walking on the boundary of P, which takes O(m') time
in total. Thus we have the lemma. o

As mentioned above, our algorithm trims off easy parts
and then apply to the remaining part the transforma-
tion described in the previous sections. Suppose that the
transformation matrix is M at some iteration. Denote by
M - P the polygon obtained by applying the transforma-
tion M to P. Then M . P is also a convex polygon. Sup-
pose that we are now going to enumerate all grid points in
the region of M - P restricted to a horizontal interval from
z =z, to = = zg; the region is denoted by M - P[z, zg].

x=x;, x=xXp

Up

H
H
H
H
H
H
H
H

Fig. 4. Partition into two easy convex polygons.

Given such a convex polygon M - P and a horizontal
interval [z, zg], we want to remove easy parts; this oper-
ation is called the horizontal trimming. Let 7,73 and 7,73
be the intersections of M - P with the vertical lines x = z,
and z = zg, respectively and assume that y(vs) < y(vs)
and y(v.) < y(vg). If the two intervals [y(vs),y(vs)]
and [y(v.), y(va)] have a nonempty intersection, the whole
M - Plzp,zR] can be partitioned into two easy convex
polygons by an arbitrary horizontal line which acrosses
the intersection (See Figure 4). Thus we now assume that
the two intervals have an empty intersection. Then one
may assume that y(v,) < y(v) < y(ve) < y(va); the other
case is similar (See Figure 5). The horizontal trimming of
M . P[zy, zg] is to partition it into three parts: the lower
part below y = y(v;), the upper part above y = y(v.)
and the middle part. Both the lower and upper parts are
easy convex polygons. We transform the middle part into
a new convex polygon P’ by a horizontal transformation
Th. P’ is a region of a convex polygon restricted to a
vertical interval [y(v;), y(vc)]-

In addition to a procedure to enumerate all the grid
points in a convex polygon restricted to a horizontal in-
terval, we thus need one more procedure to enumerate all
the grid points in a convex polygon restricted to a verti-
cal interval. These procedures will be named horizontal-
trim() and vertical-trim(). We will describe only the pro-
cedure horizontal-trim() in detail since vertical-trim() is
just symmetric to it.

We are now ready to present an algorithm for enumer-
ating all the grid points in a convex polygon P.

Polygon(P)
/* P is a convex polygon */

{

find the leftmost and rightmost vertices v; and v,
of P;

Fig. 5. The horizontal trimming of M - Pz, zg).

if (y(w) <ylv)) M= ((]i 2), else M :=

1 0.
0 -1)
horizontal-trim(z(w), z(v-), M, P);
} /* end of Polygon() */

horizontal-trim{zr,zgr, M, P)

{
if (zr — zr, is sufficiently small) {
enumerate all the grid points by a brute-force
algorithm;
exit;
} /*endif ¥/
let 7375 and 7,74 be the intersections of M - P with
z =z and z = z;
let L be the shortest line segment connecting 7,0y
and T;7g;
if (Lisof type V) {
M = A, - M where A, is the matrix deter-
mined by L;
update 7,7 and T;04 and L;
} /* end if ¥/
if (L is horizontal (i.e. the intervals [y(va), y(vs)]
and [y(v.), y(va)] intersect as shown in Figure

partition M - Pz, zg] into two easy convex
polygons;
enumerate all the grid points in each polygon;
exit;
} /* end if ¥/
by the horizontal trimming, partition it into three
parts: the lower part P;, the middle part P,
and the upper part P (See Figure 5);
enumerate all the grid points in the two easy con-
vex polygons P; and Ps;

M := A, - M where A is the matrix determined
by L;

enumerate all the grid points in P, by calling vertical-

trim(y(v), y(ve), M, P);
} /* end of horizontal-trim() */

We have the following theorem and corollary.

Theorem 3 The algorithm above enumerates all the grid
poinis in a given conver m-gon P in O(K + m + logn)
time where K is the total number of those grid points and
n is the dimension of a reclangle enclosing P.

Proof. The correctness of the algorithm is obvious
from the discussion above. We therefore concentrate our-
selves on the analysis of the time complexity. By Lemma
1, we have

wy(L') < wa(L)/2
wy(L') < wy(L)/2

in procedure horizontal-trim(), and
in procedure vertical-trim()

where L’ is the new line segment after the trimming and
transformation. Therefore one can see that all the grid
points are enumerated after performing the trimming and
transformation O(log n) times. Since one execution of the
transformation can be done in constant time, all the trans-
formations can be done in O(logn) time in total. One can
find v,, v, v. and vg by scanning edges of the boundary
of P. This operation can be done in O(m +logn) time in
total since every edge is visited at most once throughout
the execution of the algorithm. Clearly all trimmed easy
polygons total up to O(m + logn) sides. Therefore the
grid points in all easy convex polygons can be enumer-
ated in O(X + m+logn) time in total by Lemma 4. Thus
the algorithm runs in O(X + m + logn) time. o

Corollary 2 Given a convez m-gon of dimension n, it
can be determined in O(m + logm) time whether there is
a grid point in the polygon.

5. Application to Integer Programming

The technique above can be applied to a two-variable
integer programming problem. Given m constraints with
two variables, our algorithm finds a solution or determines
whether there is no solution in O(mlogm + logn) time,
where n is the dimension of a rectangle enclosing the con-
vex polygon corresponding to the feasible solution space.
This is an improvement over the best known algorithm
of complexity O(mlogm + mlogn) by S. D. Feit.2 One
important distinction from the previous algorithm is that
in our model we do not assume that coefficients of con-
straints are integers.

The problem addressed here is to
Find integers z and y maximizing the objective function

201Z + agzy
subject to the constraints

8112 + a1y > ¢y,

4212 + a2y > ¢,

@m1Z + Gm2Y = Cm.

There are no restrictions on the coefficients ai1,aiz, -,
@m1,8m2,C1," - ,Cm, that is, there are no sign restrictions or
they may be even floating-point numbers. But ag; and ag;
have to be integers. Notice that in (Ref. 4) all coefficients
had to be non-negative integers and in (Ref. 2) they had
to be integers since they are based on a procedure for
calculating the greatest common divisor of two integers.

It is well known that the problem of the form above
can be transformed into a standard form to find a grid
point satisfying all constraints whose z-coordinate is min-
imal, as follows.?% Let g be the (positive) greatest com-
mon divisor of the coefficients ag;, ap2 of the objective
function. Then there are integers r and s with

ragy+sa02 = ¢, |r| < |aoa], |s| < |aos]-

Hence the change of coordinates

(G)=(= =) (%)

v) \-s —an/g }\ ¥

transforms the objective function to —gz’. Thus the prob-
lem of the form above can be transformed into a standard
form in O(m + logn') time where n’ = max(ag;, ao2).

It is also known that the constraints can be repre-
sented in the form of a convex polygon. Of course, it
could correspond to an empty set (in this case there is
no solution) or an open set (in this case z values may
not be bounded). In this paper we assume that the con-
straints specify a closed convex polygon of at most m
sides. The polygon can be found in O(mlogm) time?
Thus a two-variable integer programming problem is re-
duced to a problem of finding a grid point of minimal
z-coordinate in a given convex polygon.

There may exist two or more grid points of the same
minimal z-coordinate in a convex polygon. The grid point
of minimal y-coordinate among them is called the zmin-
ymin grid point in the polygon. The ymin-zmin grid point
is similarly defined. We show that one can find the xmin-
ymin grid point in a given convex polygon by an algorithm
similar to the algorithm Polygon() in the previous sec-
tion.

We have the following lemma.

Lemma 5 Given an easy convez m’-gon P, one can ei-
ther find the zmin-ymin grid point in P or know that no
grid point is conlained in P in O(m') time.

Proof. We prove the lemma only for the case where
the horizontal side S}, is the upper side of the axis-parallel
rectangle enclosing P; the proof for the case of the lower
side is similar. We first find the intersection of the hori-
zontal grid line y = |y(Ss)] with P in O(m') time, where
y(Sh) is the y-coordinate of a horizontal side Sj. We can
then find a grid point p* of minimal z-coordinate on the
horizontal intersection in constant time. We next find the
intersection of the vertical grid line z = z(p*) with P in
O(m') time, and finally find the grid point of minimal y-
coordinate on the vertical intersection in constant time.
It is the one we wish to find. If the horizontal intersection
above does not have any grid point, then no grid point is
contained in the m’-gon at all.]

Suppose that we are now going to find the xmin-ymin
grid point in a convex polygon restricted to a horizon-
tal interval. We first partition the polygon into three
parts, the lower, middle and upper parts, next find the
xmin-ymin grid point in each of them, and finally return
the xmin-ymin grid point among the three found in the
three parts or conclude no grid point exists in the poly-
gon. Since the lower and upper parts are easy convex
polygons, one can easily find the xmin-ymin grid points
in the two parts. Thus we shall show how to find the
xmin-ymin grid point in the middle part.

The following lemma implies that the xmin-ymin grid
point and the ymin-xmin grid point in the middle part
above coincide.

Lemma 6 Let P be a convez polygon, and let v be a ver-
tez of P. If there is an azis-parallel rectangle which en-
closes P and whose lower left vertez is v, then the zmin-
ymin grid point in P coincides with the ymin-zmin grid
point in P.

Proof. Let v; be the xmin-ymin grid point in P and
vy be the ymin-xmin grid point in P. By the definition
we have 2(v) < z(v1) < 2(v2) and y(v) < Y(v2) < y(w0)-
Since v,v; and vy are all in the convex polygon P, the
grid point (z(v1),y(v2)) also must be in P and hence v;
and v must coincide. u}

We transform the middle part into a new convex poly-
gon P’ by a horizontal transformation T},. Then the ymin-
xmin grid point in P’ corresponds to the ymin-xmin grid
point in the middle part since T}, preserves y-coordinate.
Thus the problem of finding the xmin-ymin grid point in
the middle part reduces to that of finding the ymin-xmin
grid point in P/. We vertically partition P’ into three
parts. One can easily find the ymin-xmin grid points in
the right and left parts. By vertically transforming the
middle part of P’, the problem of finding the ymin-xmin
grid point in the part reduces to that of finding the xmin-
ymin grid point in the resulting region which is a convex
polygon restricted to a horizontal interval.

Thus, by an algorithm similar to Polygon(), one can
either find the xmin-ymin grid point in a convex m-gon P
or decide that no grid point is contained in P in O(m +
log n) time where n is the dimension of a rectangle enclos-
ing P.

We can now conclude that a two-variable integer pro-
gramming problem with m constraints can be solved in
O(mlog m+logn-+logn') time where n’ = max(ao1, ao2).

6. Conclusions

In this paper we have presented an efficient algorithm
for enumerating all the grid points contained in an arbi-
trary convex m-gon in O(K + m + logn) time where K
is the output size and n is the dimension of the polygon.

The basic idea is a transformation preserving grid points.
Based on the transformation we have also presented an ef-
ficient algorithm for a two-variable integer programming
problem. Its time complexity is O(mlogm + logn) time
for m constraint problems, which is an improvement over
the existing best algorithm of time complexity O(m log m+
mlogn). We are now trying to extend the result above
to higher dimensional cases.

Lee and Chung have recently given an approximation
algorithm for the following problem which is related to
the grid point enumeration problem: find a minimal set
of parallel straight lines with equal spacing to hit all grid
points in a given convex polygon.’

Acknowledgments

The authors would like to thank D. T. Lee for his
fruitful comments on the first part of this paper. The
third author would like to thank Kurt Mehlhorn for dis-
cussion on the integer programming part. This work was
supported in part by the Grants in Aid for Scientific Re-
search of the Ministry of Education, Science and Culture
of Japan.

References

1. B. Chazelle, “Triangulating a simple polygon in linear
time,” Proc. J1st Symp. of Foundation of Computer
Science (1990) 220-230.

2. S. D. Feit, “A fast algorithm for the two-variable integer
programming problem,” J. of ACM 31-1 (1984) 99-113.

3. M. R. Garey, D. S. Johnson, F. P. Preparata and R. E.
Tarjan, “Triangulating a simple polygon,” Inf. Process.
Letters 7 (1978) 175-180.

4. R. Kannan, “A polynomial algorithm for the two-
variable integer programming problem,” J. of ACM 27-
1 (1980) 118-122.

5. D. T. Lee, “Shading of regions on vector display de-
vices,” Computer Graphics 15-3 (1981) 37—44.

6. H. S. Lee and R. C. Chung, “On hitting grid points in
a convex polygon with straight lines,” Proc. Sec. Int.
Symp. on Algorithms, Lect. Not. in Compt. Sci. 557
(Springer-Verlag, Dec. 1991) 176-189.

7. H. W. Lenstra, Jr.,“Integer programming with a fixed
number of variables,” Mathematics of Operation Re-
search 8 (1983) 538-548.

8. F. P. Preparata and M. I. Shamos, Computational Ge-
ometry, (Springer-Verlag, 1985).

9. H. E. Scarf,“Production sets with indivisibilities, Part
I1. The case of two activities,” Econometrica 49-2 (1981)
395-423.

