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The planar point location problem is one of the most fundamental problems in
computational geometry; and stated as follows: Given a straight line planar graph
(subdivision) with n vertices and an arbitrary query point (), determine which
region contains (). Many algorithms have been proposed, and some of them are
known to be theoretically optimal ( O(log n) search time, O(n) space and O(n log n)
preprocessing time). In this paper, we implement several representative algorithms
in C, and investigate their practical efficiencies by computational experiments on
Voronoi diagrams with 21 — 217 vertices.



1 Introduction

The point location problem is one of the most
fundamental problems in computational geome-
try, and stated as follows: Given a straight-line
planar graph G with n vertices and a query point
Q, determine which region of G contains @ (Fig.
1). An algorithm for this problem is generally
characterized in terms of the following three at-
tributes:

s Preprocessing time — the time required
to construct a search structure.

e Space — the storage used for constructing
and representing the search structure.

¢ Search time — the time required to locate
a query point.

The first efficient algorithm was proposed
by Dobkin and Lipton [2]. Their algorithm
has O(logn) search time, O(n?) space, and
O(n?logn) preprocessing time. Since then, sev-
eral algorithms have been proposed, and some
are optimal with respect to the worst-case com-
plexity [5, 6, 8, 11]. Table 1 shows the theoretical
efficiencies of representative algorithms.

From the practical point of view, Edahiro et
al. [3] proposed an algorithm based on buck-
eting techniques and investigated its practical
efficiency by comparing with the efficiencies of
several then known algorithms (Kirkpatrick [6],
Lee-Preparata [7], and Preparata [10] ). They
claimed that their bucket algorithm was practi-
cally the most efficient among the tested algo-
rithms. Since then, however, two new theoret-
ically optimal algorithms have been proposed:
one is by Edelsbrunner, Guibas and Stolfi [5]
improving Lee-Preparata’s algorithm, and the
other is by Sarnak-Tarjan [11] using persistent
search tree. Thus, it might be interesting to ex-
amine practical efficiencies of these two new op-
timal algorithms.

In this paper, we examine the algorithms
of Edelsbrunner et al. [5] and Sarnak-Tarjan
[11], by comparing with Bucket Method (3] and
Lee-Preparata [7]. We implement these four
algorithms in C, and investigate their practi-
cal efficiencies by computational experiments on
Voronoi diagrams with 210 — 217 vertices. By
combining this result with that of Edahiro et
al. [3], we can compare all algorithms in Ta-
ble 1 except Dobkin-Lipton [2], Shamos [12] and
Lipton-Tarjan [8]. Note that, Dobkin-Lipton

Table 1. Theoretical efficiencies of the representative

algorithms

Algorithm Search | Space | Prep.
Dobkin-Lipton [2] log n n? | n?logn
Shamos [12] log n n? n?
Lee-Preparata (7] (log n)? n nlogn
Lipton-Tarjan [8} logn n nlogn
Preparata [10] logn | nlogn | nlogn
Kirkpatrick {6] logn n nlogn
Edelsbrunner et al.[5] | logn n nlogn
Sarnak-Tarjan [11] logn n nlogn
Bucket Method {3] n n/n | nyn

— Average — 1 n n
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Fig. 1. Graph G and a query point Q
(Q is contained in region No.4)

was improved by Shamos, and Shamos was im-
proved by Preparata [3]. As to Lipton-Tarjan,
it is extremely complicated and far from practi-
cal. Therefore, we believe these three algorithms
could be omitted.

2 Outlines of the Algorithms

In this section we outline the algorithms by Lee-
Preparata (7], Edelsbrunner-Guibas-Stolfi [5],
Sarnak-Tarjan [11], and Bucket Method [3].

Let V = {v1,v2,-*,vn} be the vertex set of
a straight-line planar graph G and (z:,y:) a pair
of coordinates of v; (¢ = 1,2,-- -, n). Throughout
this section we assume y; < y2 < -+ < ¥n, that
is, vertices are sorted in their y coordinates by
O(nlogn) time preprocessing. All illustrations
in this section are based on the graph in Fig. 1.



2.1 Lee-Preparata [7]

A monotone chain of the graph G is a path from
the lowermost vertex v; to the uppermost vertex
vn, each edge of which is directed upward. In this
algorithm, the edges of the graph G are decom-
posed.into a set of monotone chains that are or-
dered by the left-right relation (Fig. 2(a)). G can
be decomposed in this way if and only if G is reg-
ular, that is, every vertex is an initial point of an
edge and a terminal point of another edge except
the lowermost and uppermost vertices. Hence, if
G is not regular, G is to be regularized by the
plane-sweep algorithm in O(nlogn) time in the
preprocessing step.

This algorithm locates a query point by finding
a chain in the set that is adjacent to the point (a
chain is adjacent to a point if it contains an edge
incident to a region containing the point). Such
a chain can be found by executing a sequence of
binary searches among the set of chains. (Note
that the chains are ordered by the left-right re-
lation.) Each binary search solves a subproblem
to determine which side of given monotone chain
has the point. This can be done in O(log n) time.
Furthermore, if the set of chains are stored in a
balanced search tree, there are O(logn) binary
searches in the sequence. Thus, the search time
required by this algorithm is O((log n)?).

However, if we store all edges of each chain,
then space complexity will become O(n?). For
O(n) space complexity, we store each edge
in only one chain (Fig. 2(b)). The follow-
ing preprocessing constructs a search structure
of O(n) space supporting the above mentioned
O((log n)?) time search.

Step 1. Make G regular (the resulting graph
will also be denoted by G).

Step 2. Decompose G into a set of monotone
chains ordered by left-right relation. This
can be done by assigning each edge e of G
the leftmost chain /(e) and the rightmost
chain r(e) containing e (thus, exactly those
chains from I(e) to r(e) contain e).

Step 3. Construct a balanced binary search tree
T in which each node 7 is one-to-one corre-
sponding to chain c¢(t) in accordance with
left-right relation. Each edge e of G is
stored in exactly one node ¢ such that ¢(t) €
[I(e),7(e)] and there is no ancestor t’' of ¢
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with ¢(t’') € [i(e),7(e)]. E(t) denotes the set
of edges stored in node t of T'.

Step 4. For each E(t), construct a balanced bi-
nary search tree T'(t) of E(t) based on the y
coordinates of edges.

Note that Steps 1 and 3 require O(nlog n) time
(Steps 2 and 4 require O(n) time). Since each
edge is stored in only one node, E(t) does not
exactly correspond to chain ¢(¢). E(t)is a subset
of ¢(t), and consists of a set of subchains in ¢(t)
and gaps. We will not distinguish such a chain
from a usual chain.

2.2 Edelsbrunner-Guibas-Stolfi [5]

This algorithm is an improvement of Lee-
Preparata, and attains O(logn) search time.
From the chains stored in all the nodes of T in
Lee-Preparata, this algorithm obtains a new set
of chains so that (1) once a point has been dis-
criminated against a chain, it can be discrimi-
nated against a child of that chain with constant
extra effort, and (2) the overall storage only dou-
bles (so the space is O(n)).

Specifically, for each leaf ¢, we set L(t) = E(t),
and for each inner node ¢, we denote by lc(t) its
left child and by re(t) its right child. By travers-
ing nodes t of T in post-order, new vertices are
introduced as follows: add new vertices to E(t)
by choosing one from every two consecutive ver-
tices in L(le(t)) and L(rc(t)) and obtain L(t).
Thus an edge or gap in L(t) can have a point
in common with at most two edges or gaps in
L(lc(t)) and in L(rc(2)), and (1) is attained. (2)
is also attained which can be easily shown by an
elemental calculation. This linked structure L(t)
is called a layered dag (Fig. 3). Thus the pre-
processing to construct above mentioned search
structure can be summarized as {ollows: (Steps
1 to 3 are the same as in Lee-Preparata)

Step 4. For each E(t), construct L(t), in post-
order of nodes t in T. For the root chain
make a balanced binary search tree.

Note that Step 4 can be done in O(n) time.
With this structure, search is done as follows:
“First find an edge that contains the y coordinate
of a query point @ in the root chain by binary
search, and determine in which side Q is. This
can be done in O(logn) time. Next move to a
left or right child chain appropriately, and find
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Fig. 4. Sarnak-Tarjan (A Slab decomposition)

an edge in the current (child) chain that contains
the y coordinate of @ by checking (at most two)
edges having a point in common with the edge
found in the previous (parent) chain and do this
recursively until reaching a leaf. This can also
be done in O(log n) time.”

2.3 Sarnak-Tarjan [11]

This algorithm uses Slab Method proposed by
Dobkin-Lipton [2] and Shamos [12]. Slab method
is described as follows: “Draw a horizontal line
through each vertex of the planar graph. This
splits the plane into horizontal slabs. The edges
of the graph intersecting a slab are totally or-
dered, from the left to the right of the slab. As-
sociate with each edge its rightside region. Now
it is possible to locate a query point with two
binary searches: the first, on the y coordinate,
locates the slab containing the point; the sec-
ond, on the edges intersecting the slab, locates
the nearest edge lying to the left of the point,
and hence determines the region containing the
point.” Sarnak-Tarjan’s algorithm uses a persis-
tent search tree as a data structure. - A persis-
tent search tree differs from an ordinary search
tree in that after an insertion or deletion, the
old version of the tree can still be accessed. The
persistent search tree supports an update opera-
tion in O(logn) time and an access operation in
O(logn) time, and requires O(n) space.

For a planar graph, a persistent search tree is
constructed based on the plane-sweep method:
“A horizontal scan-line moving upwards stops at
each vertex v of the graph and an edge having v
as its upper endpoint is deleted from the persis-
tent search tree and an edge having v as its lower
endpoint is inserted into the persistent search



tree.” (Fig. 4)

As described above, search is : first find the
slab containing a query point, and the second,
find the edge lying just to the left of the query
point. Thus, for a planar graph of n vertices, the
preprocessing time to build the data structure
is O(nlogn), the space is O(n), and the search
time is O(logn). '

2.4 Bucket Method [3]

Consider a frame R including a given planar
graph G. For simplicity, the frame is restricted
to a rectangle with sides parallel to the axis. The
frame R is partitioned into ny X nycells of equal
size called buckets by n, — 1 horizontal lines and
ny—1 vertical lines. A bucket that is ¢th {rom the
left and jth from the bottom is denoted by Bjj,
and the subgraph of G cut out by B;; is denoted

In the preprocessing, construct data structures
for respective buckets. The data structure for
bucket B;; consists of Nij, Hi;, Vij, and Fij de-
fined as follows:

N;; : the list of vertices of G!; sorted by their y
coordinates,

H;; : the set of edges of Gi; intersecting the
upper horizontal line of B;;,

i ¢ the list of edges of G’;]- having intersections
with the left vertical line of B;; and sorted
by the y coordinates of intersections,

F; : avariable that indicates the region involv-
ing the upper left corner of Bj;.

We can find a bucket B;; containing a query
point in constant time. For the query point Q in
B;;, compute

5= Hi; & Vi5(Q) ® Nij(Q) ® Viyr;(Q).

Here, V;;(Q) denotes the set of edges in V;; hav-
ing intersections (with the left vertical line of
B;;) lying above Q. N;;(Q) denotes the set of
vertices in N;; lying above Q. A @& B means
(A~ B)U (B — A). If Vi;(Q) # 0 then set f
be the lower region of the lowest edge of V;;(Q),
else set f = Fj;.

If the query point Q lies to the left of the left-
most edge of 5, we locate ) in the region f.
Otherwise, we locate @ in the region lying to the
right of rightmost edge among those in the left
of Q.

This algorithm runs in time proportional to

the size of the planar subgraph GY;, so that the
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(a) Bucket partition of G
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Fig. 5. Bucket Method

search time is O(1) in the average case if we
choose n,, and n, appropriately, and O(n) in the
worst case.

3 Computational Experiments

In this section we jnvestigate, through compu-
tational experiments, the practical efficiencies of
the algorithms outlined in the previous section.

. 3.1 Design of Computational

Experiments

We have examined the following algorithms in C
on NEC EWS$4800/220.

(1) Lee-Preparata [7],

(2) Edelsbrunner-Guibas-Stolfi [5],
(3) Sarnak-Tarjan [11],

(4) Bucket Method [3].

We tested the algorithms using the Voronoi
diagrams with 210 — 217 vertices. The maximum
size is 2° times larger than that of Edahiro et al.
[3]. We used the Voronoi diagrams whose gener-
ators are uniformly distributed in unit square[9)].
Edahiro et al. [3] have examined algorithms us-
ing four types of input graphs including Voronoi



diagrams. However, there have been no distin-
gushed differences among them. Therefore, here,
we examine the algorithms using only Voronoi
diagrams. The search time is measured as the
average of those for query points.

3.2 Computational Results and
Estimation of the Algorithms

We now show computational results of the exper-
iments designed as outlined above, and evaluate
the practical efficiencies of the implemented al-
gorithms. Fig. 6 indicates search time, Fig. 7 in-
dicates space, and Fig. 8 indicates preprocessing
time. As is seen in the figures, it is observed that
all the algorithms realize the asymptotic com-
plexities shown in Table 1.

For search time, as is seen in Fig. 6, Bucket
Method is the best, and Edelsbrunner et al. fol-
lows.

For space, as is seen in Fig. 7, Lee-Preparata is
best, and Bucket Method is slightly worse than
Lee-Preparata.

For preprocessing time, as is seen in Fig. 8,
Bucket Method is the best. But it should be
pointed out that the others are implemented with
many subroutines for preprocessing step. Since
Voronoi diagrams are regular, we do not have to
regularize them, but we do so because of the com-
parison with other algorithms. In fact, almost all
preprocessing time is consumed in the regular-
ization step in Lee-Preparata and in Edelsbrun-
ner et al. (Note that Lee-Preparata and Edels-
brunner et al. have to regularize the given graphs
first.)

Now we estimate the efficiency of each algo-
rithm. Lee-Preparata is the best for space, but
it has a serious fault in O((logn)?) search time.
Edelsbrunner et al. is slightly worse than Lee-
Preparata in preprocessing time, and needs twice
as much space as Lee-Preparata, but search time
is greatly improved. Compared with Edelsbrun-
ner et al., Sarnak-Tarjan is slightly worse as to
search time. As to space, it is worse. But as to
perprocessing time it is better than Edelsbrun-
ner et al. Except space, Bucket Method is the
best. Its search time and preprocessing time at-
tain O(1) and O(n), respectively.

3.3 Remarks

(1) Bucket Method is simple and its program
is very short (about 350 steps), as compared with
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Lee-Preparata (about 700 steps), Edelsbrunner
et al. (about 1000 steps), and Sarnak-Tarjan
(about 1000 steps).

(2) Since a given Voronoi diagram is gen-
erated by randomly distributed generators, the
Voronoi diagram can be thought as a kind of a
random plane graph, although all its regions are
convex. Thus Bucket Method works in expected
complexity. Other algorithms run in worst com-
plexity shown in Table 1.

(8) The preprocessing times of Lee-Preparata,
Edelsbrunner et al. and Sarnak-Tarjan contain
O(nlogn) sorting time to put vertices in order in
their y coordinates. Moreover, the preprocessing
times of Lee-Preparata and Edelsbrunner et al.
contain regularization time. As mentioned be-
fore, since Voronoi diagrams are regular, we do
not have to regularize them, but we do so because
of the comparison with other algorithms. Fig. 9
shows preprocessing time without regularization
in these two algorithms. From this, we can ob-
serve that in preprocessing, Edelsbrunner et al.
is slightly worse than Bucket Method and Lee-
Preparata is almost the same as Bucket Method.

(4) Edahiro et al. [3] used Heap Sort for sort-
ing the y coordinates of vertices in the prepro-
cessing, while we use Quick Sort here, to speed
up three algorithms (Lee-Preparata, Edelsbrun-
ner et al. and Sarnak-Tarjan). We also measured
preprocessing time for these three algorithms us-
ing Heap Sort. However, Heap Sort was observed
to take almost twice as much time as Quick Sort.
Thus, Lee-Preparata with Heap Sorl becomes al-
most always worst than Bucket Method even if
regularization time is deleted. (Fig. 9.)

(5) Only bucket method needs space for
search, because after receiving a query point Q,
it makes search data structure in the bucket con-
taining (). Thus, space for search should be
taken into account.

(6) We implement each algorithm by divid-
ing it into few modules according to its function.
But Bucket Method in Edahiro et al. [3] is imple-
mented with only one module to get better per-
formance. (They implemented other algorithms
in Edahiro et al. [3] by dividing into modules.)

(7) The persistent search tree used in Sarnak-
Tarjan [11] is a versatile data structure and has
many applications. In fact, the point location
is one application. Another application is the
orthogonal segment intersection search problem:
Given a set .5 of n horizontal line segments and a
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query vertical line segment L, find the set of seg-
ments in S intersecting L. This problem can be
solved optimally in O(k+logn) search time with
O(n) space and O(logn) preprocessing time, if
the persistent search tree is used. Here k is the
number of segments in S intersecting L. An-
other optimal algorithm was given by Chazelle
[1]. Edahiro et al. [4] proposed an algorithm with
buckets and implemented four representative al-
gorithms in FORTRAN and investigated their
practical efficiencies. However, Sarnak-Tarjan’s
algorithm was not examined. Thus, it might
be interesting to examine its practical efficiency
comparing with those of the algorithms exam-
ined in Edahiro et al. [4]. Persistent search tree
used here in Sarnak-Tarjan is an improvement of
ephemeral red-black tree. To make a tree persis-
tent, we prepare five extra fields for each node:
a third pointer called slot (left and right are first
and second pointers), and times of left, right, slot
and the node created. When attempting to add a
node or change a pointer, if slot being used, copy
the node, and do recursively to its parent. If slot
is empty, assign left or right pointer appropri-
ately to the slot. Amortized over a sequence of
updates, only O(1) nodes are copied per update,
implying an O(n) space bound for this persistent
tree.

In the preprocessing step of Sarnak-Tarjan, to
make search structure in each slab, when the



scan line makes a stop at the bottom point of
the slab, we must delete only edges that come
to this point, and insert edges that come out of
this point. Since inserted edges will be in the
same position, and pairs can be made between
inserted edges and deleted edges, and, for each
pair of an inserted edge and a deleted edge, copy
the node containing the deleted edge (and thus
the new node now containing the inserted edge),
instead of doing delete and insert actually.

(8) In Bucket Method, the partition numbers
ng, ny are defined by using two positive param-
eters a, and oy:

ngy = max{1, lazvn]}, ny = max{l, leyv/n}}
Then the number of buckets becomes O(n), and
consequently, the number of vertices in a bucket
becomes O(1) on the average. But the number
of edges in the bucket does not necessarily be-
come O(1), because bucket partition lines divide
an edge into several segments. To make Bucket
Method more efficient, «; and oy are chosen to
satisfy: Gn oy = Safza s Sylva
where S; and S, are the total horizontal length
and total vertical length of the segments respec-
tively, and z4 and y4 are the horizontal width
and vertical width of the given graph. We imple-
mented the Bucket Method with a = |/ozay =

ve/n (e is the number of edges).

4 Conclusions

By combining the results in this paper and those
in Edahiro et al. [3] we have the following con-
clusions. Bucket Method is the most efficient in
many practical applications, although it has a
weak point in the worst case complexity. Among
the theoretically efficient algorithms including
optimal ones, Edelsbrunner et al. and Sarnak-
Tarjan are quite efficient as well as robust and
thus work quite well in many practical applica-
tions. Especially, if the given graph is known to
be regular in advance, then Edelsbrunner et al.
is almost comparable with Bucket Method.

Thus, we would like to recommend to use
Bucket Method in usual applications if given in-
put graphs are not far from uniform, and Edels-
brunner et al. otherwise.
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