An Algorithm of Constructing a Bipartite Graph from a Bipartite Graphical Sequence Set

高橋 昌也 (愛知技術短期大学電子工学科)

Masaya Takahashi (Department of Electronic Engineering, Aichi College of Technology)

グラフ G=(V, E) が2組(多重)グラフであるとは、次の(1)~(3)が成り立つような頂点集合 V が存在することである。

- (1) $V = V_1 \cup V_2$, (2) $V_1 \cap V_2 = \Phi$,
- (3) **任意の辺 e=(u,v)∈E について、u∈∇₁ ならば v∈∇₂ が成り立つ。**

本稿では、2つの次数列 s_1 : d_{11} , d_{12} , …, d_{1p} , s_2 : d_{21} , d_{22} , …, d_{2q} と2つの頂点集合 V_1 = { v_{11} , v_{12} , …, v_{1p} }, V_2 = { v_{21} , v_{22} , …, v_{2q} } が与えられた時、次の(1)~(3)を行うアルゴリズムを提案する。

- (1) $S=(s_1, s_2)$ が2組(多重)グラフ的次数列集合であるか否かを判定する。
- (2) S がそうならば、 $1 \le j \le p$ ($1 \le j \le q$) なる j について、 v_{1j} (v_{2j}) に入っている辺の数が d_{1j} (d_{2j}) であるような2組(多重)グラフを構成する。
 - (3) 上記の(1)(2)を時間複雑度

```
∫ ○ (|V|+|E|)→・・・ 2組多重グラフの場合○ (pq+|V|)・・・・ 2組グラフの場合
```

で行う。但し、 |V|=p+q 、 $|E|=\Sigma^p_{j=1}d_{1j}$ である。

For a graph G = (V, E), G is called a bipartite (multi) graph if there is a set of vertices V such that the following (1) through (3) are satisfied:

- (1) $V = V_1 \cup V_2$, (2) $V_1 \cap V_2 = \Phi$, and
- (3) For any edge $e\!=\!(u,v)\!\in\!E$, if $u\!\in\!V_1$ then $v\!\in\!V_2$ are satisfied.

In this paper, when two degree sequences s_1 : d_{11} , d_{12} , \cdots , d_{1p} , s_2 : d_{21} , d_{22} , \cdots , d_{2q} , and two sets of vertices $V_1 = \{v_{11}, v_{12}, \cdots, v_{1p}\}$, $V_2 = \{v_{21}, v_{22}, \cdots, v_{2q}\}$, are given, propose an algorithm which performs the following (1) through (3):

- (1) Decide that whether a given non-negative integer sequence set $S = (s_1, s_2)$ is a degree sequence set of a bipartite (multi) graph.
- (2) If $S=(s_1,s_2)$ is a degree sequence set of a bipartite (multi) graph then construct a bipartite (multi) graph $G=(V_1\cup V_2,\,E)$ such that $V_i=\{v_{11},\,v_{12},\,\cdots,\,v_{1p}\}$, such that $V_2=\{v_{21},\,v_{22},\,\cdots,\,v_{2q}\}$ and such that, for every $j,\,l\!\leq\! j\!\leq\! p\,(1\!\leq\! j\!\leq\! q,\,$ respectively), the degree of v_{1j} is d_{1j} (v_{2j} is d_{2j}).
 - (3) The time complexity of above (1) through (2) is
 - \int O(|V|+|E|) for bipartite multigraph construction,
 - O(pq+|V|) for bipartite graph construction,

where |V| = p+q and $|E| = \sum_{j=1}^{p} d_{1j}$.

In the following sections, $S = (s_1, s_2)$ is called a bipartite (multi) graphical sequence set if S is a degree sequence set of a bipartite (multi) graph.

1. Introduction

The subject of this paper is the problem of finding an algorithm of constructing a bipartite (multi) graph from a bipartite (multi) graphical sequence set: "For two given non-negative integer sequences s_1 : d_{11} , d_{12} ,, d_{1p} ($p \ge 1$ and $\sum_{j=1}^p d_{1j} \ge 1$), and s_2 : d_{21} , d_{22} ,, d_{2q} ($q \ge 1$ and $\sum_{j=1}^q d_{2j} \ge 1$), decide that whether $S = (s_1, s_2)$ is a bipartite (multi) graphical sequence set. If S is so then construct a bipartite (multi) graph $G = (V_1 \cup V_2, E)$ from it ", where $V_1 = \{v_{11}, v_{12}, \dots, v_{1p}\}$, $V_2 = \{v_{21}, v_{22}, \dots, v_{2q}\}$ and, for every j, $1 \le j \le p$ ($1 \le j \le q$, respectively), the degree of v_{1j} is d_{1j} (v_{2j} is d_{2j}).

In this paper, show that the bipartite multigraph construction problem (BMC-problem, for short) can be solved in linear time, and that the bipartite graph construction problem (BC-problem, for short) can be solved in polynomial time.

The problem of finding an algorithm of constructing a (multi) graph from a (multi) graphical sequence, is solved in [1][2][3][5]. In them, a polynomial time algorithm has been given by Havel and Hakimi.

In this paper, an O (|V|+|E|) algorithm of solving the BMC-problem and an O (pq+|V|) algorithm of solving the BC-problem are given, where |V|=p+q and |E|= $\sum_{j=1}^p d_{1j}$. In the following sections, the following (1) through (2) will be discussed:

- (1) Show a condition C such that a non-negative integer sequence set $S=(s_1,s_2)$ is a bipartite (multi) graphical sequence set if and only if C holds, where $s_1:d_{11},d_{12},\cdots,d_{1p}$, and $s_2:d_{21},d_{22},\cdots,d_{2q}$.
- (2) Propose an algorithm satisfying the following (i) through (iii) (i.e., algorithm of solving the BMC-problem and the BC-problem):
- (i) Decide that whether a given non-negative integer sequence set $S=(s_1,\,s_2)$ is a bipartite (multi) graphical sequence set.
- (i i) If $S=(s_1,s_2)$ is a bipartite (multi) graphical sequence set then construct a bipartite (multi) graph $G=(V_1 \cup V_2, E)$ such that $V_1=\{v_{11}, v_{12}, \cdots, v_{1p}\}$, such that $V_2=\{v_{21}, v_{22}, \cdots, v_{2q}\}$ and such that, for every j, $1 \le j \le p$ ($1 \le j \le q$, respectively), the degree of v_{1j} is d_{1j} (v_{2j} is d_{2j}).

2. Preliminaries

A graph G=(V, E) consists of a finite set of vertices V and finite set of edges E such that each element of E is an unordered pair of distinct elements of V: $E=\{(u,v) \mid u,v \in V\}$.

For a graph G = (V, E), G is called a bipartite (multi) graph if the following (1) through (3) are satisfied:

- (1) $V = V_1 \cup V_2$, (2) $V_1 \cap V_2 = \Phi$, and
- (3) For any edge e=(u,v), if $u \in V_1$ then $v \in V_2$ are satisfied.

For an edge e=(u,v), u (v, respectively) is <u>adjacent</u> to v (u), u (v) is <u>incident</u> to e, and e is incident to v (u).

If u=v then the edge e is called a <u>self-loop</u>. For two edges $e_1=(u,v)$ and $e_2=(u',v')$, e_1 and e_2 are called <u>multiple edges</u> if and only if $e_1\neq e_2$, u=u' and v=v' hold.

For a graph G, G is called a <u>multigraph</u> if G contains some multiple edges and no self-loop. For a graph G, G is called a <u>simple graph</u> (<u>graph</u>, for short) if G contains no multiple edge and

no self-loop.

For a vertex $v \in V$, a number of edges being incident to v, is called a <u>degree</u> of v and it is denoted by deg(v).

A non-negative integer sequence set $S=(s_1,\,s_2)$ is a bipartite (multi) graphical sequence set if the following (1) through (2) are satisfied, where $s_1:d_{11},\,d_{12},\,\cdots,\,d_{1p}$, and $s_2:d_{21},\,d_{22},\,\cdots,\,d_{2q}$:

- (1) all vertices of V_1 can be labeled v_{11} , v_{12} , \cdots , v_{1p} such that the degree of v_{1j} is d_{1j} for every j, $1 \le j \le p$, and
- (2) all vertices of V_2 can be labeled $v_{21}, v_{22}, \dots, v_{2q}$ such that the degree of v_{2j} is d_{2j} for every j, $1 \le j \le q$.

3. Bipartite Multigraph

3.1 Data Structure

Suppose that $V_1 = \{v_{11}, v_{12}, \dots, v_{1p}\}$ and that $V_2 = \{v_{21}, v_{22}, \dots, v_{2q}\}$. Use an array ADJLIST containing two listheads. Each listhead represents a set of vertices V_1 . The nodes in the linked lists have the form [VTX, DEG, LINK], where VTX is a vertex number, DEG is a current degree of a vertex and LINK is a pointer field.

For example, suppose that s_i : d_{i1} , d_{i2} , d_{i3} , and that $V_i = \{v_{i1}, v_{i2}, v_{i3}\}$, for every j, $1 \le j \le 2$. Then the data structure is the following.

ADJLIST

```
\begin{array}{c} V_1 \left[ \rightarrow \right] \rightarrow \left[ v_{11}, \ d_{11}, \ \rightarrow \right] \rightarrow \left[ v_{12}, \ d_{12}, \ \rightarrow \right] \rightarrow \left[ v_{13}, \ d_{13}, \ \Lambda \right] \\ V_2 \left[ \rightarrow \right] \rightarrow \left[ v_{21}, \ d_{21}, \ \rightarrow \right] \rightarrow \left[ v_{22}, \ d_{22}, \ \rightarrow \right] \rightarrow \left[ v_{23}, \ d_{23}, \ \Lambda \right] \end{array}
```

In the following of this paper, a listhead of V_i $(1 \le j \le 2)$ is denoted by $\underline{POINT(V_j)}$, VTX of a vertex v_{ih} $(1 \le h \le p$ or $1 \le h \le q)$ is denoted by $\underline{VTX(v_{ih})}$, DEG of a vertex v_{ih} is denoted by $\underline{DEG(v_{ih})}$ and LINK of a vertex v_{ih} is denoted by $\underline{LINK(v_{ih})}$.

3.2 Algorithm

In this section, discuss the algorithm for BMC-problem. The algorithm is the following.

Algorithm BMGC.

```
<u>Begin</u>
```

- 1. (1) $x \leftarrow \sum_{j=1}^{p} d_{1j}$; $y \leftarrow \sum_{j=1}^{q} d_{2j}$;
 - (2) If $\{x \neq y\}$ then begin A sequence set $S = (s_1, s_2)$ is not a bipartite multigraphical sequence set; halt end;
- 2. (1) For every j, $1 \le j \le 2$, $POINT(V_j) \leftarrow \Lambda$;
 - (2) For j=1, p do begin

 If $\{d_{1\,j}>0\}$ then begin

 LINK $(v_{1\,j}) \leftarrow POINT(V_1)$; DEG $(v_{1\,j}) \leftarrow d_{1\,j}$; VTX $(v_{1\,j}) \leftarrow v_{1\,j}$;

 POINT $(V_1) \leftarrow VTX(v_{1\,j})$ end end;
 - (3) For j=1, q do begin

 If $\{d_{2j}>0\}$ then begin

 LINK(v_{2j}) \leftarrow POINT(V_{2}); DEG(v_{2j}) \leftarrow d_{2j}; VTX(v_{2j}) \leftarrow v_{2j};

```
POINT(V_2) \leftarrow VTX(v_{2i}) end end;
              V_1 \leftarrow \{v_{11}, v_{12}, \dots, v_{1p}\}; V_2 \leftarrow \{v_{21}, v_{22}, \dots, v_{2q}\}; G \leftarrow V_1 \cup V_2;
             u \leftarrow POINT(V_1);
3.(1)
    (2)
             while \{u \neq \Lambda\} do begin
                while {DEG(u)>0} do begin
                  PTR \leftarrow listhead of V_2; v \leftarrow POINT(V_2);
                  while \{v \neq \Lambda\} do begin
                    G \leftarrow G + e, where e = (VTX(u), VTX(v)); DEG(u) \leftarrow DEG(u) - 1;
                    DEG(v) \leftarrow DEG(v) - 1;
                    If \{DEG(v)=0\} then begin
                      If (PTR = listhead of V_2) then POINT(V_2) \leftarrow LINK(v)
                       else LINK(PTR) \leftarrow LINK(v) end
                    else PTR ← v;
                    v \leftarrow LINK(v);
                    If \{DEG(u)=0\} then go to EXIT
                                                              end
                                                                      end;
                u \leftarrow LINK(u) \quad end;
4. A bipartite multigraph G = (V_1 \cup V_2, E) with deg(v_1) = d_1; (with deg(v_2) = d_2;
    respectively) for every j, 1 \le j \le p (1 \le j \le q), is constructed; halt
    End. (Algorithm BMGC terminates.)
```

3.3 Time complexity

Clearly, Step 3-(2) are performed at most p times and edge addition is performed at $\Sigma^{p_{j-1}d_{1j}}$ times. The time complexity of Step 2-(2) is O (|V|), where |V|=p+q.

Thus, the time complexity of Algorithm BMGC is O(|V| + |E|), where $|E| = \sum_{j=1}^{p} d_{1j}$.

4. Bipartite Graph

4.1 Necessary and Sufficient Condition

In this section, discuss the condition C such that $S = (s_1, s_2)$ is a bipartite graphical sequence set if and only if C holds, where $s_1 : d_{11}, d_{12}, \dots, d_{1p}, d_{11} \le d_{12} \le \dots \le d_{1p}, 1 \le d_{1p} \le q$, $s_2 : d_{21}, d_{22}, \dots, d_{2q}, d_{21} \le d_{22} \le \dots \le d_{2q}, 1 \le d_{2q} \le p$, are two given non-negative integer sequences.

Such the condition C is obtained by the following theorem.

Theorem 1. For two non-negative integer sequences s_1 : d_{11} , d_{12} , \cdots , d_{1p} , and s_2 : d_{21} , d_{22} , \cdots , d_{2q} , $S = (s_1, s_2)$ is a bipartite graphical sequence set if and only if the following (1) through (2) are satisfied:

- (1) $\sum_{j=1}^{p} d_{1j} = \sum_{j=1}^{q} d_{2j}$, and
- (2) A sequence set S'= (s'₁, s'₂) is a bipartite graphical sequence set, where s'₁: d_{11} , d_{12} , ..., $d_{1,p-1}$, and s'₂: $d'_{21} = d_{21}$, $d'_{22} = d_{22}$, ..., $d'_{21} = d_{21}$, $d'_{2,t+1} = d_{2,t+1} 1$, ..., $d'_{2q} = d_{2q} 1$ (t=q-d_{1p}).

<u>Proof.</u> Suppose that $S' = (s'_1, s'_2)$ is a bipartite graphical sequence set. There is a bipartite graph $G_1 = (V'_1 \cup V'_2, E_1)$ having two sets of vertices $V'_1 = \{v'_{11}, v'_{12}, \cdots, v'_{$

 $v'_{1,p-1}$ such that $deg(v'_{1j}) = d_{1j}$ holds for each j, $1 \le j \le p-1$, and $V'_{2} = \{v'_{21}, v'_{22}, \cdots, v'_{2q}\}$ such that $deg(v'_{2j}) = d'_{2j}$ holds for each j, $1 \le j \le q$.

Let $G = (V_1 \cup V_2, E)$ be a new bipartite graph having $V_1 = V'_1 \cup \{v_{1p}\}$, $V_2 = V'_2$ and $E = E_1 \cup A$, where $A = \{e_i = (v_{1p}, v'_{2j}) \mid t+1 \leq j \leq q\}$. For every vertex $v'_{1j} \in G_1$, $1 \leq j \leq p-1$, assume that the label of v'_{1j} is replaced to $v_{1j} \in G$. Then, for G, $deg(v_{1j}) = d_{1j}$ is satisfied for every j, $1 \leq j \leq p$, and $deg(v'_{2j}) = d_{2j}$ is satisfied for every j, $1 \leq j \leq q$.

Since $S' = (s'_1, s'_2)$ is a bipartite graphical sequence set, $\sum_{j=1}^{p-1} d_{1j} = \sum_{j=1}^{q} d'_{2j}$ holds for G_1 . Thus $\sum_{j=1}^{p} d_{1j} = \sum_{j=1}^{q} d_{2j}$ is satisfied for G_2 .

Hence $S = (s_1, s_2)$ is a bipartite graphical sequence set.

Inversely, suppose that $S=(s_1,s_2)$ is a bipartite graphical sequence set. (i.e., suppose that there is a bipartite graph G having two sets of vertices $V_1=\{v_{11}, v_{12}, \cdots, v_{1p}\}$ such that $deg(v_{1j})=d_{1j}$ holds for every j, $1 \le j \le p$, and $V_2=\{v_{21}, v_{22}, \cdots, v_{2q}\}$ such that $deg(v_{2j})=d_{2j}$ holds for every j, $1 \le j \le q$.)

Assume that G contains a vertex $u\in V_1$ such that the following conditions (1) through (2) hold:

- (1) $deg(u) = d_{1p}$, and
- (2) there is an edge (u,u_i) for every vertex $u_i \in V_2$ with $deg(u_i) = d_{2i}$, $t+1 \le j \le q$.

Then a bipartite graph G-u has a sequence set $S'=(s'_1, s'_2)$, and, therefore, $S'=(s'_1, s'_2)$ is a bipartite graphical sequence set. Let the label of u be v_{1p} .

Assume that G does not contain a vertex $u \in V_1$ such that above the conditions (1) through (2) hold.

Then the following conditions (3) through (4) hold:

- (3) For some j, $t+1 \le j \le q$, G has a vertex $u_i \in V_2$ such that $deg(u_i) = d_{2j}$ holds and such that there is not an edge $e_1 = (v_{1p}, u_j)$, and
- (4) For some j, $1 \le j \le t$, G has a vertex $u'_j \in V_2$ such that $\deg(u'_j) = \deg_j$ holds and such that there is an edge $e_2 = (v_1, v_j)$.

Since $\deg(u'_j) \ge 1$ and $\deg(u_j) \ge \deg(u'_j)$, there is a vertex $v_{1k} \in V_1$ $(1 \le k \le p-1)$ such that there is an edge $e_3 = (v_{1k}, u_j)$ and such that there is not an edge $e_4 = (v_{1k}, u'_j)$. Set $G' = G + \{e_1, e_4\} - \{e_2, e_3\}$. Then G' has same sequence set of G which is $S = (s_1, s_2)$.

By repeating above operation, a bipartite graph containing v_{1p} satisfying above the conditions (1) through (2), can be obtained.

By above discussion, $S' = (s'_1, s'_2)$ is a bipartite graphical sequence set.

Q. E. D.

4.2 Algorithm

By Theorem 1, an algorithm of solving the BC-problem, can be obtained directly. In this section, discuss such an algorithm.

Suppose that $s_1: d_{11}, d_{12}, \dots, d_{1p}, d_{11} \le d_{12} \le \dots \le d_{1p}, 1 \le d_{1p} \le q$, that $s_2: d_{21}, d_{22}, \dots, d_{2q}, d_{21} \le d_{22} \le \dots \le d_{2q}, 1 \le d_{2q} \le p$, and that $1 \le p \le q$.

4.2.1 Data Structure

Suppose that $V_1 = \{v_{11}, v_{12}, \dots, v_{1p}\}$ and that $V_2 = \{v_{21}, v_{22}, \dots, v_{2q}\}$.

Use an array ADJLIST; containing two listheads, for V; $(1 \le j \le 2)$. The data structure of V; and its vertices are the following (1) through (2):

(1) There are two listheads. j-th listhead represents a set of vertices V_i for every j, $1 \le i$

.i≦2.

- The nodes in the linked lists have the form [VTX, DEG, LINK], where VTX (2) is a vertex number, DEG is a current degree of a vertex and LINK is a pointer field.
- Use an array $\mathtt{ADJLIST_2}$ containing p listheads, for $\mathtt{V_2}$. The data structure of $\mathtt{V_2}$ and lits vertices are the following (1) through (2):
- There are p listheads. Each of them represents a degree of vertices of V2. For every k, 1≤k≤p, k-th element of the array indicates a node which represents a vertex v with deg(v) = k.
- The nodes in the linked lists have the form [VTX, DEG, LINK], where VTX is a vertex number, DEG is a current degree of a vertex and LINK is a pointer field.

For example, suppose that s_1 : 2, 4, 4, 4, 4, that s_2 : 2, 2, 4, 5, 5, that $V_1 = \{v_{11}, v_{12}, v_{12}, v_{13}, v_{14}, v_{14$ v_{13} , v_{14} , v_{15} } and that $V_2 = \{v_{21}, v_{22}, v_{23}, v_{24}, v_{25}\}$. Then the data structure is the following. ADJLIST1

```
V_1 \ [\rightarrow] \ \rightarrow \ [v_{11}, \ 2, \ \rightarrow] \ \rightarrow \ [v_{12}, \ 4, \ \rightarrow] \ \rightarrow \ [v_{13}, \ 4, \ \rightarrow] \ \rightarrow \ [v_{14}, \ 4, \ \rightarrow] \ \rightarrow \ [v_{15}, \ 4, \ \Lambda]
         \forall_2 \ [\rightarrow] \ \rightarrow \ [v_{21}, \ 2, \ \rightarrow] \ \rightarrow \ [v_{22}, \ 2, \ \rightarrow] \ \rightarrow \ [v_{23}, \ 4, \ \rightarrow] \ \rightarrow \ [v_{24}, \ 5, \ \rightarrow] \ \rightarrow \ [v_{25}, \ 5, \ \Lambda]
ADJLIST2
                                                    2 \rightarrow [v_{21}, 2, \rightarrow] \rightarrow [v_{22}, 2, \Lambda]
             1 [A]
                                                                                     5 \rightarrow [v_{24}, 5, \rightarrow] \rightarrow [v_{25}, 5, \Lambda]
             4 \rightarrow [v_{23}, 4, \Lambda]
```

In the following of this paper, for every j, 1≤j≤2, a listhead of V; of ADJLIST; is denoted by POINT(V;) and a k-th listhead of V2 of ADJLIST2 is denoted by POINT(k). For every j, $1 \le j \le 2$, VTX of a vertex v_{jh} $(1 \le h \le p \text{ or } 1 \le h \le q)$ is denoted by $VTX(v_{jh})$, DEG of a vertex v_{jh} is denoted by $\underline{DEG(v_{jh})}$ and LINK of a vertex v_{jh} is denoted by $\underline{LINK(v_{jh})}$.

4.2.2 Algorithm

In this section, discuss the algorithm of solving the BC-problem. The algorithm is the following.

```
Algorithm BGC.
```

```
Begin
```

```
1. If \{d_{1p}>q\} or \{d_{2q}>p\} then go to Step 6; x \leftarrow \Sigma^{p}_{j+1}d_{1j}; y \leftarrow \Sigma^{q}_{j+1}d_{2j};
      If \{x \neq y\} then go to Step 6;
```

- 2. (1) For every j, $1 \le j \le 2$, POINT(V_j) $\leftarrow \Lambda$; For every j, $1 \le j \le p$, POINT(j) $\leftarrow \Lambda$;
 - (2) For j=1, p do begin If $\{d_1; > 0\}$ then begin $LINK(v_{1i}) \leftarrow POINT(V_1)$; $DEG(v_{1i}) \leftarrow d_{1i}$; $VTX(v_{1i}) \leftarrow v_{1i}$; $POINT(V_1) \leftarrow VTX(v_{1j})$ <u>end</u> end;
 - (3) For j=1, q do begin If $\{d_2 > 0\}$ then begin LINK(v_{2j}) \leftarrow POINT(V_2); DEG(v_{2i}) \leftarrow d_{2j} ; VTX(v_{2j}) \leftarrow v_{2i} ; $POINT(V_2) \leftarrow VTX(v_{2i})$ end end ;

end;

- $(4) \quad V_1 \leftarrow \{v_{11}, v_{12}, \dots, v_{1p}\}; V_2 \leftarrow \{v_{21}, v_{22}, \dots, v_{2q}\}; G \leftarrow V_1 \cup V_2;$
- 3. $u \leftarrow POINT(V_1)$;
- 4. while {u≠Λ} do begin
 - (1) $v \leftarrow POINT(V_2)$; while $\{v \neq \Lambda\}$ do begin $h \leftarrow DEG(v) \text{ ; } POINT(V_2) \leftarrow LINK(v) \text{ ; } LINK(v) \leftarrow POINT(h) \text{ ; } POINT(h) \leftarrow VTX(v) \text{ ; }$ $v \leftarrow POINT(V_2)$

```
(2) For j=p, 1, -1 do begin
                   (i) v \leftarrow POINT(j);
                                   while \{v \neq \Lambda\} do begin
                                       G \leftarrow G + e, where e = (VTX(u), VTX(v));
                                       DEG(u) \leftarrow DEG(u) - 1; DEG(v) \leftarrow DEG(v) - 1; POINT(j) \leftarrow LINK(v);
                                       If \{DEG(v)>0\} then begin
                                          LINK(v) \leftarrow POINT(V<sub>2</sub>); POINT(V<sub>2</sub>) \leftarrow VTX(v)
                                                                                                                                          end:
                                       v \leftarrow POINT(j); If \{DEG(u) = 0\} then go to step (4)
                                                                                                                                                                       end;
                                                                                                                                                         end
                           If {DEG(u)>0} then go to Step 6;
                           u \leftarrow LINK(u)
           (4)
                                                          end ;
    5. A bipartite graph G = (V_1 \cup V_2, E) with deg(v_{1j}) = d_{1j} (with deg(v_{2j}) = d_{2j}, respectively
           ) for every j, 1 \le j \le p (1 \le j \le q), is constructed; halt;
    6. A sequence set S = (s_1, s_2) is not a bipartite graphical sequence set; halt
                      (Algorithm BGC terminates.)
    4.3
             Example
       Set d_{11}=2, d_{12}=3, d_{13}=3, d_{14}=5, d_{21}=1, d_{22}=1, d_{23}=3, d_{24}=4, d_{25}=4 (p=4 and q=5).
Then \sum_{j=1}^{4} d_{1j} = \sum_{j=1}^{5} d_{2j} = 13 is obtained.
        (1) By Step 2, obtain the following.
                   V_1 \rightarrow [v_{14}, 5, \rightarrow] \rightarrow [v_{13}, 3, \rightarrow] \rightarrow [v_{12}, 3, \rightarrow] \rightarrow [v_{11}, 2, \Lambda]
                   V_2 \rightarrow \rightarrow v_{25}, 4, \rightarrow \rightarrow v_{24}, 4, \rightarrow \rightarrow v_{23}, 3, \rightarrow \rightarrow v_{22}, 1, \rightarrow \rightarrow v_{21}, 1, \Lambda
        (2) By Step 4-(1), obtain that u=v_{14} and the following.
                   1 \rightarrow [v_{21}, 1, \rightarrow] \rightarrow [v_{22}, 1, \Lambda]
                   3 \rightarrow [v_{23}, 3, \Lambda]
                                                                                                         4 \rightarrow [v_{24}, 4, \rightarrow] \rightarrow [v_{25}, 4, \Lambda]
        (3) By Step 4-(2), obtain that DEG(u)=0, and obtain five edges (v_{14},v_{25}), (v_{14},v_{24}), (
v_{14}, v_{23}), (v_{14}, v_{22}), (v_{14}, v_{21}), and the following:
                   V_2 \rightarrow [v_{23}, 2, \rightarrow] \rightarrow [v_{25}, 3, \rightarrow] \rightarrow [v_{24}, 3, \Lambda].
        ( 4 ) By Step 4-(1), obtain that u=v_{13} and the following.
                   1 [A]
                                                                                                          2 \rightarrow [v_{23}, 2, \Lambda]
                   3 \rightarrow [v_{24}, 3, \rightarrow] \rightarrow [v_{25}, 3, \Lambda]
                                                                                                          4 [A]
       (5) By Step 4-(2), obtain that DEG(u)=0, and obtain three edges (v_{13},v_{25}), (v_{13},v_{24}), (
v_{13},v_{23}), and the following : V_2 \rightarrow v_{23} \rightarrow v_{23}, v_{23}, v_{25}, v_{25}, v_{24}, v_{24}, v_{25}, v_{25}, v_{25}, v_{25}, v_{26}, 
       (6) By Step 4-(1), obtain that u=v_{12} and the following.
                   1 \rightarrow [v_{23}, 1, \Lambda]
                                                                                                          2 \rightarrow [v_{24}, 2, \rightarrow] \rightarrow [v_{25}, 2, \Lambda]
                   3 [A]
                                                                                                          4 [A]
       (7) By Step 4-(2), obtain that DEG(u)=0, and obtain three edges (v_{12},v_{25}), (v_{12},v_{24}), (
v_{12}, v_{23}), and the following: V_2 \rightarrow [v_{25}, 1, \rightarrow] \rightarrow [v_{24}, 1, \Lambda].
       (8) By Step 4-(1), obtain that u=v_{11} and the following.
                   1 \ [\rightarrow] \rightarrow [v_{24}, 1, \rightarrow] \rightarrow [v_{25}, 1, \Lambda]
                                                                                                       2 [A]
                                                                                                                                 3 [A]
                                                                                                                                                         4 [A]
       (9) By Step 4-(2), obtain that DEG(u)=0, and obtain two edges (v_{11},v_{25}), (v_{11},v_{24}), and
the following: V_2[\Lambda].
```

A final graph G satisfies $deg(v_{11})=1$, $deg(v_{12})=1$, $deg(v_{13})=3$, $deg(v_{14})=4$, $deg(v_{15})=4$, $deg(v_{21})=2$, $deg(v_{22})=3$, $deg(v_{23})=3$, $deg(v_{24})=5$.

Fig.1., can be obtained.

(10) By Step 4-(1), obtain that $u=\Lambda$. Hence a final bipartite graph being shown in

4.4 Time complexity

In this section, discuss the time complexity of Algorithm BGC.

When Step 4 is performed at once, Step 4-(1) and Step 4-(2)(i i) are performed at most q times, respectively. Step 4 is performed at most p times and $p \leq q$. Hence the time complexity of Step 4 is O (pq). Clearly, the time complexity of Step 2 is O (|V|), where |V|=p+q. Edge addition is performed at |E| times, where |E|= $\sum_{j=1}^{p} d_{1j} = \sum_{j=1}^{q} d_{2j}$. Then, since G is a bipartite graph, |E| \leq pq is satisfied.

Thus, the time complexity of Algorithm BGC is O (pq+ | V |).

5. Conclusion

In this paper, a bipartite (multi) graph construction algorithm which performs the following (1) through (2), can be obtained:

- (1) For a given sequence set $S = (s_1, s_2)$, $s_1 : d_{11}, d_{12}, \dots, d_{1p}$, and $s_2 : d_{21}, d_{22}, \dots, d_{2q}$, decide that whether S is a bipartite (multi) graphical sequence set, and

where |V| = p + q and $|E| = \sum_{j=1}^{p} d_{1j}$.

For any integer $k \ge 3$, I want to find an algorithm of constructing a k-partite (multi) graph from a k-partite (multi) graphical sequence set $S = (s_1, s_2, \dots, s_k)$ for further investigation.

References

- [1] P.Erdos and T.Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat, Lapok 11(1960), 264-274
- [2] S.L.Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, J.SIAM, Appl, Math, 10(1962), 496-506
- [3] V. Havel, A remark on the existence of finite graphs (Czech), Casopis Pest, Mat, 80(1955), 477-480
- [4] H.Frank and W.Chou, Connectivity considerations in the design of survivable networks, IEEE Trans. Circuit Theory, CT-17.(1970), 486-490
- [5] M.Behzad, G.Chartrand and L.Lesnik-Foster, "Graphs and Digraphs," Prindle, Weber and Schmidt, (1979)

