7 o = U X A 27—2
(1992. 5. 21)

XFHBD I s OB O XFFIE O RRILEE T IRTE
HHE %R 4
FORRFE A ERRER

BREETRSFIRE L & Z28 EoXF5| (B4 DNA T 3 7 BEY]) #E5ELbhk
& ¥ B XFFH b O FHELEDOIFE 2D R CiB bh 2LFHOFICREO D DR RET HE
TH3. Z2OXFHROREILEBRDIFIEEHE T2 7TA) XARE ORI X >THLD
nTn3 2, Z2L EOXFHCH L TR ELREDO AT AT Y XABRDOB>TnEn, T
DT LFEBLEWBEOZ 00 FHEoRELBSES T2 5RE HHET 2 5%
BEL. *OFHEZHERMCHHET 2 & & b, FHESSERC X b 2 o R 2 SR ICTHE
LfCo .

THE LONGEST COMMON SUBSEQUENCE PROBLEM
FOR SMALL ALPHABET SIZE BETWEEN MANY STRINGS

Koji Hakata Hiroshi Imai
Department of Information Science, University of Tokyo

Given two or more strings (for example, DNA and amino acid sequences), the longest com-
mon subsequence (L.CS) problem is to determine the longest common subsequence obtained by
deleting zero or more symbols from each string. The algorithms for computing an LCS between
two strings were given by many papers, but there is no efficient algorithm for computing an
LCS between more than two strings. This paper proposes a method for computing efficiently
the LCS between three strings of small alphabet size, evaluates its theoretical time complexity,
and estimates the computing time by computational experiments.

1 Introduction

Let A;, Az,..., Ay be d strings of length ny,7n,,...,n4 on an alphabet £ = {¢1,02,...,0,}
of size s. A subsequence of A; can be obtained by deleting zero or more (not necessarily
consecutive) symbols from A;. String B is a common subsequence of Ay, As,...,Aq iff B is
a subsequence of each A4;,7 = 1,2,...,d. The longest common subsequence (LCS) problem
is to find a common subsequence B of Ay, As, ..., Ag of maximal length. The LCS problem
is a common task in DNA sequence analysis, and has applications to genetics and molecular
biology. Throughout this paper, [is the length of an LCS. We assumen; =nz=---=ng=n
only for convenieﬁce. ’ ’ | ’

For string A = aa3 -+ - an, Alp...q] is apapty -+ - ag. Define an L-matrix for the d strings
Ai, As, ..., Aq as an integer array L[0...ny,0...n4,---,0...04) such that L]p,ps,...,pa is
the length of an LCS for A;[1...p],71 =1,2,...,d. For d = 2, since Al[.0] and Ay[1...0]
are empty strings, L[i,0] = L[0,5] = L[0,0] = 0. For 1 <i<mn and 1 < j < na, Lii, 7] =
if(A1[d] = Aqlf])) Lli — 1,7 — 1) + 1 else max{L[i — 1,4}, L[t,7 — 1]}.

Hirschberg [3] applied a dynamic programming strategy to derive an O(n?) algorithm that
solves the problem by filling L row by row. Since L is nondecreasing in every argument, we
can draw contours on L to separate regions of different values. The entire matrix is specified
by its contours, and the contours can be completely specified by their corner points, which are
called dominants. It is easy to see that there are | contours and an LCS can be obtained by
finding the set of dominants, instead of filling all the (n + 1) entries in L. -

For d = 2, various improvements to the simple O(n?) algorithm were made and they
concentrate on efficient generation of the dominants. One of the earliest variations was by
Hirschberg [4], whose algorithm repeatedly scans A; and generates all the dominants of each
contour after each scan. Since each scan takes n steps and there are ! contours, the total
time complexity of the algorithm is O(nlogs + In) where nlogs is the preprocessing time.
Hunt and Szymanski [5] attempted to find the dominants in L row by row by binary search.
The total time complexity is bounded by O(nlog s + rlogn), where r is the total number of
matches between the two strings. Apostolico and Guerra [1] improved the time complexity to
O(n(log s +logn) + dlog(n?/d))) with the use of a proper data structure, where d(< r) is the
total number of dominants between the two strmgs

Chin and Poon [2] devised the algorithm which, instead of scanning A;, generates the
dominants in each contour from dominants with a lower value. Since each dominant can
generate at most s dominants of the next contour, no more than O(ds) time will be required
for this stage. It can be shown with some careful analysis that their algorithm takes O(ns +
min(ds,im)) time and O(ns + d) space, where O(ns) is the preprocessing time.

We have devised an algorithm that, for three strings and small alphabet size, runs in time
O(ns + ds?), where d is again the number of dominants between the three strings and O(ns)
is the preprocessing time. The running time depends on the nature of the input. The basic
idea is based on the algorithm of Chin and Poon, and our algorithm is a generalization of their

algorithm, but more properties of dominant matches are utilized for efficiency of the algorithm.

In the first place, the algorithm expands the candidates of next dominants whose number is
small when the alphabet size is small, and then eliminates redundant dominants from the
candidates. It is observed by the analysis and experiments that the algorithm performs better
than the simple dynamic programming.

Section 2 gives the definitions and the necessary theorems for the algorithm. Section 3
gives the algorithm, and section 4 gives the analysis of the algorithm. Section 5 presents the
result of computational experiments. Section 6 mentions the higher dimensional case. Section

7 concludes the paper.

2 Preliminaries

Denote the position p of L by [p1,p2,-..,p4). pisa matehiff Aj[pi] = Axlps] = -+ = Adlpa].
Define a region < p,¢ > in L, as the set of elements, {[ri,r2,...,7a] | pi < ™ < ¢80 =
1,2,...,d}. Point p dominates point ¢ if p; < ¢; for i = 1,2,...,d (denoted by p <X ¢ or
[p1,P2,- - pd) = [@1,42,- - -, 4qa]). Denote p; < ¢;,fori=1,2,...,dby p < q. pis a k-dominant
iff L{p] = k and L{g) < k for all other elements ¢ in < [0,0,...,0],p >. Point p and q are
independent unless p = g or p X q. p is a dominant only if p is a match, that is, r (the number
of matches) < d. Furthermore, if p and ¢ are k-dominants, then p and ¢ are independent of
each other. . v

Given a set S of n points in L, < (the dominance relation set S) is clearly a partial order
on S for d > 1. A point pin S is a mazimal element of S, if there does not exist ¢ in S such
that p # ¢ and p <X ¢. The mazima problem consists of finding all the maximal elements of
S under dominance X. A minimal element and the minima problem are also defined in the
same way. Kung, Luccio and Preparata [6] have proved that in the comparison-tree model,
any algorithm that solves the maxima problem in two dimensions requires time Q(nlogn).

Define D* as the set of k-dominants, that is, all the dominants on the contour with value
k. Define D; as the set of all the k-dominants in < p,[ny,ns,...,n4] >. Thus the set of
dominants is composed of [disjoint subsets D*, D?,..., D', where ! is the length of an LCS.
Let pi(o) be the position of the first o in Aifpi...n], and for p = [p1,...,pd], let p(o) be
(p1(0),p2(0), ..., pa(0)] and let p(L) be {p(c) | o € £}. Define S* as {p(X) | p € D*"1}, the
set of candidates of k-dominants, and S¥(o) as {p € §* | A;[p1] = o}.

Lemma 1. A match g is a (k + 1)-dominant iff ¢ satisfies that there is no match r such
that p < r < ¢ for any k-dominant p such that p < g (if such p does not exist, ¢ is not a
(k + 1)-dominant). '

Proof. This lemma is evident from the definition of dominants.

Lemma 2. For any ¢, if p; < ¢; then p;(c) < gi(o). ‘

Proof. Since p; < ¢; and there is no match of o between p; and p;(0), if ¢; < pi(d), there
is also no match of o between ¢; and p;(c), and hence p;(¢) < ¢;(c). Otherwise, p;(c) <g<
gi(o). '

Lemma 3. For any match p, p < p(c) and there is no match r of o such that p < r < p(o).

Proof. This lemma'is evident from the definition of p(c).

Lemma 4. D**! is a subset of S¥+1. »

Proof. Assume that a match ¢ is not in $*+!. From Lemma 1, if ¢ is a (k 4 1)-dominant,
then there must exist p € D* such that p < g. Then, for the same p, p(A1[g1]) < ¢ holds.
Again from Lemma 1, ¢ can not be a (k + 1)-dominant.

Theorem 1. D**! is the minima of S¥+!.
Proof. For ¢ € S*¥* not in the minima of $**1, there exists some r € §*+* such that for

p € D¥, p < r < q. From Lemma 1, ¢ can not be a (k + 1)-dominant.

Theorem 2. Assume p = [p1,p2,..-,p4) a0d ¢ = [q1,42,.--,¢4] are k-dominants and
1 < q1. If p(o) and ¢(o) are independent, at least one of pi(c) = ¢i(c)(i = 1,2,...,d) holds.

Proof. From Lemma 3, p(o) > p and g(o) > ¢. Since p1 < ¢ and the k-dominants
are independent of each other, p, > g2 or p3 > g3 or --- or py > g4. Since p(c) and ¢(o) are
independent, if p(¢) > ¢(c) then from p; < ¢; and Lemma 2, p;(0) < q1(0), then p;(0) = ¢1(7).
Otherwise, that is, when p(¢) =< ¢(o), for at least one of ¢, p; > ¢ holds, then assume
pi(o) > gi(o). Since pi(a) > pi > g, v = [q1(0), ..., pi(0),...,q4(0)] is a match of o such that
g <1 < q(o). It contradicts Lemma 3. Thus p;(¢) = ¢:(o).

Theorem 3. Assume p, ¢ are k-dominants. If p(o;) < ¢(o;), for i # j, then p(o;) X ¢{o;).
Proof. Since p < p(0;) < g(o;), ¢(o;) is a match of o} in < p,[ny,n3,...,n4] >. From the
definition of p(c), p(a;) is the first match of o; in < p, [n1,na,...,n4] >, then p(o;) < ¢(0;).

3 The algorithm

We present algorithm A which obtains an LCS B of length [of input strings Ai, Az and As
in time O(ns+ds?) and space O(ns+d). The algorithm is based on an efficient representation
of the L-matrix.

The algorithm is based on three ideas. The first idea is the use of Theorem 3. Due to
this theorem, after we examined the dominance relation between plog) forz=1,2,...,5 and
p € D*, we need not compute the maxima of the whole S¥*1, but only compute each maxima
of S¥1(a,). | o

The second idea is the use of the fact that if the points of D* are sorted concerning
each coordinate, then from Lemma 2 the points of S¥*1(o) are also sorted in the same order
concerning éach coordinate, and the three dimensional maxima problem on $*+!(o) is reduced
into the two dimensional maxima problem. Given a set S of points in E? and a point p, if we
can determine whether p is the maxima of SU {p} in O(1) time, then the three dimensional
maxima problem can be solved in O(|S¥+!(¢)|) time by scanning S**!(c) in the ascending

order of p;. But, in real, determining whether p is the maxima of SU {p} needs O(|S]) time in

two dimensional case, and hence the three dimensional maxima problem requires O(|S**! (o))
time.

The third idea is the use of Theorem 2. By this theorem, the two dimensional maxima
problem is reduced into the one dimensional maxima problem, that is, the maximum problem
of integers. Clearly, given a set S of points in E' and a point p, we can determine whether p
is the maxima of S U {p} in O(1) time, by keeping the maximum of S. Therefore, the original
three dimensional maxima problem is solved in time O(|S**!(¢)|) = O(|D*]).

We have a data structure bc[oy...0,,0...7,1...d] to enumerate Sl';. bcfo, 7, 7] specifies
the position of the first o in A;[i + 1...n]. If o does not exist in A;[i +1...n], bcfo,i,5] =
n + 1. Therefore bcfa, 1, 7] store the position of the [pi(c), pa(0),. .., pa(c)])’s in S,. For d =3
(constant), bc needs O(ns) space.

We have another data structure cc[0...7, 1. .. 3] to exclude superfluous points from 5¥*1 ().
For any pair of two points p and ¢ (in S*+!) which are not independent, by Theorem 2 for
at least one coordinate i, p; = ¢;. Assume p € S precedes ¢ in the lexicographic order, that
is, py < q1 or p1 = q1,p2 < g2. There are four cases. (1) p1 = ¢1,p2 = ¢2. Since p precedes
¢ in the lexicographic order, ps < gs. Then ¢ is not the minima and has to be removed from
Sk (o,). (2) pr = q1,p2 < q2. If p3 < g3, then ¢ is not the minima. Otherwise, ¢ is the
minima. (3) p1 < q1,p2 = q2- If ps < g3, then ¢ is not the minima. Otherwise, ¢ is the minima.
(4) p1 < q1,p3 = g3. If pa < qo, then ¢ is not the minima. Otherwise, ¢ is the minima. For
case (2), we have cc[0...n, 1] to keep track of the minimum of p3 by far. For case (3), we use
cc[0...n,2], and for case (4), we use cc[0...n,3]. ST

We have an array dd[0...d] for storing the position of dominants, and the parent pointer
and the ordering number according to the coordinate z,. It needs O(d) space. Another array
d[0...ns,1...3] is a working area for storing S**1.

ALG A(n, .S? Al, Az, Aa)

I.forl1 <z<sand 1 <i<3dobco,n,i=n+1
forj=n—1to0
for 1 <z <sand 1l <1< 3 do befoy,J,i] =bclos, 7 + 1,1]
for 1 <¢<3dobc[Afj +1],5,1) =7 +1
2. put {0,0,0] into D° k=0 S**1 = ¢
while D¥ not empty do
2.1 for all points p of D* do
Skl — gk+1 p(E)
the parent of p(o) is set to p
2.2 for all points p of D* do
for1 <z <sandl <y <sdoif plo,) < p(oy) then remove p(o,) from S,
23 forl<z<sdo
for all points j of $¥**(0,) do cc[jy, 1]=cc[j2, 2]=cclj3, 3]=n + 1

radix sort S*+*(o;)
for all points j of S¥+!(0,)
while j; and j, are the same as the previous j; and j, -
remove j from S¥*(o;)
end-while ‘
if j2 >cc[ja, 3] then remove j from $**1(o,) and cc[js; 3] = j2
if j3 >cc[jz, 2] then remove j from S¥*(o,) and cc[jz,2] = ja
. if j3 >cc[j1,1] then remove j from S¥*!(0,) and ccfj;, 1] = ja
2.4 merge sort {S*¥*1(o) | 0 € T} into D**! according to the coordinate z;
2.5 merge sort {S*¥*(g) | 0 € £} according to the coordinate z, (to compute the rank)
2.6 merge sort {S¥*(0) | o € B} according to the coordinate z3 (to compute the rank) -
2.7 k=k+1)
end-while
3. pick an point p in D!
while k —1> 0 do
output p and set p to the parent of p by the parent pointer
k=k-1
end-while .

4 Analysis of Algorithm

- Theorem 4. The algorithm A correctly computes the LCS of strings Ay, Az and As.
Proof. By step 2.1, S*t! is precisely constructed. From Theorem 2 and 3, in step 2.2 and
2.3 the points in S*+! which is not the minima of S**! are surely excluded.

Theorem 5. The algorithm A requires time of O(ns+ds?), where n is the length of strings
A1, Az and Aj and s is the number of different symbols that appear in strings A;, A; and As
and d is the number of dominant matches, assuming that symbols can be compared in one
time unit. _ - : o .

Proof. Step 1 is the preprocessing step that builds the bc table, which takes time O{ns).
In Step 2, the outer loop repeats for I times. Step 2.1 loops for |D¥| times. Therefore, there
should be |Dy| + |Dz| + - -+ + |D'| = d executions to compute S = S U p(X). Since |p(T)| = s,
step 2.1 requires at most O(ds) time. Similarly, step 2.2 takes O(ds?) time, and step 2.3 takes
O(ds) time. Step 2.4, 2.5 and 2.6 take O(slog s|D*|) time, since each level of merges requires
O(ds) time and the level of merges is logs. And hence O(dslog s) time is required for step
2.4, 2.5 and 2.6 over the whole algorithm. After all, step 2 takes O(ds?) time. Step 3 takes
O(l) time.

5 Experimental Results

We have run experiments for the algorithm in the paper on uniform random strings over
alphabet of size s=4. Programs are written in C, and tests are run on a Sun SPARC station
ELC using the time command. Table 1 shows the running time of two LCS algorithms, the

naive dynamic programming algorithm (DP) and our algorithm (A).

Table 1. The running time (s) of DP, and the maximum A oz, average A,y and minimum

Anmin running time of our algorlthm for 20 different test strings of Iength n.

n_]100 200 300 400 500 600 700
DP 6 54 189 423 826 1516 2423
Amaz | 1 6 17T 45 719 142 241
Awe | 0.1 4.9 162 428 754 1352 2223
Amn | 0 4 15 39 71 123 213

6 Extensions

For the higher dimension, d > 3, the different method for solving the LCS problem may be
needed. One method is to use the maxima algorithm, whose performance is presented by the

following theorem.

Theorem 6 [6]. The maxima of a set of n points in E¢, d > 2, can be obtained in time
O(nlog*?n) + O(nlogn).

Using the result of the previous chapters, the LCS problem of dimension d (that is, for d
strings) can be reduced to the maxima problem of dimension d — 2.

7 Conclusion

The LCS problem has been studied by a number of researchers and its complexity has been
improved in diffirent respects. We have presented a better solution when the alphabet size is
small and the number of strings are more than two. Computational experiments have been
done for the case of s = 4, which corresponds to the DNA sequence. For the case of s = 20,
that is, the case where the protein which consists of 20 kinds of amino acids is investigated,
the number of dominant matches tends to be small, and the influence of the factor O(s?) is
likely to be relatively negligible. Regarding the case of d > 4, more careful consideration is

needed.

Acknowledgment

This work is supported in part by the Grand-in-Aid for Scientific Research on Priority
Areas, “Genome Informatics”, of the Ministry of Education, Science and Culture of Japan.

References

[1] Apostolico, A. and C. Guerra, The longest common subsequence problem revisited,
Algorithmica, Vol.2, 1987, pp.315-336. ; : _

[2] Chin, F. Y. L. and C. K. Poon, A fast algorithm for computing longest common subse-
quences of small alphabet size, J. of Info. Proc., Vol.13, No.4, 1990, pp.463-469. '

[3] Hirschberg, D. S., A linear space algorithm for computing maximal common subse-
quences, Comm. ACM, Vol.18, 1975, pp.341-343.

(4] Hirschberg, D. S., Algorithms for the longest common subsequence problem, J. AC’M
Vol.24, 1977, pp.664-675. , , '

[5] Hunt, J. W. and T. G. A. Szymanski, A fast algorithm for computing longest common
subsequences, Comm. ACM, Vol.20, 1977, pp.350-353. ‘

(6] Kung, H. T., F. Luccio, and F. P. Preparata, On finding the maxima of a set of vectors,

J. ACM, Vol.22, No.4, 1975, pp. 469-476.

