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Abstract

This paper describes an efficient algorithm for partitioning a triconnected graph into
three disjoint connected subgraphs, each of which contains a specified vertex and has a
specified number of vertices. By using the algorithm, this paper also shows an algorithm. for
partitioning a 3-edge-connected graph into three edge-disjoint connected subgraphs which
satisfy the conditions same as the case of triconnected graphs. '



1 Introduction

The k-partition problem is described as follows.

Input:

(1) an undirected graph G = (V, E) with n = |V| vertices;

(2) k distinct vertices a;(1 <1< k) €V, a; #a;(1 <4< j<k); and

(3) & natural numbers ny,ng,...,n such that sk ni=n.

Output: a partition V3 U Vo U ... UV, of vertex set V such that for each i(1 <4 < k)

(a) a; € V3

(b) [Vi| = ni; and

(c) each of V; induces a connected subgraph of G.

We extend the k-partition problem in the following and we call it the vertez-subset k-partition
problem.

Input:

(1) an undirected graph G = (V, E) with n = |V| vertices;

(2) a vertex subset V/(C V) with n' = |[V/| > k;

(3) k distinct vertices a;(1 <i < k) € V', ai# a;(1 <i<j<k); and

(4) k natural numbers nj,ng,...,n such that vk ni=n

Output: a partition Vi UVaU...UV; of vertex set V and a partition ¥/ UV3U...UV] of
vertex set V' such that for each i(1 <1< k)

(a) as € V;

(b) [V/| = ni;

(c) V{ C Vi and

(d) each of V; induces a connected subgraph of G.

This problem is extended in the sense that a specified vertex subset is partitioned. If Vi=Vv
then it coincides with the original k-partition problem.

The k-partition problem is NP-hard in general even if k is limited to 2 [2]. Gydri and
Lovész independently showed that the k-partition problem has a solution if the input graph is
k-connected [5, 8]. The bipartition problem(k = 2) can be solved in O(m) time [10] and the
tripartition problem(k = 3) can be solved in O(n?) time [11]. Throughout this paper, n and m
denote the number of vertices in G' and the number of edges in G, respectively. It is an open
problem whether or not we can solve the k-partition problem for k¥ > 4 in polynomial time if
the input graph is k-connected [11].

In this paper, we present an algorithm to solve the vertex-subset tripartition problem for
triconnected graphs. Our algorithm utilizes a nonseparating ear decomposition for a triconnected
graph and it runs in O(n?) time. We also show that this algorithm solves the tripartition problem
for triconnected graphs in O(m + (mini<icj<3(ni + ny)) - n) time.

Furthermore, we characterize k-edge-connected graphs by using a vertex-partition. In general
the k-partition problem does not have a solution for k-edge-connected graphs. However by using
Gyéri and Lovész's result the following edge-partition can be done([5]:

Given a k-edge-connected graph G = (V, E), k edges e1, e2,..., e € E and k positive integers
mi,ma,...,my such that Ele m; = | E|, there exists an edge-partition E = Ey3 U E2U... U E}



such that e; € E;, |B;| = m; and G; = (V(E;), E;) is connected for each i(1 £ 7 £ k), where
V(E') denotes the set of vertices incident with at least one member of E'.

In this paper, we propose the k-partition problem obtained by replacing the condition (c)
with the following condition {c-v)((c-¢€)).

(c-v)((c-€)) For any pair (v;,u;) of vertices in any V; and any pair (vj,u;) of vertices in any
Vi(1 £ 1 < j £ k), there exist a path P; between v; and u; and a path P; between v; and u;
such that P; and P; are vertex-disjoint(edge-disjoint).

We refer to this problem as the k-partition problem with respect to vertex-disjointness(edge-
disjoininess). Since a solution for the k-partition problem is also a solution for the k-partition
problem with respect to vertex-disjointness from the definition, the k-partition problem with
respect to vertex-disjointness has a solution if the input graph is k-connected. Although we
conjecture that the k-partition problem with respect to edge-disjointness for k-edge-connected
graphs has a solution for any k(> 2), it is not known so far in general. We show that if we can
solve the vertex-subset k-partition problem for k-connected graphs, we can solve the k-partition
problem with respect to edge-disjointness. By using the result and the algorithms shown here,
we also show the cases in which k¥ = 2 and k = 3 can be solved in O(m) and O(n?) time,
respectively.

2 Preliminary

We deal with an undirected graph G = (V, E) with vertex set V and edge set E. For a graph
G, the vertex set is denoted by V(G). A graph G is k-connected(k-edge-connected) if there
exist k node-disjoint(edge-disjoint) paths between every pair of distinct nodes in G. Usually
2-connected graphs are called biconnected graphs and 3-connected graphs are called triconnected
graphs. The distance between nodes z and y in G is the length of the shortest path between
z and y and is denoted by disg(z,y). For a graph G = (V, F) and a vertex subset V', the
induced subgraph is denoted by G[V']. For two graphs G = (V, E) and G’ = (V’, E), the graph
(VUV',EUE') is denoted by GUG".

3 Nonseparating Ear Decomposition and s-t Numbering

In order to solve the tripartition problem efficiently, we utilize the concepts of a nonseparating
ear decomposition which characterizes triconnected graphs and an s-t numbering for biconnected
graphs.

3.1 Nonseparating Ear Decomposition

An ear decomposition of a biconnected graph G = (V, E) is a decomposition G = PyUPU...UP,
where Py ia a cycle and P;(1 < ¢ < k) is a path whose end vertices are distinct and only end
vertices are in common with Py U...U P;_y. Each P is called an open ear.

Given an ear decomposition PpUPU...UP; of G, let V; = V(P)U...UV(R), let G; = G{V]]
" and let G; = G[V — V{] for each i(1 < i < k). ’



We say that G= PpUPyU...U P is an ear decomposition through edge (a,b) and avoiding
vertez ¢, if the cycle Py contains the edge (a,b) and the last ear of length greater than one, say
Py, has c as its only internal vertex. .

An ear decomposition PyU P;U...UP; of a graph G through edge (a,b) and avoiding vertex
c is a nonseparating ear decomposition if for all i(1 < i < m), each graph G; is connected and

each internal vertex of the ear P; has a neighbour in G;.

Proposition 1 [1] For a triconnected graph G = (V, E), any edge (a,b) € E and any vertez
c(# a,b) € V, a nonseparating ear decomposition Py U Py U... U Py through edge (a,b) and
avoiding vertez ¢ can be constructed in O(|V| - |E|), where the path Py has the vertex ¢ as its

only internal one. In particular, the cycle Py and each path P;(1 <1 < q) can be constructed in

O(|B)).

3.2 s-t Numbering

Given an edge (s, t) of a biconnected graph G = (V, E), abijective functiong : V — {1,2,...,|V]| =
n} is called an s-t numbering if the following conditions are satisfied:

e g(s)=1, g(t) =n and
e Every node v € V — {s,t} has two adjacent nodes v and w such that g(u) < g(v) < g(w).

Proposition 2 [3] Let G = (V, E) be a biconnected graph. For any edge (s,t) € E, an s-t
numbering can be computed in O(|E|) time.

The following lemma holds from the definition of the s-t numbering.
Lemma 1 Let g be an s-t numbering for a biconnected graph G = (V, E) and an edge (s,t). For

any i(1 <1 < |VY)), the two induced subgraphs G[{g~1(j)|1 < i}] and G[{g~ (H)|i+1 <7 < |VI}]

1 is the inverse function of g.

are connected, where g~
The following theorem is easily shown from Lemma 1 and Proposition 2.

Theorem 1 The vertez-subset bipartition problem can be solved in Oo(m).

4 Tripartition of Triconnected Graphs

In this section, we present an efficient algorithm PART3 for solving the vertex-subset tripartition
problem for a triconnected graph G. We may assume without loss of generality that n; < np < ng

for a given input.
The algorithm is as follows:

Algorithm PART3(G = (V, E); V'; a1, az, a3; n1,n2,n3)

begin
if (a1,a2) ¢ £ then E — EU {(a1,a2)};



Let PyU Py U...U P, be a nonseparating ear decomposition
through edge (a1, a2) and avoiding vertex a3 for the graph G,
{Note that this algorithm does not construct all paths of the ear decomposition. }
1 1;
while |[V(G)NV'| <nj +ns do i —i+1;
if [V(G;) N V'] =ny + ng then
begin
Let g be an aj-a3 numbering of G; and
let ] satisfy ny = [{g71(j)|1 < j < n{} NV’ and g~1(n}) € V';
Vi {g G <G <nl);
Va = {gT DIIGi| = n1+np > j > nf +1};
V3 = V(Gy);
return(Vy, V5, V3)
end
else {|V(G:)NV'| > n1 +ny > |[V(Gim1) N V'|}
begin
Let g be an a;j-a2 numbering of G;_1,
let P; = (zg,...,%,) such that g(zq) < g(z,),
let nf satisfy ny = [{g™'(j)]1 < j < n{}NV'| and g~}(n}) € V’ and
let nf satisfy no = |{g71(5)||Gi-1]| > j > |Gi1| - nh+1} NV’ and
g“l(!G,’_ll - 'n,'2 +1) eV,
U {gt (DIt <5 < nf)s
Uz — {7 OIGi-1] 2 5 2 |Gi1] — ny + 1}
I U NUy
if zp € U; — I then
begin
Let j ={INV’'| and
let j' satisfy j = [{z1,...,27} N V'] and z; € V',
Vi = (U1 -D)U{zy,...,z;};
Vo = Uy;
Vs = V(G U{zjit1,...,Tr1 )
return(Vy, V5, V3)
end )
else if 2. € Uy — I then
begin
Let 7 =|INV’| and
let j' satisfy § = [{z,—j1,...,2,—1} N V'] and Tr—jr € V'
Vi Uy .
Va = (Us = DU {p gy, 5 )
V3 = V(@G U{z,...,zrji—1};
return(Vy, Vo, V3)
end



else {zo,z, € I'}

begin
Let I = {z1,..., 2} and let 29 = 25 and z, = 2 (1<s<t<|I)),
let j1 = l{zs+1,...,zm} nv’',
let jo = [{z1,... 251N V',
let 5] satisfy j1 = [{z1,...,z} NV'| and 25 € V' and
let 75 satisfy jo = [{:z;r__jé,. .y Zp—1} NV’| and Tr—jy € v’
Vi« (U1—I)U{zl,...,zs}U{xl,...,mj;};
Vo = (U2 = ) U {2541, .-, 2} U {2150, B 15
V3 = V(Gi) U{zji41,---r Trjg1ks
return(V;, V5, V)

end

end

The correctness of the algorithm is derived from the definition of the nonseparating ear
decomposition and Lemma 1. Since a spanning triconnected subgraph G’ = (V, E') with |E'| =
O(|V|) can be computed in O(]E|) time for a triconnected graph G = (V, E) [9, 11], the next
theorem is obtained from Propositions 1 and 2.

Theorem 2 The vertez-subset tripartition problem for triconnected graphs can be solved in
O(m +1-n), where i denotes the number of ears constructed in PARTS.

The next corollaries are easily obtained from the construction of the algorithm.

Corollary 1 The vertez-subset tripartition problem for triconnected graphs can be solved in

O(n?).

Corollary 2 The tripartition problem for triconnected graphs can be solved in O(m+(nj+nz)-
n), where ny < ng < ng for the given input.

Corollary 3 If ny + ng = O(1) or disg(a1,a2) > ni + ng then the tripartition problem for

triconnected graphs can be solved in linear time.

5 The k-partition with respect to Edge-disjointness

In this section, instead of solving the k-partition problem with respect to edge-disjointness
directly, we compute mutually k¥ edge-disjoint subgraphs G; = (U;, E;)(1 < ¢ < k) such that

(a) a; €V,

(b) V; C U; and

(¢) G; is connected.

If we can find the mutually k edge-disjoint subgraphs stated above, we can easily show that
the vertex-partition V = ViUV, U... UV} is a solution for the k-partition problem with respect
to edge-disjointness.

We utilize the method transforming k-edge-connected graphs into k-connected graphs [4].



Let k > 2. Given a graph G = (V, E), define the graph ¢i(G) = (¢(V),(E)) as follows.
For every vertex v € V, there are k—2 vertices p(v1),(vs),. .., p(vk_2) in ©(V). These vertices
are called node-vertices of pr(G). For every edge e € F, there is a vertex ¢(e) in (V). This
vertex is called arc-vertez of pr(G). Note that if k¥ = 2, there is no node-vertex in (V).

The edge set ©(F) is defined as follows: Let v be any vertex in V and wug,uy,...,uq_1
be the vertices adjacent to v. Let e; = (v,4;)(0 € 7 < d —1). Then there are edges
(plei), p(eie1ymoaa))(0 < ¢ < d —1) and (p(ei),p(v;))(0 £ 4 < d-1,1<j < k-2)in
©(E). Note that if d = 2, there is an edge (p(eg),¢(e1)) in p(E).

From the definition ¢i(G) has (k — 2)|V| + |E| vertices and O(k|FE|) edges and it can be
computed in O(k(|V| + |E])).

Proposition 3 [4] For any k(> 2), G is k-edge-connected if and only if pi.(G) is k-connected.

Let U be a vertex subset of ¢ (G). The subgraph ¢~ 1(U) = (p;1(U), 9 (U)) of G = (V, E)
is defined to be
93 H(U) = {v]p(v) € U and v € V} U { endpoints of e|p(e) € U and e € E} and
w71 (U) = {e|p(e) €U and e € E}.

The next lemma can be easily shown.

Lemma 2 If the induced subgraph i (G)[U] is connected, then the graph ¢~ (U) is connected.
From the Proposition 3 and Lemma 2, the following theorem can be proved.

Theorem 3 If the vertex-subset k-partition problem can be solved, the k-partition problem with
respect to edge-disjointness can be solved.

Combining Theorem 3 with Theorem 1 and Corollary 1, we can prove the following theorems.

Theorem 4 The bipartition problem with respect to edge-disjointness can be solved in O(m)
time.

Theorem 5 The tripartition problem with respect to edge-disjointness can be solved in O(n?)
time.

6 Concluding Remarks

We present an algorithm which solves the vertex-subset tripartition problem for triconnected
graphs. This algorithm solves the tripartition problem for triconnected graphs efficiently. Com-
pared with the previous result, the worst case of our algorithm is the same as that in [11], since
there is a case that n;+ny = Q(n). However, we have applications which satisfies nj +ng = o(n).
For example, the tripartition is necessary in order to define efficient fault-tolerant routings for
triconnected graphs and in that case it satisfies that n; +ng = O(1) or ny +n2 = O(logn) [6, 7).
Thus, the tripartition can be solved in O(m) or O(m + nlogn) time.

The k-partition problem with respect to edge-disjointness is related to fault-tolerant routings
for k-edge-connected graphs [12].



It still remains as a further study to solve the k-partition problem(k > 4) for k-connected
graphs in polynomial time and to solve the vertex-subset k-partition problem and/or the k-
partition problem with respect to edge-disjointness(k > 4).
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