7 39 X & 29—6
(1992 8 25)

A VT A VRIS 2T
e ARE BWAMET IIEEAR

* FEERAY SEAER
= BIRUKEE {5 eR
* B IBM HGUERgERT

LR, HAHMEICH LT, HAMEIRYY V1) X A (Partially dynamic algorithm) 705-% 6 /=8, Z ORIEI T 2884
¥5 4 VBT VLY XA (Fully dynamic semi-online algorithm) % R 2 FHEFREL TV D, ST, ¥4 54 Y ORE
L, F V54 VHBORBKRRITH Y . BEHY 2 2R boliil, 20RO MAOEH Y 7 LA ML o THIBRENZEE LS
tr O(k) D} A ADEAE SS, b EHD) 7 A DEIFFEHNTVEHDTH D, b L. k=1THITL, MEREFOA 75
AVHEECRY, k=125, RVIZA A IFGEONERBOF Y5 4 VEEER D,

B, O(VEIFTIK) BHOH T £y b AMBEOWA Y54 Y7 VL) X585 25, STT, KIREWDETHH . ME
DYVIIAMDI L, #ABAOHERY 2 ZA L BH b LT D, T2, (a) BEMECET 2 OL/1(1+ n)vFd/a(l, n) +1- a(l, n))
BEOTVIY XA (0 BROETH L) (b) BT v 74y 7HEICH T 5 O(UVEL- K/a(lK 5, K) + 1 - «(IK**, K)) K
RO7VT) Xs (KIRBEOHETSHS) (¢) 0-1 7y 74y Z7BECH T2 O *e(#d + 1)) BEOT7T M TY XA (cid
BEETHB) 25250 Iz, 47 &y M AREOHES V54 v 7 V) XAQBR & LT, BAEER/NOSESHIRE
O(m+n*®) K TIEIT 2 Z E%RT, TRLOKRMERRIL, FHSOMBERY ., HLEFHTIREY,

A New Approach to Semi-Online Problems
Yang Dai” Hiroshi Imai** Kazuo Iwano™*” Naoki Katoh™

* Department of Management Science, Kobe University of Commerce, Gakuen-Nishimachi 8-2-1, Nishi-ku, Kobe 651-21,
Japan.
** Department of Information Science, Faculty of Science, University of Tokyo, Tokyo 113, Japan.
*** Tokyo Research Laboratory, IBM Japan, 5-11 Sanbancho, Chiyoda-ku, Tokyo 102, Japan.

~ This paper proposes a new approach to obtain a semi-online dynamic algorithm, given a partially dynamic algorithm., A
semi-online problem is a special case of online problems, in which for each update request ¢ we are given a superset SS, of
size O(k) which contains all items to be deleted in the succeeding k update requests as well as the total number of requests as
well as the total number of requests. Thus, a semi-online problem has properties both of online and offline problems. Notice
that an offline problem is also a semi-online problem. We first develop an O(v/FFd + 1-1K) time algorithm for the semi-online
dynamic Subset Sum problem where K is a target value and a series of [requests, including #d deletions, is made to the
initially empty set. We also devise the following semi-online dynam;c algorithms: (a) an O(\/l(l—+-73 V7 m—f-l -a(l, n))
time algorithm for the connectivity problem where [(resp. #d) is the number of all (resp. delete) requests and n is the
number of vertices, (b) an O(lVFd- K+/a(IK13,K) + 1 - a(IK'®, K)) time algorithm for the Integer Knapsack problem
where K is the target value, and (c) an O(1*/*c(#d+1)'/*) time algorithm for the optimization 0-1 Knapsack problem where
¢ is the optimal value. As an application of the semi-online dynamic Subset Sum problem, we devise an O(m + n??%) time

algorithm for the minimum range balanced cut problem. To the authors’ knowledge, these bounds are new and nontrivial.

1 Introduction

We propose a new approach to obtain an semi-online fully dynamic algorithm, given a partially dynamic
algorithm by introducing a new way of handling delete requests. Here, a dynamic algorithm solves the problem
for the current instance every time when an add/delete request is made to change the instance. When an dynamic
algorithm allows only add requests, we call it partially dynamic, otherwise we call it fully dynamic. An offline
algorithm gives a set of solutions of a dynamic algorithm when the entire request sequence is known beforehand.
A semi-online problem is a special case of online problems, in which for each update request o we are given a
superset $S, of size O(k) which contains all items to be deleted in the succeeding & update requests. Thus, a
semi-online problem has properties both of online and offline problems. As typical semi-online problems, we have
offline problems and minimum range problems [13].

Since these online/semi-online/offline dynamic algorithms have practical importance, we can find an extensive
list of previous research activities. For example, Frederickson studied online updating of minimum spanning trees
[7], Eppstein et al. considered the maintenance of minimum spanning forest in a dynamic planar graph [5], and
Buchsbaum et al. studied the path finding problem when only arc insertions are allowed [2]. Eppstein also devised
an offline algorithm for dynamic maintenance of the minimum spanning tree problem [4]. In the design of a fully
dynamic algorithm, we often face the following difficulty: that is, since a delete request may drastically change the
basic structure of a problem, we have to rebuild necessary data structures from scratch in such a case. This is a
reason why the design of efficient fully dynamic algorithms is hard.

However, we can overcome the above difficulty for a certain class of problems including the Subset Sum prob-
lem, the connectivity problem, the Integer Knapsack problem, and the optimization 0-1 Knapsack problem. We
introduce a new mechanism which regards each delete request as a set of add requests, and by allowing incremental
maintenance of necessary data structures. As an instance, we develop an O(V#d +T1- 1K) time algorithm for the
semi-online dynamic Subset Sum problem with a target value K, when a series of | requests, including #d deletions,
is made to the initially empty set. We also devise semi-online dynamic algorithms for the connectivity problem, Inte-
ger Knapsack problem, and optimization 0-1 Knapsack problem which runs in O(\/1{I + n)v#d\/a(l, n)+1-a(l, n))
time, O(IvVF#Fd - K+/a(K15 K) + |- (1K', K)) time, and O(I%/*¢(#d + 1)*/*) time, respectively, where I and
#d are the numbers of requests and delete requests, n is the number of vertices in the connectivity problem, K is

the target value in the Integer Knapsack problem, and c is the optimal value for the optimization 0-1 Knapsack
problem. Notice that a(-) is the functional inverse of the Ackermann function. To the authors’ knowledge, these
bounds are new and nontrivial.

Finally, we consider the minimum range balanced cut problem which can be viewed as an instance of the
semi-online Subset Sum problem: Let G = (V,E) be a connected undirected multigraph with n vertices and
m edges. A cut C associated with a partition (X,V — X) of the vertex set V with X # 0,V is defined as
C ={(u,v) € E|u € X,v € V-X}, and |C| s called a cut value of C. Moreover, C is balanced when |X| = |V - X,
and C'is e-balanced when (1 —€)n/2 < |X| < (1+¢€)n/2. Given an edge weight function w('), the range of a cut C'is
defined as the maximum difference of its edge weights: that is, range(C) = max.cc w(e) — min.ec w(e). Then, the
minimum range balanced cut problem is the problem of finding a cut with the minimum range among all balanced
cuts. As discussed in [3], a minimum range balanced cut algorithm can be used for finding an approximate solution
for the minimum balanced cut problem. Since the minimum balanced cut problem, a NP-complete problem [9],
has an important application such as the circuit partitioning problem in the VLS design and has been studied
well [6, 11], an approximate solution by using an efficient minimum range balanced cut algorithm would be of
broad interest. We then develop an O(m + n%®) time minimum range balanced cut algorithm, which improves an
O(m 4+ n®) time algorithm based on Martello et al.’s general approach to minimum range problems [13]. We also
devise an O(m + n?/+/€) time algorithm for the minimum range e-balanced cut problem.

This paper is organized as follows: In Section 2, we solve the semi-online dynamic Subset Sum problem in
O(\/#'Tﬂ -1K) time. In Section 3, we generalize a technique developed in Section 2, and apply for developing
semi-online dynamic algorithms for the connectivity problem, the Integer Knapsack problem, and the optimization
0-1 Knapsack problem. In Section 4, we introduce an O(m + n%%) time minimum range balanced cut algorithm.

2 The semi-online dynamic Subset Sum problem

In this section, we consider the semi-online dynamic Subset Sum problem and introduce a new approach for
handling delete requests. Our algorithm takes O(v/Fd+ 1 - 1K) time with a target value K, when a series of [
requests, including #d deletions, is made to the initially empty set.

For simplicity, we first consider the offline dynamic Subset Sum problem. In the next section, we will see that ‘
this offline algorithm can be easily applied to the semi-online case with an appropriate modification. We assume
that at each update request, a query for the feasibility for the Subset Sum problem is issued. Then, the offline
dynamic Subset Sum problem can be formulated as follows:

Input: A positive integer K and a sequence, Request = (r1,73,...,71), of | requests. Each request is either an
addition request (add,) or a deletion request (delete,z) where z indicates an item to be added or deleted.
Output: A sequence (bity, bity, ..., bit;) where bit; = 1 (resp. 0) indicates the feasibility (resp. infeasibility) of
the Subset Sum problem for S;.

For the Subset Sum problem, there is an O(sK) time algorithm based on dynamic programming ([14]) for an
s-item set, as shown in Figure 1. ‘

Input: A positive integer K and the initial set S = {c1,¢3,...,¢,}.

Output: A bit indicating the feasibility.

Procedure Subset Sum

1) Mark the node 0. M := {0};

(2) for j=1,2,...,s do
For each marked node v, mark the node » and add it to M such that v = v + 53
end

(3) if K € M, then return (1); else return (0);

Figure 1. Algorithm Subset Sum

In the algorithm Subset Sum, the set M, which we call the marking set, consists of all values which can be
expressed as 3}, @y - ¢; where z; € {0,1}. Notice that we can regard the above algorithm Subset Sum as an
O(sK) time online algorithm which allows only add requests. However, if there exists a delete request, we have
to reconstruct the marking set M, which takes O(sK) time. Therefore, an offline dynamic Subset Sum algorithm
using the above algorithm takes O((#d+1)IK) time for [requests including #d delete requests. We, thus, develop
a new technique which enables us to avoid costly reconstruction of the marking set at each delete request.

We first divide ! requests into disjoint [I/k] stages of which each possibly except the last consists of consecutive
k requests. We now consider the i-th stage. Suppose that we have a set of items § (7) at the beginning of this
stage. Let S(i) = Remain(i) U Delete(i) where Remain(s) (resp. Delete(i)) consists of items in S(2) which will not
(resp. will) be deleted in the stage. Note that |Delete(i)| = O(k). We first create a marking set R (resp. D) with
respect to Remain(i) (resp. Delete(i)) in O(IK) time. If K € R, this implies that for all requests in this stage we

_ have already had a feasible solution. If K ¢ R, we do the following. For each item addition/deletion request, we
maintain Delete(i) by adding/deleting a requested item, and update a marking set D with respect to this request
by using the above naive method. That is, for each add request we incrementally update D, which takes O(K)
time, and for each delete request we reconstruct D from scratch with respect to the current Delete(i), which takes
O(kK) time. Whenever we obtain a new marked node z in D, we check whether K’ — z € R or not. If so, we have
a feasible solution with the current request. Thus, each stage takes O(IK + #a(i) - K + #d(:) - kK') time, where
#a(i) (resp. #d(i)) is the number of add (resp. delete) requests in stage i. Therefore, our algorithm in total takes
O([I/KIK +#a-K +#d-kK) = O([1/k|IK +#d - kK), where #a (resp. #d) is the number of add (resp. delete)

requests among [requests. Hence we have the following theorem:

Theorem 1 The offline dynamic Subset Sum problem with | requests, including ##d delete requests, and a target
value K can be correctly computed in O(vFd +1 1K) time. m]

Since the naive algorithm takes O((g#d + 1)IK) time, our algorithm speeds up the running time by a factor of
VFIF 1. Figure 2 shows one stage of our algorithm Offline Dynamic Subset Sum described above.

Procedure Stage(i)
1) o Let Remain(i) and Delete(i) be defined as in the text. Let Request(z) be a sequence
of all requests in stage i.
e Create two marking sets R and D with respect to Remain(i) and Delete(i), respec-
tively.
(2) if K € R then {For each request r; € Request(d), set bit; := 1;}
3) else for each request »; € Request(i) do
(3.1) e if 7; is an add request (add, @) then {Update D by o; Add o to Delete(i);}
(3.2) o if r; is a delete request (delete, @) then
{Delete o from Delete(i); Reconstruct D with respect to Delete(i);}
(3.3) o Check whether there exists = € D such that K — 2z € R. If so, set
bit; := 1. Otherwise, set bit; := 0.
end

Figure 2. Stagé(i) of Algorithm Offline Dynamic Subset Sum

3 Further Applications of the Technique

We first assume that a query for the feasibility check is issued after each update request. Let Ty(l) be the
running time of each query where ! is the total number of requests. We denote a query made right after all requests
in S by the query for S. Suppose we have a problem which has the following properties:

(1) There exists an offline partially dynamic algorithm which runs in T (-) time for each add request.

(2) For a set S of add requests, the result of the query for S does not depend on the order of requests in S, but
* only dépends on S itself. Let Ty(|S|) denote the running time to answer the query for S by an algorithm Aj.

(3) For a-set S of add requests, let it be separated into two disjoint subsets S; and S3. Then we assume that
the result of the query for S can be obtained in T,(|S1}, |S2}) time by combining information obtained when we run
the algorithm Ay for getting results of two queries for S; and S».

For a problem with the above properties, we can construct a fully dynamic semi-online algorithm in the same
way as in the previous section. Remark that in a semi-online problem for each update request o we are given a
superset S5, of size O(k) which contains a set DS, of all items to be deleted in the succeeding k update requests.

That is, DS, C SS, and |SS,| = O(k). Notice that the technique in the previous section works correctly by
handling SS, instead of handling DS,. ‘

Theorem 2 For a problem with the above properties, there is an
(/R Tp() + #d - Ty (k) + #a- Ta () + 1 Te(k,) +1- Ty (1)

time semi-online dynamic algorithm where [, #d, and Fta are the total number of requests, the number of delete

requests, and the number of add requests, and k is the number of requests in each stage. [m}

3.1 The Connectivity Problem

The semi-online dynamic version of the connectivity problem is as follows: Given an initial undirected graph‘
Go = (V,0) with n vertices and no edges, we have a sequence of the following requests: insert-edge(v, w) requests
for an insertion of an edge (v, w), delete-edge(v, w) requests for an deletion of an edge (v,w), and check(v, w)
requests for checking whether v and w are in the same component or not.

Notice that we have an partially online algorithm which takes a(l, n) amortized time for each insertion where [
is the total number of add requests by using UNION-FIND data structures [18]. Note that a(-) is the functional
inverse of the Ackermann function.

Notice that the second term of the time complexity appeared in Theorem 2 (that is, #d- T (k)) can be replaced
by #d- k- T,(-), since instead of using algorithm A; we may use k incremental updates for each delete requests.
Therefore, we have the following theorem:

Theorem 3 We have an O(\/I(I + n)v/Fd/a(l,n) +1- a(l,n)) time semi-online dynamic algorithm for the con-
nectivity problem. » a

Notice that Frederickson’s fully dynamic online algorithm [7] takes O(,/m;) amortized time for each add/delete
request where m; is the current number of edges. For the offline dynamic version of the connectivity problem, we
can implement each update request in O(log n) amortized time by using Sleator and Tarjan’s dynamic trees [16] as
follows: We first define an edge weight as co for an edge which will not be deleted and i for an edge which will be
deleted by the i-th delete request. Then, the problem becomes the maintenance of maximum spanning tree, which
takes O(logn) amortized time for each request. Since our algorithm above takes O(\/(I+ n)/Iv/FEd\/a(, n) +
a{l,n)) amortized time for each request, our algorithm runs faster than Frederickson’s algorithm and algorithm
with dynamic trees when #d is small.

3.2 The Integer Knapsack Problem

As an application of the semi-online dynamic connectivity problem, we devise an semi-online dynamic Integer
Knapsack algorithm in this subsection. Here, the Integer Knapsack problem is defined as follows:

The Integer Knapsack problem [14]: Given integers ¢;, j = 1,...,n and K, are there integers z; > 0,
j=1,...,nsuch that }°0_, cjz; = K7

It is well known that the Integer Knapsack problem can be solved by checking whether 0 and K are in the
same component or not in the graph G = (V, E) which is defined as follows: V = {0,1,..., K}, E = {(4,) | ,j €
Vij—i=cjforsomej € {1,...,n}}. Therefore, we can implement an semi-online dynamic algorithm for the
Integer Knapsack problem by making use of the above defined semi-online dynamic algorithm for the connectivity
problem. Notice that at each add (resp. delete) request (add, ¢;) (resp. (delete, c;)), we have to add (resp. delete)
. at most K edges to (resp. from) G. Therefore, we have the following theorem:

Theorem 4 We have an O(I\/#d- K - o(IK13, K) +1- a(IK5, K)) time semi-online dynaf\m'c algorithm for the
- Integer Knapsack problem. =

Notice that the above time complexity is faster than the naive bound of O(12K) which creates an associated
graph and runs a linear time connectivity algorithm at each request. The above time complexity is also faster than
O((IK)'%) time obtained by using Frederickson’s fully dynamic online algorithm [7] for the connectivity problem.

3.3 The Optimization 0-1 Knapsack Problem

The optimization 0-1 Knapsack problem is defined as follows:

The optimization 0-1 Knapsack problem [14]: Given the integers (wi,...,Wa;Cty..nsCnj K), maximize
Y e €55 subject to 307, wiz; < K and ¢ =0,1.

We now have the following theorem:

Theorem 5 We have an O(1%/4¢(F#d + 1)1/4) time semi-online dynamic algorithm for the optimization 0-1 Knap-
sack problem where ¢ is the optimal value. o

Notice that the above time complexity is faster than the naive O(I%c) bound using O(i%c) time dynamic pro-
gramming [14] at each request.

4 The minimum range balanced cut problem

From now on, we assume for simplicity that all edge weights are distinct. We will discuss the case in which
some edge weights are not distinct in a full version of this paper. Let Efa, Bl={e€ E|a< we<p} An
interval [, B] is said to be feasible if E[a, 8] contains a balanced cut. Otherwise, we say that the interval {a, f] is
infeasible. An interval [, 8] is said to be critical when it is feasible and any proper sub-interval is infeasible. From
now on, let Tyuin (resp. Tmaz) be a minimum (resp. maximum) spanning tree of G. -

The feasibility of an interval [e, 8] can be tested in O(m + n?) time as follows. First, we contract all edges in
E — Ela, 8] because any of these edges cannot be a member of any cut in E[e,). When an edge (u,v) is contracted,
% and v are merged into one to form a supernode. Let G’ = (V', E{e, f]) be the resulting graph, where V' is the
set of supernodes. G' can be constructed in O(m) time. Let f(v) for v € V' denote the number of vertices of V
which are contracted into a single supernode v. The feasibility of [e, 8] is then reduced to the problem of whether
there exists a subset V' C V' such that 3 ¢y f(v) = n/2. This is exactly equivalent to the Subset Sum problem,
and can be solved in O(n?) time [14]. Since for any cut C, an edge e with the maximum (resp. minimum) weight
among the edges in C belongs to Tinae (resp. Tmin) on the assumption that the edge weights are distinct [10], we
shall assume in this paper that E has been already reduced to Tmin U Times. Furthermore, applying the general
approach proposed by Martello et al. (13], we can show that O(n) feasibility tests are sufficient.

We now briefly explain our algorithm called MRBC based on [13]. Let wy,ws, -, w, be edge weights sorted
in ascending order, and let ¢; be an edge such that w(e;) = w;. Letting I = 1 and u = 1, we start with the
feasibility test of [w;,w,] and G' = ({vo},®) consisting of a single supernode v, obtained by contracting all the
edges. In general, the algorithm proceeds by alternately executing unfolding and contraction phases. As long as
[wi, wy] is infeasible, the unfolding phase repeats the following steps: (1) we unfold e,1; and update u by u +1,
and (2) test the feasibility of [w;,w,]. Eventually, the unfolding phase finds the lowest % such that [wy, wg] is
feasible. Once [w;, wy] becomes feasible, the algorithm enters into the contraction phase. The contraction phase

repeats the following steps: (1) we contract ¢; and update I by I +1, and (2) test the feasibility of [w;, wz]. When
[wi, wg] becomes infeasible, the algorithm concludes that an interval [wy—1, w;] is critical, and then it enters into
the unfolding phase again with [w), wg]. It is known [13] that the interval [w-,wy.] with the minimum range
among all feasible intervals generated in the above process is the desired minimum range, and that the minimum
range cut is easily constructed from Efw.,w,.]. Notice that since G' = (V, Efw;, w,]) is maintained at each step
and from Lemma 1, each feasibility test can be done in O(n?) time including the construction of G'. Thus, since
this algorithm executes the feasibility tests O(n) times [13], we need a total of O(m + n3) time for the feasibility
testing. Since Tnin and Tinae can be computed in O(m -+ nlogn) time [8] and sorting the edges of Trin U Trnas
requires O(n logn) time, we can establish the following theorem. /

Theorem 6 The minimum range balanced cut problem can be solved in O(m + n3) time. [m]

Notice that, in the above Algorithm MRBC, the feasibility test of an interval [w;, w;] corresponds to the
feasibility test of the Subset Sum problem of a set {f(v) | v € V'} such that V' is the vertex set obtained by
contracting all edges in E — Efw;, w;]. Let G ; be the graph obtained by the above contractions, and let f(v) be
the size of a supernode v in Gi,;. When [w;, w;] is infeasible, Algorithm MRBC unfolds the edge ej4+1 and creates
Gij+1 from Gy ;. This unfolding corresponds to the following three requests to the current Subset Sum instance:
(delete, f(p)+ f(9)), (add, f(p)), and (add, f(q)), where €;41 = (p,) in Gi j+1. On the other hand, when [ws, wj] is
feasible, Algorithm MRBC contracts the edge e; and creates Git1,; from Gj, ;. This contraction corresponds to the
following three requests to the current Subset Sum instance: (delete, f(q)), (delete, f(q)), and (add, f(p) + f(q)),
where ¢; = (p, q) in G; ;.)

When we apply our offline dynamic Subset Sum algorithm to the minimum range balanced cut problem, the
major difficulty lies in that, when Algorithm MRBC executes the contraction (resp. unfolding) phase, we cannot
predict beforehand when it will switch to the unfolding (resp. contraction) phase. This implies that it is impossible
to generate the entire sequence of requests to be made to the initial Subset Sum instance at the beginning. However,
we can overcome this difficulty by using the following fact: Stage(i) in Figure 2 can run correctly as long as it uses
a subset A(i) C Remain(i) (resp. B(i) = S(i) — A(i)) instead of Remain(i) (resp. Delete(i)), even if it does not
know either Delete(i) or Remain(i) in advance. This is because, since A() is a subset of Remain(i), A(i) will not
be destroyed in this stage. Moreover, the time complexity of the algorithm remains the same if |B(i)| = O(k).

Suppose that we are given the current interval [w;, w;] and the corresponding graph G; ;. In this case we have
a full knowledge of the k edges to be contracted (resp. unfolded) if & consecutive contractions (resp. unfoldings)
occur in the next k feasibility tests. This is because contractions and unfoldings of edges occur in the ascending
order of edge weights. Therefore, we can obtain a superset of 2k edges that are contracted or unfolded in the next k
feasibility tests. In terms of the Subset Sum problem, in the succeeding k feasibility tests, the items corresponding
to both endpoints of these edges may be deleted, while others may not be deleted. This implies that we can
determine O(k) items that may be deleted, but that the other items are not deleted during solving the succeeding
k Subset Sum instances. These O(k) items are called dangerous and the others safe. We are sure that any safe
item will not be deleted by any means in the succeeding k Subset Sum instances.

In order to translate our problem into the semi-online dynamic Subset Sum problem, we divide a sequence
of O(n) feasibility tests that will occur in Algorithm MRBC into O(y/n) disjoint stages of which éach, possibly
except the last, consists of \/ consecutive feasibility tests. At the beginning of each stage 7, we construct the
current interval [wy,, w;] and the corresponding graph Gh,j, and compute the two sets of dangerous and safe items.
We then treat dangerous items as Delete(i) and safe items as Remain(i) and construct a corresponding marking
set R. With this preprocessing, we execute Algorithm Stage(i) in an online manner. Since we do not know the
sequence of O(n) feasibility tests, we shall modify the algorithm Stage(i) as follows: That is, every time we execute
a contraction or unfolding of edge e, we generate the corresponding three requests, as described above, and perform

Step (3) for each generated request. Since the marking set R is not destroyed by the succeeding k contractions or
unfoldings, Stage(i) runs correctly after the above modifications. .

Therefore, the minimum range balanced cut problem can be solved as an instance of the semi-online dynamic
problem.

Theorem 7 The minimum range balanced cut problem can be solved in O(m + n%5) time. [m}

Furthermore, we can extend the above result to the e-balanced problem which we give only the results in this
abstract.

‘Theorem 8 The minimum range e-balanced cut problem can be solved in O(m + n?/\/€) time. w

SE X

{1] Ahuja, R.X., T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, .and Applications, Prentice Hall,
Englewood Cliffs, N.J., 1992.

[2} Buchsbaum, A.L., P.C. Kanellakis, and J.S. Vitter, A data structure for arc insertion and regular path finding, Proc.
1st ACM/SIAM Symp. Discrete Algorithms, (1990), pp. 22-31.

(3] Dai, Y., H. Imai, K. Iwano, N. Katoh, K. Ohtsuka, and N. Yoshimura, A new unified approximate approach to the
minimum cut problem and its variants using minimum range cut algorithms, manuscript, 1992.

[4] Eppstein, D., Offline algorithms for dynamic minimum spanning tree problems, Proceedings of 2nd Workshop, WADS
91, Lecture Notes in Computer Science 519 Springer-Verlag, (1991), pp. 392-399.

[5) Eppstein, D. G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, and M. Yung, Maintenance of a minimum spanning
forest in a dynamic planar graph. Proc. st ACM/SIAM Symp. Discrete Algorithms, (1990), pp. 1-11.

[6] Fiduccia, C.M. and R.M. Mattheyses, A linear time heuristic for improving network partitions, In Proceedings of the
19th Design Automation Conference, ACM/IEEE, (1982), pp. 175-181.

[7] Prederickson, G.N., Data structures for on-line updating of minimum spanning trees, SIAM J. Computing, 14 (1985),
pp. 781-798.

[8] Fredman, M.L. and R.E. Tazjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal
of the ACM, Vol. 34, No. 3, (1987) pp. 596-615.

[9] Garey, M.R. and D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-completeness, W. H.
Freeman and Company, New York, NY, 1979.

[10] Katoh, N. and K. Iwano, Efficient algorithms for minimum range cut problems, IBM Research Report, RT0057 (1991)
(also appeared in Proceedings of 2nd Workshop, WADS "91, Lecture Notes in Computer Science 519 Springer-Verlag,
(1991), pp. 80-91).

[11] Kernighan, B.W. and S. Lin, An effective heuristic procedure for partitioning graphs, BSTJ, Vol.49, No.2, (1970), pp.
291- 307.

[12] Lengauer, T., Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, West Sussex, England,
1990.

{13] Martello, S., W.R. Pulleyblank, P. Toth, and D. de Werra, Balanced optimiza.tién problems. Operations Research -
Letters, Vol. 3, No. 5, 275-278. 1984.

[14] Papadimitriou, C.H. and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1982,

[15] Saran, H. and V.V. Vazirani, Finding k-cuts within twice the optimal. Proc. 32nd IEEE Symp. Found. Compt. Sci.,
(1991), pp. 743-751.

[16] Sleator, D.D. and R.E. Tarjan, A data structure for dynamic trees, Journal of Computer and System Sciences, 26, pp.
362-391, (1983).

[17) Stone, H.S., Multiprocessor scheduling with the aid of network flow algorithms, IEEE Trans. Software Engineering,
SE-3 (1977), pp. 85-93.

[18] Tarjan, R.E., Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1983.

