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Abstract The subject of the paper is to propose two new priority-lists for scheduling of timed Petri nets. Priority-lists

are usually constructed based on subnets, called hortlenecks in timed Petri nets, and bottlenecks by means of the Sifakis
hound, a lower bound on completion time. have been widely used. Since no feasibility of scheduling is considered in its
computation, actual minimum completion time tends to be much greater than this bound, possibly preventing priority-list
scheduling algorithm utilizing this bound from producing good approximate solutions. Both of the proposed priority-lists

are constructed by taking feasibility into consideration, and our experimental evaluation shows their superiority over
those by the Sifakis bound.
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L. Introduction
Two new priority-lists for priority-list scheduling of timed
Petri nets under infinite server semantics are proposed. It is
experimentally evaluated that scheduling algorithms using
these priority-lists produce better solutions than FM_DPLA
that has becn showing best performance among those
proposed in [26.27].

Scheduling theory is one of research fields that have been
well investigated from both practical and theoretical
viewpoints. The results are summarized in [4,16.17} for
classical results: see [6.7.8] for bounding on approximate
solutions and complexity resutts, [10,11] for scheduling in
parallel processing. Although timed Petri nets are useful
models in scheduling theory, related research results are much
less than those using task graphs: see [5.9.23.24] for
scheduling in marked graphs, [12,13.14.21,25] for minimum
cycle time problems, [1.19] for periodic scheduling in timed
Petri nets, [26.27] for priority-list scheduling in timed Petri
nets, [28.29.30] for minimizing initial markings of ordinary or
timed Petri nets.

Timed or ordinary Petri nets have two extreme possibilities
in interpreting transition firing: infinite-server semantics and
single-server semantics. The first semantics allows any
transition to fire concurrently with itself, while this is not the
case with the second one. Various processors and their total
numbers are explicitly represented as places (called processor
poolsy and tokens residing within them, providing flexible
models for scheduling problems. Ttis very likely that average
completion time in cyclic scheduling can be reduced if cyclic
structure of Petri net models is fully utilized. These explain
some advantages of timed Petri nets over task graphs that have
been used in ordinary scheduling problems.

We consider priority-list scheduling in timed Petri nets,
that is, scheduling is done by choosing a transition of top
priority from a priority-list. Priority-lists are constructed based
on bottlenecks (each being a certain set of transitions defined
later), which are counterparts of critical paths commonly used
in ordinary scheduling. These lists are fixed as predetermined
or can be changed dynamically. [26.27] proposed four
algorithms SPILA, DPLA, FM_SPLA and FM_DPLA. SPLA
and FM_SPLLA (DPLA and FM_DPLA, respectively) are
based on fixed idynamic) priority-lists. It is reported in
[26.27] that experimentad results for more than 25290 total test
data shows superiority of FM_DPLA among them.

The bottlenecks used in constructing their priority-lists are
extracted by means of the well-known Sifukis bounds [25],
which are lower bounds on completion time and which have
been widely used in performance evaluation of Petri net
models. Since no feasibility of scheduling (that is, firability of
sequences of transitions in timed Petri nets) is considered in
the computation of the Sifakis bound, actual minimum
completion time tends to be much greater than this bound,
possibly preventing scheduling algorithms, utilizing priority-
lists constructed by means of this bound, from producing
good approximate solutions. This s observed from
experimental results on FM_DPLA: it is very often that,
because of firability checking, transitions of middle priority are
selected instead of those of high priority.

The subject of the paper is to propose two new ways of
constructing priority-lists. The first one is modification of
markings uscd in the computation of the Sifakis bound. An
initial marking Mg has been used in computing this bound.
while our computation replaces it by a marking My, called an
active marking, which consists of only tokens having
possibility to be used in subsequent firing of transitions. The
bound obtained by this modification is no less than the Sifakis
bound, improving a lower bound on completion time. This

modification incorporates firability to some extent.

It is experimentally observed that FM_DPLAM has better
performance than FM_DPLA, where FM_DPLAM is
FM_DPLA using priority-lists constructed from bottlenecks
based on this modified bound.

The second one is completely new. For each transition tf
that can fire on a current marking of a Petri net, it finds a
depth-first-search tree by starting from tf and by searching
edges in their direction. This tree intends to represent how
tokens produced by firing t¢ once are used by other transitions.
Each of places p and transitions t of the tree has a weight
supply(p) or rate(t), which is computed during the search. A
weight, supply(p), of a place p intends to represent as a ratio
how many tokens, among those that can be brought into p, are
produced by firing t¢ once. Another weight, rate(t), of a
transition t intends to denote as a ratio how many tokens,
among those deleted from input places of t, are produced by
firing ty once. The total sum of all rate(t) is denoted as
cffect(tp). The value effect (tf) is expected to show, as the sum
of such ratios, to what extent firing ty once hepls other
transitions become firiable. A new priority-list is constructed
according to values effect(tf) of all transitions t¢ that can fire on
a current marking: transitions ty with larger values of effect(tg)
get higher priority. This priority on transitions considers their
firability as the most significant measure rather than time
required by their subsequent firing.

Experimental results show that YW_PLA has better
performance than FM_DPLA and is slightly better than
FM_DPLAM, where YW_PLA is a scheduling algorithm
based on this new priority-lists. The running time of YW_PLS
is much less than those of FM_DPLA and FM_DPLAM.

2. Basic definitions

We assume that the reader is familiar with graph algorithms
and Petri net theory (see [6,20,22], for example). A digraph
is denoted by G=(V.A), where V and A are the sets of
vertices and directed edges (often called arcs), respectively.
We denote a directed edge e from u to v by e=(u,v). Let
*u={wl(w.,u)e A}, u*={vl(u,v)e A} for ue V. If I*ul=0
(lu*I=0) then u is called a source (a sink) of G. The graph
obtained from G by replacing each directed edge with an
undirected one is called the underlying graph of G. G is
weakly connected if the underlying graph of G has an
undirected path between any pair of vertices.

A Petri net is a simple bipartite digraph PN=(P,T.E,o.,B),
where P is the set of places, T is that of iransitions

PNT=¢, E=E;,UE;, E{,SK(T.P)={(u,v)lue T,ve P},
Eou =K (P, T)={(u,v)lue P,ve T},
oc:Eom—>Z+ (nonnegative integers) and B:Ein%Z*' are weight
functions. If a(e)=P(e')=1 for any e,e'€ E, or if weight
functions are independent of discussion then PN is denoted

simply as PN=(P,T,E). We always consider PN to be a simple
directed digraph unless otherwise stated. PN is a marked
graph if (Vpe P)I*pl,I*pi<1. PN is a state machine if (Ve T)
It lt*I<1. Let C=C+—C'=[cij+]f[cij“] denote a [PIXIT| matrix,
called the place-transition incidence matrix of PN, which is
defined by
e PP IR0 B, % a(pit) if (Pi.t)€ Eour,
0 otherwise, 0 otherwise.

A marking M of PN is a function M:P—Z*. We denote
IMI=Zpe pM(p). A marking initially given is called an initial

marking. A transition t is firable on a marking M
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consecutively k times (k21) it M(p)2k-a(p,l) (Vpe *1).
Firing such a transition t on M consecutively k'(<k) times is
to define a marking M' such that. for Vpe P,
M'(p)=M(p)+k"-B(Lp) il pe t*-*1. M'(p)=M(p)-k"a(p.t) if
PE F-U, MU(p)=M(p)-k"-a(p.0)+k"-B(t.p) il pe t*~*( and
M'(p)=M(p) othcrwise. We denote M'=M[t> if k'=1. Single-

server semantics is to restrict k' as k'=1 even if k>2: infinite-

server seniantics is o allow k' to take any vatue with 1<k'<k.
In this paper we use the term "Petri nets” under infinite-server

semantics unless otherwise stated. Let 6:1“ <.l be a

sequence of transitions, called a firing sequence, and 8(1) be
the total number of occurrences of tin 8. d=[8(1) ... S(IH)Itr
(transposition of a matrix or a vector) is the firing count
vector of 8. For a marking M, 8 is legal on M if tij is firable
on Mj,l. where Mg=M and Mj:Mj»l“ij>~ = s Mg is
denoted as M{&>. For a ITl-dimensional vector X=[x] ...
xp I with n=IT1, & is legal on M with respect to X it § is
legal on M and 8 =X. We denote FXI:Z‘.te TX(t). M([8> is
reachable from M. For any subset T'CT. the subnet
PN =(P'.T"E') (generated by T is defined by
P'={pe PFpnT'#Z or p*nT'=B} and E'={(p'.1)., (t.p")
te T', p'.p"e P'}. For a subset SCPUT, let PN-S denote the
Petri net obtained from PN by deleting all element of S, where
deleting ve S means deletion of v as well as all edges incident
upon v. Let 0« 1. respectively ) denote a vector with every
component equal to 0 ( 1 ). A ITi-dimensional vector X with
every component being a nonnegative integer is called a 7-
invariant of PN if X#0 and C-X=0. A IPl-dimensional vector
Y with every component being 4 nonnegative integer is called a
P-invariant of PN if Y#0 and Y!'-C=0. Any linear
combination X' of some T-invariants of PN is also a T-
invariant if all clements of X' are nonnegative. A T-invariant X
is called elementary if no linear combination of other T-

invariants of PN is equal to it. Similarly elementary P-invariant
is defined.

3. Timed Petri nets and scheduling

3.1. Timed Petri nets.

A timed Petri net is a Petri net PN=(P,T.E,a..) with a
delay function D:T—Z%, D(t) is called the delay of te T. It is
often denoted us PN=(P.T.E.a.,8.D) in the following. In this

paper we assume that any transition t has D(t)>0. When we
consider a timed Petri net PN, time instant or time interval is
always associated with markings and firing of transitions of
PN. (A Petri net without time is sometimes called an ordinary
Petri net in order to distinguish it from a timed one.) An initial

marking means a marking at time instant O Z+. A marking M
at time instant A is often denoted as M<A>. Firability of
transitions is the same as those of ordinary ones. The
difference exists in a resulting marking. If a transition t fires
on a marking M<A> then at the same time (more precisely, at
time instant A+¢ for a very small rational number £>0) M is
changed to another marking M’ such that, for VpeP.
M'(p)=M(p)-0ip.t) if pe *t, and M'(p)=M(p) otherwise. We

formally define relation of M<A> and M<A®> (he 7+ (150,

Suppose that X' (X", respectively) is a ITI-dimensional vector
such that X'(t") (X"(t")) denotes the total number of firing of

'e T whose firing begins at time instant T', AST'<A+® (whose

firing ends at time instant ", A<t"<A+). We define two m-
dimensional vectors

B(1,0)=[X"(1)-b | (1,0)..... X' (1)- by (o],
B(LB)=[X"(0-b (1.B).... X" (1)- by (,B)]TF
for P={p|.....pm} (m=IP}) such that
— . if < Q i 3 *
bs(l.mzr alps.) i pse 1, by(L.B)= Blps) if pset
0 otherwise, 0 otherwise,

s=1. ... m. Then M<M®> is defined by
MMO>M<A> Ly (BLo)+B(LB)).

M<A+O> g reachable from M<A>_If  fires at time instant A
and no other transition fires until time instant A+D(t) then we
denote a marking at time instant A+€ by

M<}"+5>:M<7“>[t,oc>=M<7‘*>+B(t,oc)
and a marking at time instant A+D(t) by

M<ADO>=M<A>[1> = M<A> + B(t,0) + B(,B).

In this paper we assume that a timed Petri net
PN=(P,T.E,0,3.D) has a specified set L={h{,...,h;} P,
21, such that Ulsing(hi)zT* where

T(hj)={t€ Tihje *tnt*} and a(h;,)=B(t.hj)=1

for any te T(h;j), i=1....,r. Each hje L is called a processor
pool (or simply a p-pool) of type i. PN'=PN-L is called the
underlying Petri net of PN.

3.2. Scheduling in timed Petri nets.

We define scheduling in a timed Petri net PN with a set L
of processor pools. Suppose that nonnegative integers
qp.---qr are given, and let Mg be any initial marking of PN
satisfying that Mg(hj)=q;, i=I.....r. This means that there are r
types l....r of processors (represented by processors pools
hy,...hy) and that total q;(=Mgq(h;)) processors of type i are
available initially for i=1....,r. In the following, unless
otherwise stated, we assume that any initial marking of PN is
as above. All processors of type i has the same capability and
for each 1, 1<i<r. Let
9max=max{qy,...qy}. For a given IT-dimensional vector X,
let

Y(T.X)={(t.1),.... (,X()Ite T},
where X(t) denotes the element of X corresponding to te T.

We assume that timed Petri nets satisfy the following
conditions (C-1) - (C-4) unless otherwise stated.

(C-1) no wait: any transition has to fire as soon as it
becomes firable.

(C-2) nonpreemptive: once a transition t starts firing at

are  numbered 1...., qi-

some time instant je Z* then it keeps firing through j+D(t) and
cannot be interrupted during this interval.
(C-3) Only time instant that is an integer is considered,

where we consider both M<A> and M<7\+s>=M<7‘>[t,0t> as

markings at time instant A.
(C-4) Transitions can fire only at some time instant.
Suppose that we are given a timed Petri net
PN=(P,T.E,0,B,D). an initial marking Mg and a ITI-
dimensional vector X. Let
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Zri{ Lo A=l Qmax b and
L(t)={hje LIhje ®1nt*} for each te T.
For any subset
S= 1 ol 2224
with r'sr, I1<i) <. <ip<r, ISjk=dyy (k=10 let
Z(S)={i)...ap} and AS)={j[....Jp ).
A scheduling is a function
GW(T X )7 52 L
satisfying (1)-(5). where o((1.x)) is written as o(t.x) (or
notational simplicity, and the first or second element of 6(1,x)
is denoted as 6(t.x)1€ Z* (lime instant) or o(1.x)2€ ZZI'XA
set of processors of some types). respectively:

(a

(1) if M is a marking at time instant 6(t.x)| then t is firable
on M for any (t.x)e W(T.X);
(2) o(t.x) is time instant when firing of t is supposed to
begin for each (L.x)e Y(T.X).
(3 if o(tx)={{i{.jr}.....{ipJp )} for some r'<r then
(i) and (ii) hold:
(i) {hfyoenhy b =L
(i1) the x-th firing of t is associated with processing by
the jk-th processor of type iy. which is selected
from available ones, for each k. k=1....r'";
(4 if there is any pair o(t] .x )2 and 6(t7.x2)2 such
that ty=ty and {iy.jk }€ o(t}.x])2NG(t2.x7)2 then
O(1].x1)120(12.x2) 1 +D(12) or
ot x+D DS oftr.x2) 1
(5 IGQ.XHSqJ for any type j. 1<j<r, and any time
instant Ae Z+, where
0. M={(1.x)e Y(T.X)lje Z(o(t.x)7),
o(t,x) | SALo(t,x) [ +D() }.
(Note that the following (6) will be added in handling single-
server semantics: (6) if there is any pair 6(t.x )2 and 6(t,x2)>
with xj<x2 then o(t.x|)1+D(O)<c(t.x2)1.) If r'=1 then
{{ij.Jj}! is denoted as {ij.j| } to avoid extra brackets. Let
To)=max{o(L.x)+Dlix)e V(T.X) }.)
Such ¢ is called a scheduling of completion time T(c) with
respect to M. X and PN. If we obtain a marking M<T(0)>
equal to a given initial marking M0(=M<O>) then ¢ is called a
_cyclic scheduling of period ©(o) with respect to Mg, X and
PN.

We define the Scheduling Problem of Timed Petri Nets

PLS(r;qq,....qyp):
Instance: A timed Petri net PN=(P.T.E,0,,8.D) with a set
L={hy....hy}cP(r=1) of processor pools. r nonnegative
integers qJ.....(. a firing vector X and an initial marking M.
Question: Find a scheduling ¢ of minimum completion time
(o) with respect to M. X and PN.

Example 1. We show an example of PLS(r;qy,....qr)
with r=2. q1=q»=1. Suppose that there are two jobs J|. J»
with Jj(J2 respectively) consisting of two (three) tasks.
denoted as J)={t].t2}. Jp={13.14.15}. and that we have two
types of processors. one processor for cach type. denoted as

Typej={hy}, Typep={hp}. The following constraints are
imposed on the tasks:
(1) t} is to be processed in a unit time by the
processor hy after ty is finished.
(ii) (7 is to be processed in a unit time by the
processor h| after both t} and t3 are finished.
(iii) 13 is to be processed in a unit time by the two
processors hy and hy after t5 is finished.
(iv) t4 is to be processed in a unit
time by the processor hp after t3 is finished.
(v) t5 is to be processed in a unit time by the
processor hy after both t7 and t5 are finished.
A timed Petri net PN=(P,T.E,0.,.D), representing this
situation schematically, is constructed as follows (see Fig. 1):
P={pjli=1,....5}U{hy,h2}, L={hy,hy},
T={tli=1....,5}.
E=E'UE| with
E'={(t1,p1).(p1-12):(12,p2):(P2,L 1),
(t3.p1)-(P2:15)(13.p3).(P3:14),
(14.P4)(P4.15).(15.P5).(P5.13)} ,
Ep ={(h.tp).(t.hDE=1.2.3}0{ (hp,t),(t;,h2)li=3,4,5},
2 if (u,v)=(p,t2), B(u,v):l 2 if (u,v)=(t2,p7),

oz(u,v)=j
l] otherwise, 1 otherwise.
Let X=[1.1.1.1.1]'7 be the T-invariant of PN defined in

Example 1. Every transition te T is assumed to have delay
D(t)=1, and

W(T.X)={(1;,Dli=1,2,3,4,5}.

For the initial marking M=[1,0,0,0,1.1,1]', where the i-th
element denotes M(pj), the following mapping G is a
scheduling with t©(c6)=3 (see Fig. 2):

(i), D=2.{1.1}), o(t2.1)=(1,{1,1}),

o(t3.D=(0,{ { 1.1 },{2,1}}). o(t4.1)=(1,{2,1}),

o(t5,1)=(2.{2.1}).

That is, t3 is firable on M<0>(=M) and it fires at time instant
0, reaching the marking M<1>=[2,0,1,0,0,1,1]t. Then both
to and ty are firable on M<!>, and firing them makes the
marking M<2>=[0,2.0,1,0,1,1]". Both t and t5 are fiable on
M<2>_and their firing results in the marking M<3>=M<0>,
assuring that X is a T-invariant of PN. In this case ©(c)=3 is
the minimum total completion time, and ¢ is a solution to
PLS(2;1,1).

3.3. Average completion time.

Let ¢ be a cyclic scheduling with respect to Mg, X and
PN. where X is a T-invariant of PN. For some integer k=1,
suppose that there is a scheduling ¢" with respect to Mg, kX
and PN. Clearly ¢' is a cyclic scheduling. Then the ratio
(o")/k is called average completion time (with respect to M,
X and PN). The value

min{t(c)/k keZ*t, k=1)
is called the minimum average completion time (with respect
to Mg, X and PN). If there is k>2 such that 1(¢")/k<t(c) then

this implies that fully utilizing cyclic structures in cyclic
scheduling of timed Petri nets may reduce average completion

time. Task graphs can only produce a cyclic schduling ¢' with
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with respect 10 Mg, kX and PN such that t(c')=k (o).
Finding such an integer k giving smaller average completion
time can be done by using timed Petri nets, and this is one of
advantages over task graphs in handling cyclic scheduling.
Fig. 3 schematically explains this situation by means ndeml
charts having T(s"=k-1(5)=10 and 1(c)=9<k-1(5)=10,

where 1(6)=5 and k=2.

4. Priority-list scheduling
In this section only timed Petri nets having at least one T-
invariant as well as at least one P-invariant are considered
unless otherwise stated. Suppose that we are given any
instance of PLS(r:qq,....qy), that is, a time Petri net

PN=(P.T.E.a..p.D) with r processor pools hj in which di
processors are available initially for i=1,....r, an initial
marking M. and a firing vector X that is a T-invariant. In
[26.27] four priority-list scheduling algorithms SPLA,
FM_SPLA. DPLA and FM_DPLA are proposed.
Experimental results for more than 25290 total test data show
superiority ot FM_DPLA. The difference of the four
algorithms is construction of priority-lists. and they are

combined as procedure PLS(9) in [26.,27]. where 0=1 if
SPLA, 6=2 if DPLA., 6=3 if FM_SPLA and 0=4 if

FM_DPLA.

Priority-list scheduling algorithms are represented as a
general scheme GS(8) as follows, where priority-lists are
fixed as predetermined if 9=1. while they are changed
dynamically it 8=2. Note that =0 for each of the three
algorithms FM_DPLA, FM_DPLAM and YW _PLS 1o be
considered in the following. The priority-list L to be used in

GS(8) consists of transitions that are sorted in nonincreasing
order of priority (the first element has the highest priority).
The formal description of PLS(8) is as follows.
procedure GS(9);

begin
1. w0 M<T>Mq:
for each te T do X'(1)¢-0:
for i=1 to r do ji<1: /* the least index of available

processor of type i */

Construct a priority-list L.
- Choose from L a transition t of highest priority. with

‘03

X'(1)<X(t), among those that are firable on M<T>;
/* Note that X'(1)<X(1) means X(1)>0 */

/* tis firable if and only ifjikSqik. k=1,...r(t),
where L(l):{hi1 ..... hil‘(l)} */
4. if a transition (, with X'(t)<X(t),

that is firable on M<™ is found then
begin

G(I.X‘(l})e(r.{{il,jil} ..... “r(l)-jir(””)
for L(t)=|hi1 ..... i

X=X (0)+1:

for k=1 to r(1) do ji jj +1:

for cach pe “t do M<T>(p)e—~M<T>(p)-o( p.0):
if 8 i~ cven then goto Step 2
else goto Step 3
end
else /* find the nearest time instant T>T at which
some transitions end firing */

if there is t'e T with X'(')<X(t) then
begin
Te—min{o(t".X'(t)) 1+D(t) te T, t"'<1,
o(t".X'()) 1<t <o(t". X' (1)) | +D(1) };
for each te T with o(t".X'(1))+D(t)=1" do
begin
for each pe P do
if pe t* then
M<T>(p)M<T">(p)+B(1,p)
else M<T>(p)e~M<T">(p);
for each hike L(t)={ hil“"’hir(t)] do
jik‘_"jik‘l
end;

T,
goto Step 3
end

else
halt
end;

Let O(PL) denote time complexity for computing L, and let
X=X 7 XU, X=Zicp XODEO and Q=X G-
Time complexity of PLS(8) is as follows:
OPL(D+IPITIX +xQ) if 6=1;
O((PL2)+PITIXHIX+XQ) if 6=2.

5. Bottlenecks and priority-lists
We define S-bottlenecks, bottlenecks by the Sifakis
bounds [25] on completion time of timed Petri nets. Also
explained is some ways of constructing priority-lists based on
S-bottlenecks. They are used in the four algorithms SPLA,
DPLA, FM_SPLA and FM_DPLA [26, 27]. Two new ways
of constructing priority-lists are also given.

5.1 Bottlenecks.
Given an initial marking Mg, a P-invariant Y and a ITI-
dimensional vector X of PN, let
X, Y)=(YI-C™D-X)/YT- My
be called the Sifukis bound [25] with respect to X and Y,
where Dis a [TIXITI diagonal matrix with elements djj such that
D(ti) if i=j,
dij
0 otherwise,
for i,j=1,...,ITl, where T={ty,...,tyy}. Let
O(X,PN)=max{(X,Y)IY' is an elementary
P-invariant of PN }.
We call 0(X,PN) the Sifakis bound of PN (with respect to X).
Let Y be a P-invariant with o(X,Y)=u(X,PN),
Py={pePIY(p)>0} and Ty:up{5 PY(*pup"‘),
where P' is the place set of the underlying Petri net PN' of
PN. The set Ty is called a S-bottleneck of PN (or the S-
bottleneck with respect to X and Y). The following
proposition shows that ®(X.PN) is a lower bound on the
period of any cyclic scheduling of timed Petri nets.
Proposition 1 [25]. Suppose that PN is a timed Petri net
having a T-invariant X and at least one P-invariant, and let ¢

be a cyclic scheduling of period t(c) with respect to M, X and
PN. Then
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T(G)ZW(X,PN). ¢

The value axX.PN) can be computed by means of a linear
programming as shown in the following proposition.

Proposition 2 [2,3]. The Sifakis bound ®o(X.PN) of
Proposition 1 can be computed from an optimum solution Y
given by solving the following linear programming problem:
w=Y.C~D-X
YI.C=0. Y20 and YI"Mg=1. o

Example 2. PN of Fig. | has two clementary T-
invariants

X 1=12.1.0.0.0]U. X5=[0,1.2,2,2|tr,
where the j-th element of Xj denotes Xi(lj). [t also has four
elementary P-invariants
Y 1=[1,1.0.0,1.0,01U, Y2=[0.0.1.1.1.0,0]tr,
Y 3=[0.0.0.0.0.1.0J, Y4=(0,0,0.0.0.0,1 LT,
where the j-th clement of Y; denotes Yi(pj). Let
X=[1.1.1.1.1].
which is a T-invariant of PN. Then we have
o(X,Y )=5/2=2, o(X.Y)=3/1=3, i=2.34.
Hence
o(X,PN)=3,
Py,=lp1-p2.p5} -
Py,={p3.p4.p5} .
Py,=thy}.

maximize

subject Lo

TY|=“1'[2~[3’[5}"
Ty,={13.14.151.
TY3={11,12.13].

PY’A:[IIQ} . Ty ={13.14.15}. ¢

5.2. Priority lists.

We explain three measures MR, i=1. 2, 3. used in
determining priority among transitions in [26, 27]. We fix PN,
Mg and X in this section. The first measure is

MR 1 if D1)y>D(t') then t has priority over t'.

Let Y be a P-invariant with o(X.PN)=w(X.Y) and Ty be the
bottleneck with respect to X and Y. The second measure MR2
is defined as follows:

MR2: if te Ty and t'¢ Ty then t has priority over t'. The
third Measure MR3 is a little complicated, and is based on the
costs given by the following procedure. We provide a {TIx{
matrix [ in which any element 1(i,j)=0 initially, where { is the
total number of clementary P-invariants of PN,
procedure AC;

Stepl. Find all elementary P-invariants Yi..... Y¢ of PN
by using the Fourier-Motzkin method (see [14]);
Step2. For each Yj. repeat Steps 3 and 4;
Step3. Compute wjzw(X,Yj):
Step4. For cach tje Tyjﬂ (i) =y
Step5. For each tje T. sort pu(i, 1),...,u(i.0) in
nonincreasing order, and reindex them as
w(i. Dz 2pl):
Step6. Let p(i) denote the {-dimensional vector
[ (LI, i=1. T
Sort i().....u(IT) in lexicographically
nonincreasing order, and reindex them as
M= ZzpdTh:
MR3 is defined by using p(1),....u(IT):
MR3: if p(iy>u(j) then tj has priority over -
Example 3. PN of Fig | has four elementary P-

invariants Yj. j=l....4, as given in Example 2. Let
X=[1,1.1,1,1], which is a T-invariant of PN. For each t,

i=1,...,5. p(i.j):u)(X“Yj) (below left) and the
lexicographically sorted result (below right) are given as
follows, where the priority is denoted by the right most
numbers in parentheses: ‘

Y, Y Y Yy

oS0 30 tt 352 0 0
tose o o3 o 2352 0 006
. 3 . 3 — 13 3 3 3 52 ).
R Y S S Y B )
w0 3 0 3 ts 33 52 0 (2

ts 52 3 0 3

We define the following priority among MR1, i=1,2,3.
PR1: MR2>MRI; PR2: MR3>MRI,

where MR2>MRI, for example, means that if t and t' has the
same priority concerning MR2 then the one of higher priority
concerning MR1 is chosen; if t and t' has the same priority
concerning MR1 then we assign priority such that the one with
smaller index has higher priority, among all such transitions.
Hence transitions of T are totally ordered. For each PRi,
i=1,2, we construct a list PL(i)=(t{.....ty|} of transitions of
PN, where tj has higher priority over tj4 | and is chosen before
1j+] according to PRi, for j=1,....ITI-1. The list PL(i) is called
the priority list of type i (with respect to X and PRi), i=1,2,
and these lists are used in the four approximation algorithms
SPLA, FM_SPLA, DPLA and FM_DPLA proposed in
[26.27].

5.3. Modification of the S-bottieneck computation.

We explain modification of the S-bottleneck computation.
Computation of the Sifakis bound is modified so that it may
reflect firability of transitions. After this modified bound is
obtained, we find bottlenecks based on it and priority-lists are
constructed as in 5.2. FM_DPLA using these modified
priority-lists is denoted as FM_DPLAM. Only modification of
the Sifakis bound is described in the following.

Let Mg, Y and X be an initial marking, a P-invariant and a
firing count vector of PN, respectively. Let M be any marking
reachable from M. Since

YI-Mg = Y- (M+CHXfire)
we have

© = (YI-CD-Xegp) / YF-(M+CHXire),
where Xfjre is a ITl-dimensional vector showing that each te T
has fired Xfjpe(t) times so far and

Xrest(t) = X(0) - Xfire(t) for Vte T.

This equivalent formula computing o implies that there are two
kinds of tokens, active tokens and dead ones : an active one
has possibility to be used by subsequent firing of some
transitions, and a dead one has no such possibility. It seems
that incorporating dead tokens in computing ® may make the
value less than ® much less than actual minimum completion
time. We define a marking My, called an active marking,
defined as follows :

Mg =M + C*Xjre.

Mg = CXpest»
and, for each pe P,

_[Ms(p) if My(p) < Md(p),
Ma(p) = |Md(p) otherwise.

Define a new bound @' by
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O = (YTCD X/ YU M,
Since YU-M 2 YU-M,,. we have 0'>®.

M, is computed by the following procedure. It runs in
O(PIHITHIED time, and actual computation time for o' is
almost the same as that for o.

procedure active marking(M):

begin
i for cach pe P do
begin
2. My(p)e=0: Myipr<=M(p) My(p)e0:
3. for cach t€ *p with Xfjre(0)>0 do
M(p) e Mg(p)+X gipe(t) B(t.p);
4. for cach 1€ p* with Xpag(t)>0 do
My (pié= M g(pi+X egp(1)-0(p,t);
5. iftM_(p)<My(p)) then M, (p)e=M(p)
6. else M, (p) M 4(p)
end
end:

5.4. A new priority-list.

We propose a new method for determing priority on
transitions. by taking firability into consideration. As
mentioned in Section 1. this method is a depth-first-search
during which weights are assigned to places and transitions.
These weights intend to represent how firing a transition once
on a current marking affects subsequent firing of other
transitions.

The outline determining priority on transitions is stated in
the following. and the formal description will be given later as
procedure comp_effect(M).

Suppose that a marking M is reached from an initial
marking Mg by firing each te T by Xfjre(t) times, and let Xpeg
be defined by a given firing count vector X as

Xrest=X(1)-Xfipe(). teT.

Let tfe T be any transition that is firable on M and Xrest(tf)>0.
We compute a value effect(tg) by the following Steps 1-5.
Step 1. Definc a marking My by

My=M-M"“+C* Xfire.
where M is another marking defined, for each pe P, by
op.ty) ifpe *tg
M'(p):/ (pty) ifpe "ty

lO otherwise.

M'(p) represents tokens necessary for firing t once. Suppose
that M is a marking at time instant (. M'+C*+-Xfire is a
marking at some time instant 7. with ©>1(). such that any firing
that has begun at time instant t'<ty is finished at 7, under the
assumpltion that no other transitions begin their firing at any
time instant t" with tp<t'<t,

Step 2. Execute a depth-first-search starting at t¢ and
tracing unvisited edges in their direction. Each edge is
originally marked "UNVISITED", and will be marked
"VISITED" once it is visited by the search: every edge is
visited at most once. At each place p visited from te *p during
the search, we compute a value max(p) by executing

max(p)«max {max(p).p(t,p)}.
This means that we will obtain
max(p)=max{B(t.p) Ite *p and
(t.p) is marked "VISITED"}
after the completion of the search. Subsequent search from p
to t'e p* is stopped if

max(p)+My(p)<a(p.t) or My(p)za(p,t').
This is because all tokens produced by firing transitions visited
so far are 1o be used without passing through p (meaning that
tokens produced by firing tg once cannot expand further) or
because t' can fire even if no such tokens are brought to p
(firing of t' is independent of that of tg), respectively.
Step 3. After the completion of the search we compute
a value supply(p) for each peP as follows:
supply(p)='(p)/Bsum(p).
where

Bsumpi= 2, Btp). B(p)= X  B(p),
i te visit(p)

te™
visit(p)={te *E l(t.p) is marked "VISITED"}.
The value supply(p) intends to represent as a ratio how many
tokens, among those that can be brought into p. are produced
by firing tf once.
Step 4. We compute a value rate(t) for each te T as
follows. Let
T={te T Xpegt()>0}.
and define rate(t) by
rate(t)=o'(1)-d(t)/org (D),
where
Gam(®= X a(p.t). a'h= 3 a(p,t)-supply(p).
pe *t pe*t
The value rate(t) intends to represent as a ratio how many
tokens. among those deleted from input places of t, are
produced by firing (¢ once. Finally define a value effect(tf) of
t by
effect(tp)= Y, rate(t).

teT
Note that effect(t)=0 if t is not firable on M or if Xegi(t)=0.
We are expecting effect(tf) to show, as the sum of rate(t), to
what extent firing tf once helps other transitions become
firable.

Now we determine priority on transitions. First compute
effect(tf) for every tf, with Xyagt(1f)>0, which is firable on M,
and then set effect(1)=0 for other transitions t. Define priority
on transitions of T according effect(t): those t with larger value
of effect(t) get higher priority.

This completes the outline of constructing a new priority-
list o be proposed. The formal description of procedure
comp_effect(M) computing effect(t), teT, is given in the
following.

procedure search(t.M, state,max);

begin
I. for each pet* do
begin
2. if (state(t,p)=UNVISITED) then
begin
state(t,p)<—VISITED;
4. if (max(p)<B(t,p)) then max(p)«<B(t,p);
5. for each t'e T do
begin
6. if (state(p,t')=UNVISITED)
AMy(p)<ofp,)<max(p)+My(p))
AXpest(D)>0) then
begin
7. state(p,t)«VISITED;
8. searching(t',My,state,max)
end
end
end
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‘end
end:

procedure comp_effect(M);
begin
1. for each te T do effect(t)«0:

[§5)

Fe-fte TiX ety = 00 M(p) = oup.ty for any pe 1},
3. for cach p= F do
begin
4. for cach pe P do begin max(p)«-0: supply(p)«0:
Boum(p)0: B'(p)¢0 end:
S. for cach te T do
begin
ratet e--0; Olgum(D«-0: o'(1e0:
. for cach pe “t do state(p.t)«- UNVISITED:
8. for cach pet* do state(t,p)«-UNVISITED
end
9. for cach pe P do
if (pe *1f) then M'(p)«—au(p.t) else M'(p)<0:
10.  MyeM-M + CHXgjpe:
1. search(iy.My.state.max):

12. for cach pe P do
begin /* computation of supply(p) */

13. for cach te *p with Xpeg()>0 do
begin
14. Bsum(P)Bsum(p+B(L.p):
15. if (state(t.p)=VISITED) then
B'tp)—p'(p)+p(t.p)
end:
le. supply(p)«=B'(P)/Bsum(p)
end:

17. for cach te T with Xpeg(1)>0 do
begin /* computation of rate(1) */

18. for cach pe *t do
hegin
asun](1)(_“(Xsum(l)+a(p~[); ?
19. o'(t) o' (t+o(p.t)-supply(p)
end:
20. rate(t)—o!'(1)-d(t)/clgym(t
end;
21. for euch te T do effect(tp)«—effect(tp)+rate(r)
end
end;

Clearly procedure comp_effect(M) runs in
O(IPI+ITI+El) time, and a new priority-list can be constructed
in O(ITI(IPHTIHED) time, which is O(TIEI).

6. Experimental evaluation

We experimentally evaluate FM_DPLAM and YW _PLS by
comparing with those results by FM_DPLA shown in [27].
All three algorithms FM_DPLA. FM_DPLAM and YW_PLS
are implemented on a workstation, DATA GENERAL AV300
(CPU: 88100: 16.7MHz). by means of C language codes.
Test nets are generated manually or randomly by the authors.
The details are omitted due to shortage of space:
see[26,27.30.31].

Delay D(1) of each te T is set by one of the following: (a)
D(t)=D(t') for YViteT (EQUAL): (b) D(t) is created randomly

(RANDOM). X is set to 1. Sizes of Petri nets used as input
data in our experimentation are as follows:

24<IPIS191; 14<ITI<94; 82<IEI<516; 1<D()<100.
The total number of test nets we have tried so far is 1800: 50
state machines(sm), 50 marked graphs(mg), and 50 general
Petri nets(gn) as underlying Petri nets, two kinds of delays
EQUAL and RANDOM ("eq" and "ra" for short,
respectively), two combinations of processor pools and the

number of processors (1<r<2; q=3 if r=1, q|=1 anf qp=2 if

r=2), and, three values of k, ke {1,5,10}.
Table 1 shows a part of our experimental results for the
cases with k=5. The column CT gives average completion time

t©(c"/k. where ¢' is scheduling with respect to kX. The
column CPU denotes CPU time. The column S-b is the
Sifakis bound.

Table 2 shows two statistical data for each combination of
Petri nets, delays and algorithms, where the data are taken
over 200 nets among 300 total test nets and they are fixed.
Each integer appearing in upper raw denotes the total number
of test nets for each of which feasible scheduling is found by
the corresponding algorithm, while each figure shown in the
lower raw does the average of the ratio CT(*)/(S-b).

Let CT(YW_PLS) and CPU(YW_PLS) denote completion
time and CPU time by YW_PLS, and similarly for others.
Concerning average completion time,

CT(YW_PLS)<CT(FM_DPLAM)SCT(FM_DPLA)
in general. On the other hand, concerning CPU time, we have

CPU(FM_DPLA)<CPU(FM_DPLAM),
while CPU(YW_PLS) is better than the others or worse than
one or all of them, depending upon test nets. Other statistical
data will be given at presentation.

It should be mentioned that there are many test nets, each

having an integer k such that 1(c')/k<1(0), where ¢ (¢,
respectively) is a scheduling with respect to X (kX). That is,
utilizing cyclic structures in scheduling of timed Petri nets may
lead to shorter average completion time. This assures one of
advantages of timed Petri nets over task graphs in handling
cyclic scheduling. It is also noted that YW_PLS produces an
optimum solution to an example (see [27]) whose worst
approximation by FM_DPLA or FM_DPLAM cannot be
bounded by a constant.

7. Concluding remarks
The followings are left for future research:
(1) incorporating time required by subsequent firing of
transitions as the second measure in constructing priority-lists
to be used in YW_PLS;

(2) providing more experimental results for 1>3 or q;>4;

(3) theoretical evaluation of approximate solutions;

(4) estimating integers k with 1(0")/k<1(0), where ¢ (o',
respectively) is a scheduling with respect to X (kX).
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Fig. 1. An example of a (timed) Petri net. This also represents
a set of tasks {t1,t,t3,t4,t5} of Example 1.
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Fig. 3. Gantt charts schematically explaining the situation with
t(0")=k-1(0) and 1(c")<k-1(0). (1) 1(0")=k-1(0)=10; (2)
1(0")=9<k-1(0)=10, where 1(0)=5 and k=2.
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DATA Fii DPLAM YW PLA

No. {PLLITHT IE] CT CPU [ratio] C CPU [ ratio] CT CPU 1| ratio S-b
sm3-eq} 14] 16| 64] 16| 55| 1.00] 16 69| 1.00] 16| 92| 1.00] 16.00|
sm5-eq| 13| 16 62 15| 51f 1.00] 15| 63] 1.00| 15 67| 1.00] 15.001
sm7-eq| 34| 40| 158 39 566] 1.00) 39)  772| 1.00 39| 475 1.00]  39.00
sm10-eq| 29| 40| 160 40| 5450 1.00} 40 720 1.00 40/ 394| 1.00]  40.00)
smii-eq} 28| 40| 158 39 531| 1.00| 39 7014 1.00| 39 455) 1.00] 39.00]
smi2-eq| 27 40! 160 40! 536] 1.00] 40 701] 1.00 40| 390 1.00] 40.00|
sm13-eq| 45| 54 214 53| 1840 1.00] 53] 2145 1.00 53] 918[ 1.00| 53.00]
sm16-eq] 43| 541 216 54| 1322 1.00] 54| 1797] 1.00 54 774( 1.00] 54.00
sm20-eqy 58| 70; 278 28.6f 3301 1.24f 28.2| 4254] 123 25.4 7094] 1.10] 23.00]
sm2t-eq 57f 70! 280 70| 3441 1.00 70 4500{ 1.00 70| 1485 1.00] 70.00]
sm22-eq 55| 70| 278 69| 3366f 1.00 69| 4391] 1.00) 69 1817 1.00] 69.00,
sm23-eqf 55| 70| 278] 378 3311 1.10 38| 4249 1.10] 376 6595| 1.09] 34.50
sm24-eq] 53| 0] 280 28.8| 2770 123 28.8] 3760| 1.23| 24.6| 7736 1.05f 23.33]
sm25-eq} 75] 85 340 31.4; 6534 1.11 30.4] 8281] 1.07] 30.2| 16696 1.07| 28.33]
sm26-eq| 73] 85 340 850 6528 1.00) 85 8443] 1.00) 85| 25450 1.00| 85.00
sm27-eq) 72| 85| 2400 as4f 5850 1.07] 46| 7781 1.08| 42.6] 14527 1.00] 4250
sm28-eq] 70| 85| 340 32.6] 5793| 1.15] 32.2| 7618 1.14 28.41 19457| 1.00| 28.33
sm29-eq| 69| 85 340 85 5803 1.00] 85| 7800 1.00 85| 2449 1.00] 85.00
sm30-eq) 67| 85 3401 454 5733 1.07] 46| 7542 1.08] 42.6] 16292 1.00] 4250
sm3-ra] 14| 16| 64 84 56] 1.00 g4l 70! 1.00 84] 81| 1.00] 84.00
smb-ral 13| 16 62| 87| 54{ 1.00| 87 67] 1.00| 87| 91} 1.00] 87.00
sm7-ra] 34| 40| 158 216 596{ 1.00| 216 799( 1.00] 216 456] 1.00| 216.00
sm8-raj 32§ 40| 158 121.6 586| 1.09] 121.6] 779 1.09] 1152 505| 1.03] 111.50
smo-ra] 31| 40| 58] 118 579 101 118] 767) 1.01| 1188 &14] 1.02] 11650
smi0-ra] 29| 40f 160 240f 579 1.00] 240 755] 100§ 240 403] 1.00| 240.00
smitraj 28| 40| 158] 234| 563| 1.00] 234| 726| 1.00] 234| 449 1.00| 234.00
smi2ral 27} 40| 160 267 560 1.00] =267] 723| 1.00] 2670 378 1.00] 267.00
sm13-ra| 45; 54] 214 317| 1648} 1.00] 3182 2138] 1.00] 317 961| 1.00f 317.00
smi6-ra] 43| 54] 216| 346| 1400 1.00] 346] 1872] 1.00| 346 816 1.00] 346.00
sm19-ra] 60| 70| 280) 152.2) 3366| 1.08] 155.2f 4673| 1.10| 148.2| 2555 1.05| 141.33
sm21-raf 57| 70| 280 399| 3274) 1.00| 399 4348| 1.00] 399 1509| 1.00{ 399.00
sm22-ral 55| 70| 278 3941 3408 1.00) 384] 4424f 1.00] 394| 1601} 1.00] 394.00
sm24-raj 53| 70| 280 127] 2901| 1.08] 127f 3894{ 1.08] 120.4| 3194 1.02] 118.00]
sm25-ra] 75| 85| 340| 182) 6400| 1.15| 178.8] 8309 1.13] 161.4] e038| 1.02] 157.67
sm26-ra] 73| 85 340] 448| 6396] 1.00] 448 8350| 1.00] 448| 2494| 1.00] 448.00
sm27ral 72| 85 340] 241, 5977| 1.08] 235.4] 8041| 1.08| 222.8 4714] 1.00] 22250
sm28-ral 70| 85[ 340 173 5936( 1.16] 175| 7871) 1.17) 153.4| 7588 1.03| 149.33
sm29-ral 69| 85| 340 419] 6016| 1.00] 419 7865 1.00| 419] 2515| 1.00| 419.00
sm30ra| 67( 85| 340] 209.8] 5967 1.00] 209.8] 7823| 1.00] 210.8] 4386| 1.01] 209.50
mgZ-eq| 33| 30| 124 20 305 1.00] 20| 418| 1.00 20| 326] 1.00] 20.00
mg9-eqf 79| 7 308 414] 5754| 1.09 41.4] 7051| 1.09 39.8| 4805| 1.05| 38.00
mg10-eq| 79| 7 3041 37.7] 5525| 1.02 37.2] 6748 1.01 37.2] 5904| 1.01 37.00
mg16-eq| 94| 91| 368 45.6| 9855 1.00] 45.6] 12522 1.00| 456[ 10114 1.00] 4550
mg17-eq| 94| 89| 264 46| 9650| 1.03 48] 11627| 1.03] 45.2) 12018| 1.02] 4450
mg18-eqf 94| 87| 360 43.6] 8952 1.00] 43.6| 11085 1.00| 43.8| 12231| 1.01 43.50
mg18-eqf 94| 87| 360 441 8917] 1.01 43.6| 11095 1.00 43.6] 12238 1.00] 43.50
mg20-eq| 94| 86 358 44 10112} 1.02 43| 12304] 1.00] 43.8) 12004 1.02] 43.00
mg21-eq| 94| 84| 354 42] 14121 1.00]  42] 16376[ 1.00) 46| 9164] 110  42.00
mg23-eq] 94| 91| 368 47.8f 9331f 1.05] 47 4] 12219} 1.04] 47.6| 11974| 1.05| 45,50
mg24-eq] 94] 89| 364] 44.6] 9228 1.00] 44.6| 11750; 1.00] 44.6] 9026 1.00] 4450
mg30-eq] 94| 91] 368] 45.6] 9400| 1.00] 47.2 12327| 1.04] 45| 10483 1.00] 45.50
mg2-ra| 33| 30| 124] 106.8] 323| 1.01] 105.8] 441| 1.01] 1058 286] 1.01] 105.00]
mg9-ral 79| 76| 308| 213.6] 4968| 1.04] 2086 7108| 1.01] 208 2715 1.01] 206.00]
mg10-ra] 79| 74} 304f 200.4{ 4996 1.02 199| 6813} 1.01] 200.2f 2665| 1.02] 196.50]
mg16-ral 94/ 91| 368 267.8 9613 1.06] 260 12190} 1.03] 259.3] 5108 1.03] 252.00)
mg17-ra| 94| 89| 364] 242.4| 8663| 1.01] 241.6] 11697| 1.01 241 5753 1.01} 239.00|
mg18-raj 94| 87| 360] 2626) 9432| 1.08| 2486( 11739| 1.02] 250.6| 4677| 1.03] 243.50)
mg19-ral 94| 87! 3601 237.4| 9362) 1.01] 241.6| 11816 1.03] 236.8| 5086| 1.01] 234.50)
mg20-ra| 94] 86 358) 241.4| 10362} 1.05} 237.4| 12605 1.04] 237] 5117| 1.03] 229.00)
mg21-ral 94 84] 354f 234| 14531| 1.04] 234 16737 1.04] 234 4157| 1.04] 22500
mg23-ral 94] 91| 368] 272.1| 9628| 1.08 266 12211| 1.08) 264| 4816| 1.05] 250.50
mg24-ra) 94| 89| 364| 268.4| 8236| 1.11] 255\ 11484| 1.05| 248.4| 4724| 1.02] 24250
mg30-ral 94| 91| 368| 263.8] 8952) 1.08| 258.2| 12294| 1.06] 253.8] 5057| 1.04] 244.00)
gn7-eq| 38| 36 150 H v T B - 3 36 92[ 1.00] 36.00
gn8-eq| 37| 41] 160 - - * ‘ * 24 254| 1.00] 24.00
gn13-eq| 49| 54, 214 53 488] 1.00) 53| 619] 1.00f 53| 265| 1.00] 53.00
gnid-eq| 48| 53 214 270 468 1.02 27} 594] 1.02 27| 749 1.02] 2650
gn1s-eq| 50 511 210 19]  430) 1.12] 19 541] 1.12 200 773 1.18f 17.00
gni9-eq] 66| 70| 278 - M ' - o - 25| 2109| 1.00f 25.00]
gn21-eq] 65| 69| 274 68j 1050 1.02] " " * * * " 66.67]
gn22-eq{ 63| 69| 276 69 985 1.00] 69| 1267f * . . | 69.00)
gn25-eq| 87| 79| 328 28| 1918 1.08] 28] 2359| 1.06 28| 2659] 1.06] 26.33
gn26-eq| 87| 80 330 80 2283 1.00] 80| 2755 1.00 80| 680f 1.00] 80.00
gn27-eq| 87| 80| 328 401 2218| 1.01 401 2686| 1.01 40| 2681 1.01 39.50
gn28-eq} 86l 80| 328 27 2243] 1.03 27| 2718| 1.03 27| 3204| 1.03]  26.33
gn7ra] 38| 36| 150 v T 7 g e8| 100~ H
gn8-ra} 37§ 41! 160 154 308| 1.31 154 365 1.31 156 167 1.32) 118.00|
gni3-ral 49| 54| 214 317, 468| 1.00) 317 599§ 1.00| 317 269| 1.00§ 317.00|
gni4-rag 49) 53 214 157 4627 1.01 157 587{ 1.01 158 394| 1.02{ 155.00]
gni6ral 49{ 520 210§ 332 439 101 332 s562] 1.01] 330] 236] 100 330.00
ani8-ral 50f 51 210 120 445} 1 13| 120 561; 1.13] 125 4431 118} 106.33]
gn23-raf 63| 68| 270 1831 1012 - ‘ “ ' * - . *
gn25-ra] 87| 79; 328 205| 1874 1.33 205( 2353( 1.33 210 1233{ 1.37| 153.67
gn26-ra} 87 80! 1330 447F 2291 1.00] 447} 2831| 1.00) 447 677] 1.00] 447.00
gn27-raf 87 80| 328 247{ 2219 119 241F 2691) 1.16] 250; 1465} 1.21§ 207.00|
gn2s-ral 86| 80| 328 164| 2313] 1.19 - - -] 187| 1772] 1.36] 137.67
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Table 1. A part of our experimental results
for the cases with k=5. The three columns
FM_DPLA, FM_DPLAM and YW_PLS show
the results given by the corresponding
algorithms. The column No. denotes the data
identification: for example, sm3-eq means data
#3 which is a state machine with equal delays on
all transitons, and "ra" does RANDOM(delays
randomly generated). while "mg" and "gn"
denote marked graphs and general Petri nets,
respectively. The column CT gives average
completion time ©(¢')/k (in the number of time

units). where ¢' is scheduling with respect to
kX. The column CPU denotes CPU time in 1/60
second. The column S-b is the Sifakis bound.

Table 2. Two statistical data for each
combination of net structures (sm. mg, gn),
generation of delays (eq. ra) and scheduling
algorithms  (FM_DPLA, FM_DPLAM,
YW_PLS), where the data are taken over 200
nets among 300 total test nets and they are fixed.
Each integer appearing in upper raw denotes the
lotal number of test nets for each of which
feasible scheduling is found by the
corresponding algorithm, while each figure
shown in the lower raw does the average of the
ratio CT(7)/(S-b), where ¥ denotes any one of
the three algorithms. * in the table shows that
datum is not available.

net]delay]FM_DPLA _|FM_DPLAM YW PLA -I
sm| eq 196 196 19§
|~ 1.042012]  1.041743| ~ 1.039423

ra 196] 196|196

|~ 17042663 ~ 1.041709] ~ 1.039405

mg| eq ___ne 116} ____ 16|
|~ 17031385 ~ 1.029885[ ~ 1.024109

ra 116 116 ___ 118]

| " 1.047961]  1.038714]  1.038671

gn| eq 52 53 _____67
| 17033969 ~ 1.033969 1.03098

ra 40| __38 ____ 59

[~ 1130728] ~ ~1.11886]  1.131068)




