THTY XL 30— 2
(1992. 11. 20)

ZEILMMZFF U k- IEFEIERE
MBRE BRES EIRE

LBERFIFBEHRERR)
724 RILBHEIL—T B4
(BEE) 0824-22-7111 3442(:0)
(7 77 X) 0824-22-7195
(BEF A=) watanabe@bhuis.hiroshima-u.ac.jp

o FL
FROEBRIUTFOL) ICEREND, 75 7 OkLEHERBEKECA) TS 5: "7 5 7G=(VE) L B25MN I X M4 HF 3 X
PRBeVXV-SZHGEREB)SS A b N L &, VOLEEHSIOESTC AN L TR 5 7 5 7G"=(V.EUE), k-TikE &
LHbDD) LI MEHIPRAL LB ODE R RD L. kECAMAEGCKSES T 7% %L, BOE DML > THLLS
BEBPFELD L EHFTKECAL T 5. k-ECAM)ICHK L4DDERL 7 b T 1) X LESAM, FSMM, SMCM, HBDM % 25 L, ohb

4=

DEUBOMERE), EEROFEE1T .

M F—— IR, DA, EBLT VT Y XA, 757, HE AU

The k-Edge-Connectivity Augmentation Problem
with Multiple-Edge Addition

Toshiya Mashima, Satoshi Taoka and Toshimasa Watanabe

Department of Circuits and Systems, Faculty of Engineering, Hiroshima University
4-1, Kagamiyama 1-chome, Higashi-Hiroshima, 724 Japan
Phone:+81-824-22-7111 Ext.3442(Watanabe), Fax:+81-824-22-7195
E-mail:watanabe@huis.hiroshima-u.ac.jp

Abstract

The subject of the paper is the k-edge-connectivity augmentation problem (k-ECA) defined as follows: "Given a graph
G'=(V,E"), and a cost function ¢ :VXV—Z* (nonnegative integer), where VxV={{u,v}lu,ve V,u#v}, find a set E" of edges, each
=(V,E'UE") is k-edge-connected." Let k-ECA(M) denote k-
is allowed. Four approximation algorithms FSAM,
d experimental evaluation are given.

connecting distinct vertices of V, of minimum total cost such that G"
ECA such that G' may have multiple edges and creation of multiple edges in G"
FSMM, SMCM and HBDM for k-ECA(M) are proposed, and both theoretical an

X key words Augmentation problems, edge-connectivity, approximation algorithms, graphs, time complexity.

1. Introduction

The k-edge-connectivity augmentation problem (k-ECA) is
defined as follows: "Given a graph G'=(V.E", and a cost
VxV 5 z*
VxV={{u.v]luve V.uuzv]. find a set E" of edges. each

function ¢ (nonnegative integer). where
connecting distinet vertices of V. of minimum (otal cost such that
G"=(V.E'UE"} is k-edge-connected.” We often denote G as
G'+E". The cdge-connectivity ec(H) of a graph H is the
minimum number ol edges whose deletion disconnect it. and H
is k-edge-connected if ec(H)2k. Such an cdge set E" is called a
minimum solution to the problem. Costs c({u,v}) for
{u.v}e VXV is denoted as c(u.v) for simplicity. The problem is
called the weighted version. denoted by W-k-ECA, if there may
exist some distinct edge costs and the wmweighted one. denoted
by UW-k-ECA, otherwise. Let k-ECA(S) denote k-ECA with
the following restriction (i)-(iii) on G'. ¢ and E", respectively: (i)
G'is a simple graph: (ii) ¢:E-Z%, with E={(uv)l{u.v]e VxV}
(the edge set of a complete graph having V as the vertex set).
such that c(c)=0 if ee E' and c(e)>0 if ee E-E" (iii) E"cE-E".
(We assume c(u.v)=1 for any {u.v}e VxV in UW-3-ECA in the
paper.) Let k-ECA(M) denote k-ECA such that G’ may have
multiple edges and creation of multiple cdges in G" is allowed.

Concerning UW-k-ECA. only UW-k-ECA(M) has been
discussed so far. while, as for W-k-ECA, only W-k-ECA(S)
has been considered. Some known results on W-k-ECA are
summarized in the following. For UW-k-ECA(M), See
[1,3.5.13.16.18.22] for UW-k-ECA(M) [21.23] for UW-3-
ECA(S) and UW-3-ECA(M). For W-2-ECA(S). [4] showed
that it remains NP-complete even if G'is restricted to a tree with
edge costs from {1.2}. An O(IVIZ) approximation algorithm
based on minimum-cost arborescence is presented and it is
shown that worst approximation is no more than twice (three
times, respectively) the optimum if ec(G')=1 (if ec(G")=0). For
W-3-ECA. {19] proved that the problem remains NP-complete
even if G' is restricted to a 2-vertex-connected graph with edge
costs chosen from {1.2}, and an 0(|Vl3) approximation
algorithm FS that utilizes a minimum-cost arborescence was
presented. Four more approximation algorithms with both
theoretical and experimental evaluation are given in [20]. [18]
mentioned that both W-k-ECA and W-k-VCA with k=2 is NP-
complete if G' is an empty graph.

The subject of the paper is W-k-ECA(M). For simplicity. k-
ECA means W-k-ECA(M) unless otherwise stated. The problem
has application to designing robust networks: a k-edge-
connected network can survive k-1 communication lines' failure.
Let A=ec(G') and k=A+8. (A+1)-ECA, and general (A+8)-ECA
is solved by repeatedly finding solutions to (A+1)-ECA. If =0
and d=1 then the problem is optimally solved by using an
algorithm for finding a minimum-cost spanning tree. We assume
that A>1 in the paper. 1t is proved in [11,17] that the recognition
version of (A+1)-ECA(S) is NP-complete even if G' is A-
vertex-connected and edge costs are either 1 or 2. This proof
technique can be used in proving the NP-completeness of

similarly restricted W-k-ECA(M).

Four approximation algorithims FSAM, FSMM, SMCM and
HBDM are proposed for (A+1)-ECA(M). FSAM is based on a
minimum-cost arborescence algorithm, and its time complexity
is O(IVI3). FSMM, based on a maximum-cost matching
algorithm, runs in 0(!V|3]ogl\/l) time. SMCM is an alternative
to FSMM and is a greedy algorithm finding an edge set of small
total cost in 0(|VI3) time. HBDM is a combination of FSMM
and SMCM and runs in O(\Vl3log1VI) time. It is shown
theoretically that all of FSAM. FSMM and HBDM produce
worst approximation no greater than twice the optimum if all
costs are equal. (Note that there is an algorithm that optimally
solves UW-k-ECA(M).) As experimental evaluation of W-k-
ECA(M), it is shown that

cost(FSMM)<cost(HBDM)<cost(SMCM)<cost(FSAM)
and

time(SMCM)<time(FSAM)<time(HBDM)<time(FSMM),
where cost(FSMM) and time(FSMM) are the total cost of an
approximate solution by FSMM and its computation time, and
similarly for others. For each of FSMM and SMCM there are
cases such that worst approximations cannot be bounded by
constants. However, it is experimentally shown that FSMM
produces good solutions in cases for which SMCM gives
unbounded solutions, and vice versa. Also observed is that
HBDM generates sharp approximation in each of these
unbounded cases.

For general (A+38)-ECA, approximate solutions can be
obtained by repeatedly using any one of the four algorithms.
Experimental results for the case with 1<8<4 are given. Itis also
observed that FSMM gives best solutions among the four
algorithms.

2. Preliminaries
An (undirected) graph G=(V(G).E(G)), or simply denoted as
G=(V.E). consists of a set V(G) of vertices and a set E(G) of
undirected edges, where an edge between u and v is denotes as
(u.v). A directed graph G=(V(G),A(G)), or simply denoted as
G=(V.A). consists of a set of vertices V(G) and a set of
directed edges A(G). A directed edge from u to v is denoted by
<u.v>. The degree of a vertex v is denoted as d(v), or simply
d(v): v is often called a degree-d(v) vertex. We consider a pair of
multiple edges as a cycle of length 2.

A leaf in a tree is a vertex with only one edge incident on it.
An arborescence is a directed acyclic graph with one specified
vertex, called the root, having no entering edges, and all other
vertices having exactly one entering edge. A minimum-cost
arborescence is an arborescence of minimum total cost. A
cactus is an undirected connected graph in which any pair of
cycles share at most one vertex: each shared vertex is a cutpoint.
A leaf of a cactus is a vertex v with d(v)=1 or v' included in a
cycle with d(v')=2.

Let SCVWE be any minimal set such that G-S (a graph
obtained by deleting all element of S from G) is disconnected. S

is called a separator of G. or in particular a (u.v)-separator if u
and v are disconnected in G-S. A minimum separator S of G is
a separator of minimum cardinality among those of G. and ISl is
the edge-connectivity (denoted by ec(G)) of G in case SCE:
particularly such SCE is called a minimum cut (of G). (For a
minimum scparator S, 1S is the vertex-connectivity ve(G) if
SCV.) I{ iSI=1 then the clement of S is called a cutpoint in case
STV or a hridge in case SCE. A minimum cut SCE is often
denoted as (X.Y), where XY is a partition of V such that
S={(u.v)eElue X. ve Y}. G is k-edge-connected (k-vertex-
connected) it cc(G)=k (ve(G)zk). For two vertices u, v of G. let
AMu.v:G), or simply A(u.v), denote the maximum number of
pairwise edge-disjoint paths between u and v. A k-edge-
connected component (k-ecc for short) of G is a subset SCV
satisfying the following (a) and (b): (a) AMu.v:G)=k for any pair
u,ve S; (b) S is a maximal set satisfying (a). A T-ecc is called a
component.

A structural graph F(G) of a given graph G=(V,E) with
edge-connectivity ec(G)=X is a representation of all minimum
cuts of G. F(G) is an edge-weighted cactus of G(1VI) nodes and
edges such that cach trec edge has weight A and each cycle edge
has weight /2. Particularly if X is odd then F(G) is a weighted
tree. It is shown that F(G) can be constructed in O(IVIIE}) time
[9] or O(IEI+K2\V\log(|VI/M} time |5}, Each vertex in G maps to
exactly one vertex in F(G), and F(G) may have some other
vertices, called empty vertices. to which no vertices of G are
mapped. Let &(G)SV(F(G)) denote the set of all empty vertices
of F(G). Let p:V(G)—=V(F(G))-e(G) denote this mapping, and
we represent as p(X)={p(v)lve X} for X&CV and p-
F(Y)={ue Vipu=v. ve Y} for YCV(F(G)). F(G) has the
following propertics: each minimum cut (X.Y) in F(G), with
Y=V(F(G))-X, corresponds to a minimum one (p“l(X—E(G)).p’
l(Y—S(G))) in G, and conversely, for each minimum cut (X,Y)
in G. there exists at least one partition of €(G) into two sets €
and g3 such that (p(X)we.p(Y)uer) is a minimum cut of F(G).
Note that if A is even then replacing each tree edge by a pair of
multiple edges preserves the properties of structural graphs and
makes their handling easy because the resuiting graphs have no
bridges. This graph and a tree in the case where A is odd are
called modified cactuses. In the following F(G) denotes a
modified cactus unless otherwise stated. Fig.l shows an
example of graph G with A=2 and its structural graph F(G) as
a weighted modified cactus with (G)= and (A+1)-eccs

prla=(1}. pliy={2.3). p-Licy=14}, pl(d)=(5.7.11}.

prlier=(er prlin=(8.101. p-te)={9}. p-liy={12}.

p Li=(131. p-l(j=1 14}, p-Lik)={ 15}, p-l()=(16}.

p-lam)={17}.

Suppose that 222, and let Z be a set of edges connecting vertices
of F(G) and such that ZNE(F(G))=0. Neglect edge-weights of
F(G). and suppose that ec(F(G)+Z)=2 if A is odd (that is, F(G)

is a tree) or ec(F(G)+Z)23 if A is even (that is, F(G) is a union
of some cycles). Then Z is called a solution to F(G). For each
(u.v)eZ. the set A(u.v)={u.vju{we V(F(G))-{u,v}lw is a
cutpoint separating u from v}, is called a (u,v)-augmenting set
of G.

A pair of edges without sharing vertices in G are said to be
independent. An edge set in which any pair are independent in
G is called a matching of G, and a matching of maximum
cardinality is called a maximum matching. A maximum-cost
matching of a weighted undirected graph is a matching whose
total cost is maximum. A maximum cost mafching of a given
graph G is obtained in O(|V||E|) time [11].

Let[xT(x /. respectively) denote the minimum integer not
smaller (the maximum one not greater) than x.

3. Approximation Algorithms for W-k-ECA(M)

We first describe a general scheme as an algorithm ECM.
ALGORITHM ECM:

Input: a graph G'=(V.E') with ec(G')=A, a cost function
e VxV—ZT

Output: A set E" of edges. each connecting distinct vertices of
V. such that ec(G'+E")=A+8.

. H«G".

2. Construct a structural graph G'g=(Vg.Eg")(=F(H")) of H' as
in [5] or [10], and B«ec(H").

3. if 62k then stop.

4. Define a new cost function c¢:VgxV¢— z* by
c(uv)=min{c(x.y)l(x.y)e VXV, xe p‘l(u) and ye p’l(v)},
where p-l(w) is a (+1)-ecc of H' and is represented as we V-
€(H"). Define a backpointer b:V xXV¢—VxV by b(u,v)e(x,y) if
¢'(u,v)=c(x.y) or b(u,v)¢—(u,v) if c'(u,v)=ce.

5. Find an edge set Eg" of small total cost ¢'(Eg") such that Eg"
is a solution to Gg'.

6. Construct a solution T'={b(u.v)e VxVI(u,v)e Eg"} (with
multiplicity deleted) such that ec(H'+")=0+1.

7. HeH'+I', E"«~E"UT", ¢(x.y)«0 for any (x,y)e E", and
goto Step 2. ¢

and b can be done in
O (min{IVIIE'l,A }+\VlzlogIVI) time, where A=I|E'[+
XZWIIog(\VV?x). If Eg" of Step 4 can be found in O(§) time then
ECM runs in O(S(E+min{IVIE'LA})) time.

For a set E" (Eg",respectively) of edges, each connecting
distinct vertices of V (Vg). let ¢(E")=X ,)cp c(u,v),
CEg"=2 \yyie ks €(u,v). The following lemma shows that it
suffices to consider W-(A+1)-ECA(M) for a cactus
Gg'=(Vg.Eg).

Constructing Gg'. ¢

Lemma 3.1. If ec(G'+E")2A+1 for some E" then there is Eg"
with ¢'(Eg")<c(E") such that Eg" is a solution to G'q. For a set
Eg". let b(Eg")={b(u.v)l(u.v)e E"} with multiplicity deleted. If
Eg" is a solution to Gy’ then ec(G'+b(Eg"))2A+1 and
c'(Eg")zc(b(Eg")). ¢

Thus the remaining task is to devise efficient algorithms
producing good approximate solutions Eg" to Gg' in Step S of
ECM for the case where ec(H')<k. Four procedures FSAM#*
(Finding Solution by Arborescence). FSMM#* (Finding Solution
by Matching). SMCM* (finding solution by Selecting
Minimum-Cost edges) and HBDM* (combining FSMM* and
SMCM#) are 1o be proposed for Step 5 of ECM. ECM with
FSAM* is denoted as FSAM. and similarly for other
procedures. Let L denote the set of all feaves of Gs'.

3.1 Procedure FSAM*
Arborescence

FSAM* is based on a minimum-cost arborescence algorithm [6].
The algorithm is outlined as follows. First, Gy’ is changed into a

Based on Minimum-Cost

simple graph by deleting multiplicity. and then a tree Gy’ will be
constructed as follows: for each cycle C that is remaining in this
simple graph. a new vertex v is added. For every cycle C. each
vertex on C and v(are connected by an edge. Then all edges of
C are deleted. Let Gy’ denote the resulting tree. Next, we
choose a degree-1 vertex r of Gy’ as the root. and direct every
edge of Gy’ toward r. Let Gy’ denote the resulting directed
graph. Some modification of costs will be done. Let Gy, and d
be the complete directed graph on Vi and a final cost function,
respectively. We find a minimum-cost arborescence T=(Vp.Ap™)
of Gb with respect to d'. Finally an approximate solution is
obtained by means of backpointers.

We first present procedure REMAKEM that changes a
modified cactus Gg' into a spanning tree Gy’ in the case where A
is even.

PROCEDURE REMAKEM:
1% Input: Gg'=(Vg.Eg"). Outpur: Gy'=(Vy.Ep). */
L. If A is odd then Gy,'«-Gg' and stop.
2. Delete multiplicity of edges in Gg'. making it simple. Then
find all cycles (equal to 2-eccs of Gg') by a depth-first-search.
3. For each cycle C, add a dummy vertex w(. connect w(1o
every vertex on C and delete all edges (u.v) of C. Let
Gp=(Vp.Ep') be the resulting graph. Extend the domains ¢ and
b to VpxVy, as follows: for all dummy vertices we and all
vertices u of V. ¢'(we,u)é—ee and b(we,u)—<. ¢

We use a distance function d:Eb-—>Z+u{<>o]. This function
was introduced in [4] in order to avoid poor choice of edges in
finding 4 minimum-cost arborescence. In this paper

d(u.v)y=min{c'(x,y)! u and v are on a path from x to y

in Gy'}.

PROCEDURE DISTM.

/¥ Input: a graph Gp'=(Vp.Ep') of Gp. a cost function
c‘:VbebaZqu{oo} and a backpointer b. */

/* Output: A distance function d:VbXVb%Z"'u{oo} and a
backpointer b":VpxVy—VpxVy such that ¢'(b'(u.v))=d(u,v). */
1. For each pair of vertices u and v, compute the number a(u.v)

of edges on the path between u and v in Gy, find the vertex
s(u.v) adjacent to v (s(v.u) adjacent to u, respectively) on this
path. d(u,v)«c'(u,v) and b'(u,v)<(u,v).
2. Bucketsort the pairs (u.v) of VipxVy, into nonincreasing order
of a(u,v). For each pair (u,v) in VxVp, do the following in its
sorted order:
d(u.s(u,v))e—d(u,v) and b'(u.s(u,v))<b'(u,v)
if d(u,v)<d(u,s(u,v));
d(s(v.u).v)e=d(u.,v) and b'(s(v,u),v)«b'(u,v)
if d(u,v)<d(s(v,u),v). ¢

We can show that DISTM correctly computes the distance
function d and the backpointer b’ in O(IVI2) time. For two
different edges (u.v),(u'.v')e VxVy, it may happen that
b'(u,v)=b'(u",v'). Hence, in general, b'(Z)={b'(u,v)l(u,v)e Z}
may be a multiset for a set Z&VpxVy,. However, we assume
that b'(Z) denotes the one with multiplicity deleted unless
otherwise stated. for notational simplicity. Similar notation will
be used for other backpointers to be defined later. Procedure
FSAM* is stated as follows.

ROCEDURE FSAM*:
/* Input: a structural graph Gg'=(Vg.Eg') with ec(G)=A, a cost
function ¢:V¢xVi— zto {e}. and a backpointer
B:VgXVg—= VXV, #/
/* Output: A set Eg" of edges, each connecting distinct vertices
of Vg, such that Eg" is a solution to Gg'. */
I. Construct a complete graph Gy, from Gg. and a tree Gy’ from
Gg' by using REMAKEM.
2. Compute d:VpxVp— ZT and b:VypxVp— VXV by using
DISTM.
3. Ape. Insert <u,v> and <v,u> into Ay for each pair
fu.vle VpxVyp. constructing a complete directed graph
Gp=(Vp,Ap).
4. Choose any degree-1 vertex of Gy’ as the root r. Let Ap' be the
set of directed edges generated by directing each edge in Ep’
toward r. Denote the resulting graph by Gp'=(Vp,Ap').
5. d'<uv>¢—d(u,v) and d'<v,u>d(u,v) for all {u,v}e VpxVy,.
6. For <u,v>e Ap. if ug Vg or vg¢ Vg then d'<u,v>¢—oo; if
<u.v>e Ay’ and {u.v}CVy then d'<u,v>«0 and d<v,u>¢—oo; if
v=r then d'<u,r>¢—co,
7. Find a minimum-cost arborescence T=(Vp,Ap") with the root r
of Gy, with respect to d.
8. For each edge <u,v> in Ap" with O< d'<u,v> <eo, insert the
corresponding edge b'(u.v) into E¢" (with multiplicity deleted). ¢

"

Remark 3.1. In Step 5 of FSAM* we may define d' and b" as in
Step 5 of FSMM* (to be given in 3.2) by finding shortest paths.
We implemented this version and applied it to 120 data, but no
improvement has been observed so far. Hence in this paper Step 5
of FSAM¥* is left as it is. ¢

The following lemma can be proved.

Lemma 3.2. FSAM* generates a set of directed edges Ap"
such that (V. Ap'UApR") is strongly connected. ¢

We obtain the next theorem.

Theorem 3.1. FSAM generates E" with ec(G'+E")2A+1 in
O(IVI2+min{IVIIET.A}) time.
¢

3.2 Procedure FSMM*
Matchings
FSMM is based on a maximum-cost matching algorithm. The

Based on Maximum-Cost

idea is very simple. As a set of [1LI/2] edges. each connecting a
pair of leaves in a cactus Gy, the one E"(y of minimum total cost
is selected by using a maximum-cost matching algorithm in
O(\VSI3) time [15]. It E¢)" is not a solution to Gg' then similar
process will be repeated for Gi'+Eq": repetition is at most
O(loglV¢h time. The description of FSMM* is given as
follows. where we denote Gy'=(V;. Ej') and Hy'=(W;. F;).

PROCEDURE FSMM*:

/¥ Input: a graph Gg'=(Vg.Eg) with ec(Gg')=A, a cost function
c':VSXVS%ZJru{ oo}, and a backpointer b:VxV—VxV. */

[* Output: A set Eg" of edges, cach connecting distinct vertices
of V. such that E{" is a solution to Gg'. */

1. Go'e~Gy', cpe—c', ie0.

2. Construct a tree Gy’ from Gi' by using REMAKEM.

3. Hi'=(Wj, Fi'«Gy'.

4. Find a distance function di:WixWi~—>Z+u{oo} with a back
pointer b "WixW;—V;xV; by using DISTM. For each dummy
vertex we added within the cycle C of Gg', dj(w.vie=co for
any vertex v on C.

5. Compute di':WixWi—>Z+u[oo} and b;":WixW;—W;xW; by
finding a shortest path P(u.v) in a complete graph on V; for each
pair u,v of degree-1 vertices of Hi' as follows: for the edge set
Ep of P(u.v). dj'(u.v)«<=d{(Ep) and bj"(u.v}«<—Ep (actually
bi"(u,v) is a pointer to the list maintaining Ep).

6. Construct a complete subgraph Sj. on the set of all degree-1
vertices of Hj'.

7. For each cost dj'(u.v) with (uv)e E(Sj). dj"(u.v)¢~MAX+1-
dj'(u,v), where MAX is the maximum edge-cost of Sj. Find a
maximum-cost matching M;SE(S;) of S; with respect to d;".

8. For each edge (u.v)e My, insert the corresponding set of
edges bj'(bj"(u.v)) into E;" (and then any multiplicity is deleted).
9. If Ej" is not a solution to Gj' then Q«E;" execute (i)-(iii):

(1) Gj4 1 «Gi- :

(ii) while Q< repeat (a) and (b):

(a) choose (u.v)e Q and Q«Q-{(u.v)};

(b) Gj41'«<the graph obtained by shrinking the (u.v)-
augmenting set A(u.v) of Gi; " (Note that the resulting Gj, |’
is also a modified cactus.)

(iii) define a new cost function ci41:Vigy | XVip —=Z e} by
Cit1 (wv)=min{ci'(x.y)lx.y)e VixVi. xe S|;. ye Sy }.

where Sy denotes the set of vertices of Gj'+€ that are shrunk
into we Vi, | and the edge (x.y) is referenced by a backpointer
b 1(u.v)=(x.y). where bjy1:Vi1|XVi; = VixVi.

(iv) i<=i+1 and goto step 2.

10. If E{" is a solution to Gj" then do the following (i) and (ii):
(iy Eg"Eqg"

(iiy if izl then for cach j
ES"e—ES"ubl(‘.4.(bj(Ej")).‘.). 3

(j=1. ..., i) repeat

Theorem 3.2. FSMM generates E" with ec(G'+E")2A+1 in
O(IVI3loglVI+min{IVIIE‘I,A}) time. ¢

3.3 Procedure SMCM* Based on Minimum-Cost
Edges
SMCM* is a greedy algorithm that finds approximate solutions
without using a maximum-cost matching algorithm. The
description of SMCM* is almost the same as that of FSMM*,
The only difference is that SMCM* finds a solution to Gg' by
choosing, at each leaf v, a minimum-cost edge e, among those
incident upon v. The description of SMCM?* is almost the same
as that of FSMM*. The only difference is that SMCM* finds a
solution to Gg' by choosing, at each leaf v of Hj', a minimum-
cost edge e, among those incident upon v. Delete Step 5, replace
Step 7 by the following statement in FSMM* and rewrite
by'(bj"(u.v)) as bj'(u.v) in Step &:
Step 7. For each degree-1 vertex v of Hj', let ey, denote an edge
connecting a pair (u,v)e VixV; with

di'(u,v)=min{d;'(u".v)i(u'.v)e V{xV;}, and

Mj<«{eylv is a degree-1 vertex of Hy'}

(with multiplicity deleted).

Theorem 3.3 SMCM generates E” with ec(G'+E")2A+1 in
OUVI3+min{IVIE',A}) time. ¢

3.4. Procedure HBDM* Combination of FSMM* and
SMCM*

HBDM* is a combination of FSMM* and SMCM#*, and is
almost the same as that of FSMM*. The only difference is that a
maximum-cost matching algorithm, to be repeatedly used in
tinding a solution to Gg'. is applied to the set E(Kj)={eylvisa
degree-1 vertex of H{'CE(S;)}} (with multiplicity deleted) instead
of E(Sj). where E(K;) will be constructed similarly to Step 7 of
SMC, but is slightly different from it. If we replace Step 7 of
FSMM* by the following statement then the description of
HBDM* is obtained.

Step 7. For each degree-1 vertex v of Hj\ let fy denote an
cdge(u.v)e E(S) with dj'(u.v)=min{dj'(u".v)l(u',v)e E(S;}},
and E(Kj)«{fylv is a degree-1 vertex of H;'} (with multiplicity
deleted). Let K;j denote the subgraph (V(S;),E(K;)) of S;. For
each cost dj'(u,v) with (u.v)e E(Kj). dj"(u,v)e-MAX+1-
dj'(u,v), where MAX is the maximum edge-cost of Kj. Find a
maximum-cost matching M;CE(K;) of K; with respect to d;".

Theorem 3.4 HBDM generates E" with ec(G'+E")>A+1 in
O(V3loglVi+min{IVIEL.A}) time. &

4. Evaluation of Worst Approximation
Worst approximation by proposed algorithms is evaluated

theoretically for unweighted cases and experimentally for
weighted cases. (Since UW-k-ECA(M) can be solved optimally
in polynomial time, evaluation in unweighted cases is casy.) Let
OPT or APP denote total cost of an optilum or approximate
solution, respectively. The ratio APP/OPT is going to be
evaluated concerning (A+8)-ECA (mainly for the case with
o=1).

4.1. Theoretical Evaluation of Worst Approximation
for (A+1)-ECA

For UW-(A+1)-ECAM it is known that OPT q/27 [13,18],
where g=ILI. Theoretical evaluation for FSAM. FSMM and
HBDM are given. It suffices to consider solutions to Gg'.

4.1.1. FSAM. Since a minimum arborescence to be found
contains exactly g-1 edges. we have APP=q-1 and. therefore,
APP/OPT<(q-1)/(q/2)=2-2/q<2.

4.1.2. FSMM and HBDM. We can
limq—><>o(APP/OPT)£7‘ Let Gg denote a complete graph on

prove that
ng(=q) degree-2 vertices of Gg'. Let Mg be a maximum
matching of G, and eg=|Mgl=L.n(/21<q/2. G}=G+M has at
most n|=rn0/2-|5q/2+1/2 degree-2 vertices. In general, for
i=l...m=[logq 1. Gi=G;.1+Mj_| has at most nj=l nj_/2]
degree-2 vertices, where logq is abbreviation of logHq and

ni=l nj_/21<q/2H+ 1/(21)+.. 4172,
If Mj is a maximum matching of Gj then its cardinality
¢i=IMjl=Lnj/2]. where

Lni/2 J<q/2i+ 1721+ D +1/22),
Hence Gi;|=Gj+M; has at most ni+1:|—ni/2-} degree-2 vertices.
At the final stage.

Iy - 1/2 KQ/Q@M)+ 1/Q2M)+..4+1/2=3-2/n<3
and nyy=2. Hence e=1 and ny,; {=0. Thus the total number of
edges added is

epte+...4em | +em

@2+ /22122 4. +{q/QMY+ QM+ 1/(22) 41

=q-5/2+(1/2)logq+2/q.
‘We can prove that

APP/OPTS(q-5/2+(1/2)logq+2/q)/(q/2)

=2-5/q+(logq)/q+4/(g%)

and

Iimq_wO(APP/OPT)SZ.
It seems that this is slightly overestimated, since only
APP/OPT<2 has been observed so far in our experimentation by
FSMM and HBDM.

4.2. Experimental Evaluation
4.2.1. Input data, We explain how input data, G' with
ec(G')=k and c, are constructed as in Steps 1-3.
1. The number |V] of vertices is given as follows:
[V]e {10.15.20,40,60.80.100.120.140,160,180,200}.
2. Two types of data are provided: type C and type T

constructed as follows.

2.1, (type C)
(1) If [V[240 then i<—4 and partition V={1,...,[V|} into i sets
Ly....Lj with [Lj|=IV|/4 else (that is, |V]|<20) i1 and Li«<V.

Let Gj=(L;.E;) with E;=2 for each i.

(2) For each i, do the following (a)-(d).

(a) q&<=0.

(b) While k-q22 do the following: construct a new cycle
C of ILjl vertices randomly, Gi«(L;.EjUE(C)) and q¢q+2.

(¢) If k-g=1 then construct a new tree T of IL;| vertices
randomly and Gj«(Lj.E;UE(T)).

(d) Choose an integer h; with I<hi<IL;|/2 randomly, and
add h; edges to Gj randomly unless the resulting graph G;' has
ec(Gj)zk+1.

2.2, (type T)

(1) Partition V={1,...[V}} into n sets Ly,...Ly, where n is
given randomly.

(2) For each i, 1<i<n, partition L into two sets W; with
IW;l=k and W;*=L;-W,_ join any pair of W; by k multiple edges,
and repeat the following exactly k times for each ue W;*: choose
a vertex ve W; randomly and add an edge (u,v). Let Gj denote
the resulting graph, and R—{G.....Gp}.

(3) Choose any GjeR, Re<R-{Gj} and G&G;. Then repeat
the following (i)-(iii) until R becomes empty: (i) choosing
GjeR, (i) Re-R-{ Gj}. and (iii) G« the graph given by
coalescing a pair of vertices, one from G and the other from Gj,
where a pair of vertices are chosen randomly.

3. Costs on edges are selected randomly from the set {1....,99}
of integers. '

4.2.2. Experimental results. We have tried 4320 data so
far. A workstation SUN SPARC station is used. Tables 1
through 5 show a part of our experimental results for data
IVI<200 and IEIS2095 of type C. For 180 data with
IVI=10,15,20, optimum solutions are sought by exhaustive
search. Table 1 shows a part of the results, and error
(APP/OPT-1)x100 (%) is computed for these 180 data as
summarized in Table 2. Table 3 shows a part of results for large
data. Tables 1 through 3 show results for 8=1 (that is,
concerning (A+1)-ECA(M)), while Table 5 shows those for
&>1, where A=1 and 1<8<4. Table 4 shows the average of the
ratio cost(*)/cost(FSMM) over 60 data of type C and of type T
for each Ae {1,2,3,4,5,6.10,15,20} concerning (A+1)-
ECA(M). where * denotes any one of FSAM, FSMM, SMCM
and HBDM.

Let time(FSMM) and cost{FSMM) denote computation time
and total cost for FSMM, respectively, and similarly for others.
Experimental results show the following (1)-(4).

(1) In general,
cost{FSMM)<cost(HBDM)<cost(SMCM)<cost{FSAM).

(2) We have 180 data to each of which an optimum solution is
found by exhaustive search. For 155 data (86.12%) of them,
FSMM generates approximate solutions with errors (APP/OPT-
1)x100<5%.
(3) For data of type C (type T. respectively). each algorithin
produces better solutions for A that is odd (even) rather than
even (odd).
(4) In general,

time(SMCM)<time(FSAM)<time(HBDM)<time(FSMM).

4.2.3. Unbounded approximation. We show two
examples for which FSAM. FSMM or SMCM generates
solutions to W-k-ECA(M) such that APP/OPT fails to be
bounded by constants. For the graphs shown by solid lines in
Figs. 2 and 3. suppose that they represent Gg' and that all costs
except those specified in the figures are very large, where M>5
in Fig. 2. For Fig. 2, an optimum solution is shown in halftone
lines and OPT=5. FSAM finds a solution with total cost
APP=2M+5, and APP/OPT=2M/5+1. FSMM generates a
solution {(a.g).(b.f),(c.e).(d,h)} with total cost APP=2M+2,
and APP/OPT=2M/5+2/5.

For Fig. 3, we have OPT=2 (the edge (a,g)). while SMCM
generates a solution shown by halftone lines and APP=|V]|-
1(=6). Hence APP/OPT=(|V|-1)/2 (=3). It is observed in our
experimentation that FSMM produces good solutions for data to
which SMCM gives unbounded solutions, and vice versa. This
is why we propose HBDM: it produces sharp approximation for
these unbounded data.

5. Concluding Remarks

This paper proposed four approximation algorithms FSAM,
FSMM. SMCM and HBDM for W-k-ECA(M), and both
theoretical and experimental evaluation of their approximate
solutions are given. The following (1) through (3) are left for
future research:

(1) theoretical evaluation of HBDM, which is being continued
(our conjecture is APP/OPT<2);

(2) proposing approximation algorithms of better approximation
for W-k-ECA(M):

(3) providing more experimental results on k-ECA with k=A+8
and 822.

References

[1] K.P.Eswaran and R.E.Tarjan. Augmentation problems,
SIAM J.Comput. 5, 653-655 (1976).

[2] S.Even, Graph Algorithms, Pitman, London (1979).

[3] A.Frank, Augmenting graphs to meet edge connectivity
requirements, SIAM J. Discrete Mathematics, Vol. 5, No. 1,
25-53 (February 1992).

[4] G.N.Fredericson and J.Ja'ja’, Approximation algorithms for
several graph augmentation problems, SIAM J.Comput.. 10,
270-283 (1981).

[5] H.N.Gabow, Applications of a poset representation to edge

connectivity and graph rigidity, Proc. 32nd IEEE Symp. Found.
Comp. Sci., 812-821 (1991).

[6] H.N.Gabow. Z.Galil, T.Spencer and R.E.Tarjan, Efficient
algorithms for finding minimum spanning trees in undirected
and directed graphs, Combinatorica, 6(2), 109-122 (1986).

[7] Z.Galil and G.F.Italiano, Reducing edge connectivity to
vertex connectivity, SIGACT NEWS. 22, 57-61 (1991).

[8] M.R.Garey and D.S.Johnson, Computers and Intractability:
a Guide to the Theory of NP-Completeness, Freeman, San
Francisco (1978).

[9] J.E.Hopcroft and R.E.Tarjan, Dividing a graph into
triconnected components, SIAM J. Comput., 2, 135-158
(1973).

[10] A.V.Karzanov and E.A.Timofeev, Efficient algorithm for
finding all minimal edge cuts of a nonoriented graph,
Cybernetics, 156-162, Translated from Kibernetika, No.2, 8-12
(March-April, 1986).

[1'1] T.Mashima, S.Taoka and T.Watanabe, Approximation
Algorithms for the k-Edge-Connectivity Augmentation Problem,
Tech. Rep. of IEICE of Japan, Tech. Reserch Rep., COMP92-
24, 11-20 (1992).

[12] H.Nagamochi and T.Ibaraki, A linear time algorithm for
computing 3-edge-connected components in a multigraph, Japan
J. Industrial and Applied Math.. Vol.9, No.7(June 1992), 163-
180.

[13] D.Naor, D.Gusfield and C.Martel, A fast algorithm for
optimally increasing the edge-connectivity, Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science, 698-
707 (1990).

[14] S.Taoka, T.Watanabe and K.Onaga, A linear time
algorithm for computing all 3-edge-connected components of an
multigraph, Trans. IEICE, E75-3, 410-424 (1991).

[15] R.E.Tarjan, Data Structures and Network Algorithms,
CBMS-NSF Regional Conference Series in Applied
Mathematics, SIAM, Philadelphia, PA (1983).

[16] S.Ueno, Y.Kajitani, and H.Wada, The minimum
augmentation of trees to k-edge-connected graphs, Networks,
18, 19-25 (1988).

[17] T.Watanabe,T.Mashima, and S.Taoka, The k-edge-
connectivity augmentation problem of weighted graphs, Proc.
3rd International Symposium on Algorithms and
Computation(ISAAC'92)(Dec. 1992), to appear.

[18] T.Watanabe and A.Nakamura, Edge-connectivity
augmentation problems, Journal of Computer and System
Sciences, 35, 96-144 (1987).

[19] T.Watanabe, T.Narita and A.Nakamura, 3-Edge-
connectivity augmentation problems, Proc. 1989 IEEE ISCAS,
335-338 (1989).

[20] T.Watanabe, S.Taoka and T.Mashima, Approximation
algorithms for the 3-edge-connectivity augmentation problem of
graphs, Proc. IEEE Asia-Pacific Conference on Circuits and
Systems, to appear (Dec. 1992).

[21 T.Watanabe, S.Taoka and T.Mashima, Minimum-cost
augmentation to 3-edge-connect all specified vertices in a graph,
submitted to 1993 IEEE ISCAS93 (September 1992).

[22] T.Watanabe, M.Yamakado and K.Onaga, A linear-time
augmenting algorithm for 3-edge-connectivity augmentation
problems, Proc. 1991 IEEE ISCAS, 1168-1171 (1991).

[23] T.Watanbe and M.Yamakado. A linear lime algorithm for
smallest augmentation to 3-edge-connect a graph, submitted to
Trans. [EICE of Japan (September 1992).

Fig.2. An example of G for which each of FSAM and
FSMM generates a solution whose total cost cannot be
bounded by a constant.

NNNY S,
A ’/”/
N I3

Fig.1. An example of a graph G} with ec(Gy)=2 and Fig.3. An example of G for which SMCM generates a
structural graph F(Gy): (1) Gy: (2) F(G}). where cach solution whose total cost cannot be bounded by a
edge has a weight A=2 or A/2=1. constant.

Table 1. A part of our experimental results (1080 data in
total) on (A+1)-ECA(M) for small data, where
A=ec(GH=4, &=1. type C and {=IVsl: The columns
“cost". "AP/OP" and "time” show total cost (left), ratio
APP/OPT(middle) and CPU time with unit time in 1/60
second (right), respectively.

v [ET] A ¢] FSAM FSMM SMCM HBDM OPT |
cost AP/OP| time | cost AP/OPI time [cost AP/OP| time | cost AP/OP| time cost [time
201 10| 23| 4 4 67 1 4] 67 7 al 67 1 7
402| 10| 23 4 5 55 1 4] 55 1 3] 65 1.1818 5|
403 10| 23] 4 4 38 1 4 36 1 3l 36 4
4 s| 36 1 4l a4 12022 4l 44 12222 4
4 4] 54 1 5| 54 1 4] 54 6
3 6 36 T 7| 47 1.3056 6| 50 1.3889 9
4 8l 63 1 10| 63 1 71 63 9
4 71 17 1 71 17 1 6| 17 6
4 . 3|l 74 1 13| 74 1 10| 75 1.0135) 13|
4] 11| 42 1.2353 of 34 1 o| 41 1.2059 8l 34 1 9
411[20| 44| 4| 14| 56 1.2444] 12| 49 1.0889 4 4‘9—|‘1.oasg T0| 40 10889 13
412| 20| 48] 4| 8 18 1 10| 18 1 10| 18 1 o 18 1 11
413) 20{ 48| 4| 10| 34 1.0303 1} 33 1 11| 33 1 of 37 11212 11
414 20 42(4] 17] 47 1.003 16| 43 1 16| 43 1 13 43 1 18]
415 20| 47| 4] 9 a2 1 11] 32 1 10| 32 1 of 32 1 11

()

Table 2. Total number of data (left) and its ratio (right), for whigh each
algorithm produces solutions with errors (APP/OPT-1)x100(%) t‘alling into the
corresponding intervals. 1<A<6, 8=1 and the total number of data is 180, to
each of which an optimum solution is found by exhaustive search: (1) type C
(90 data); (2) type T (90 data): {3) combining the two types (180 data).

eIT. err.=0% 0%<err.<5% 5%<err.£10% | 10%<err.<15% 15%<err.
FSAM 41 45.56%) 8 8.89%) 11 12.22%) 8 8.89% 22 24.44%)
FSMM 73 81.11%) 7 7.78% 8 8.89%) 1 1.11% 1 1.11%
SMCM 57 63.33% 8 8.89%) 10 11.11%] 9 10.00% 6 6.67%
HBDM 58 64.44%) 8 8.89%) 14 15.56% 4 4.44% 6 6.67%)
eIr. err.=0% 0%<err.<5% 5%<err.<10% | 10%<err.<15% 15%<err.
FSAM 15 16.67%) 12 13.33% 17 18.89%, 14 1556%} 32 35.56%
FSMM 63 70.00%) 12 13.33% 9 10.00% 2 222% 4 4.44%
SMCM 44 48.89%) 13 14.44% 15 16.67% 10 11.11%] 8 8.89%
HBDM 38 42.22%| 13 14.44% 18 20.00%j 10 11.11%) 11 12.22%
err. err.=0% 0%<err.<5% 5%<err.<10% | 10%<err.<15% 15%<err.
SAM 56 31.11%] 20 11.11%] 28 15.56%| 22 12.22%) 54 30.00%)
FSMM | 136 75.56% 19 10.56%) 17 9.44% 3 1.67% 5 2.78%)
SMCM| 101 56.11%] 21 11.67%| 25 13.89%] 19 10.56%) 14 7.78%;
HBDM 96 53.33%] 21 11.67%| 32 17.78%) 14 7.78% 17 9.44%

Table 3. A part of our experimental
ECA(M) for large data, where columns are similar to those of Table 1.

results (1080 data in total) on (A+1)-

(VI |IE] AL | FSAM FSMM SMCM HBDM]
l cost time| cost time] "cost time] cost i

416] 40[91 4] 38 92 61 77 60 88 41 79

417| 40| 106} 4] 17 35 32 33 34 35 31 33

418| 40| 98] 4] 27 31 44 25 46 29 37 26 42]
419 40| 95| 4| 26 64 40 59 42, 57 35 80

420] 40 101} 4| 22 44 40 40 40 40 33 40

421] 60| 141] 4] 49 59 114 48 122 53 99| 49

422| 60| 1461 4] 31 58 83 51 90| 53 75 51

423] 60) 138] 4| 41 68 103 62 110 64 84 64 104
424| 60| 153] 4] 28 55 79 49 83 49 72 50 84]
425 60| 152] 4] 29 42 82 38 85| 40 74 38

426| 80| 185] 4] 56 76 189 65 202 69 157|

427; 80| 198] 4{ 40 60 152 51 158 52 136

428| 80| 195 4] 41 62 161 55 165 55 140

429 80| 178/ 4] 63 80 200 69 224 70 162

430| 80| 204 4 31 46 141 42 144 43 132

431] 100{ 236] 4] 68 72 289 66 331 68 247 67 300
432| 100] 217] 4] 85 101 355 85 425 87 282 88 380,
433(100| 246} 4] 44 46 236 39 244 40 222 41 247
434] 100] 235] 4] 58 92 259 79 308 81 234 81 279
435]| 100 217] 4] 82 125 346 99 423 105 276 107 349
436(120] 2521 4] 113 127 610 100 784 107 467 102 604
437| 120| 257 4| 108 136 578 105 764 110 457 108 590
438| 120| 288} 4| 60 83 360 66 382 70 332 69 365
439) 120] 281] 4| 67 71 383 60 420 62 347 61 403]
440[120 275| 4| 84 92 428 70 502 75 361 73 424
441(140 322] 4] 86 108 553 89 646 91 487| 92 612
442| 140| 300 4] 120 118 740 94 994 100 598 97 778
443f 140| 302| 4] 120 130 756 98 1006f 103 606 101 780
444) 140| 323 4| 88 112 602 96 714 98 529 97 633
445] 140| 303] 4] 124 125 750 96 1021 105 606 101 778
446| 160] 345 4} 132 130 973 94 1283 104 791 99 978
447) 160} 351 4| 120 111 863 89 1073 94 735 9 890
448] 160| 372 4| 91 90 703 76 801 78 637 78 734
449(160| 380} 4] 75 82 675 73 749 77 636 72 72
450| 160] 363] 4| 95 109 730 89 860 93 656 90 792
451| 180 435/ 4] 82 80 861 67 942 70 812 67 890
452| 180) 390] 4 152 147 1278 114 1847 127 1071 116 1377
453(180| 387] 4| 144 145 1181 103 1572 108 983 105 1237
454| 180| 391 4] 141 142 1186 101 1529 118 994 105 1230
455| 180 413} 4] 105 110 988 89 1153] 94 876 90 1043
456] 200 469] 4] 112 105 1148 81 1340 90 1046 83 1187
457| 200| 474 4| 105 98 1149, 79 1286 84 1040 80 1188]
458] 200} 492 4 92 88 1078 74 1186 79 1012 74 1100
459 200 444 4] 140 133 1304 98 1701 106 1150 102 1392
460| 200{ 448| 4] 140 134 1371 99 1696 109 1196 104 1454

(1)

Table 4. The average of the ratio cost(*)/cost(FSMM)
over 60 data 5 data for each
VIe {10,15,20,40,60,80,100.120,140.160,180,200})
for each A& {1,2.3,4.5,6,10,15.20} concerning (A+1)-
ECA(M). where * denotes any one of FSAM, FSMM.,
SMCM and HBDM: (1) type C: (2) type T: (3) combining
the two types.

FSAM JFSMM [SMCM JHBDM [#data 5 FSAM [FSMM |SMCM THBDM J#data
=T m 063 60} 2 P 1.23%1 T 7.0654] 7.0354 o0
A=2 1] 1.0461| 1.0184] 60 A=2 1.1883 1] 1.0434] 1.0249, 60|
A=3 1] 1.0278] 1.0067| 60 A=3 1.1752] 1] 1.0511| 1.0266 60
A=4 1| 1.0543 1.0343, 60 A=4 1.1874] 1| 1.0499| 1.0191 60
A=5 1| 1.0216| 1.0057| 60 A=5 1.2029 1| 1.0723| 1.0262 60
=6 1| 1.0428| 1.0236 60, =6 | 1.1720 1/ 1.0396| 1.0244] 60j
2=10 1] 1.0451| 1.0229 60) A=10 | 1.1686| 1| 1.0361| 1.0239 60
A=15 1] 1.0199| 1.0051 60 A=15 1.1681 11 1.0369| 1.0195 60|
A=20 1} 1.0461| 1.0197| 60 A=20 1.1756 1} 1.0411] 1.0246] 60
total 1.1446] 1.0000] 1.0375] 1.0159)] 540 total 7.1854| 1.0000] 1.0484] 1.0054| 540
(3) FSAM _'FSMM SMCM [BDM J#data
type C | 1.1446, 1] 1.0375] 1.0159] 540
type T | 1.1854 1] 1.0484] 1.0254] 540
total 1.1650] 1.0000| 1.0430| 1.0207] 1080
Table 5. A part of our experimental results (4320 data in
total) on (A+8)-ECA(M) with A=l and 1<3<4., where
columns are similar to those of Table 1.
V| Al FSAM FSMM SMCM HBDM
cost time] cost timel cost time] cost time
120{ 120 163 1] 1 26 34 25 31 25 16 25 32]
2 118 131 101 172 102 79 102 159
3 215 519 191 684 200 446 192 600
4 317 952| 309 1348] 316 883 303 1210
145| 140] 200 1 1 43 83 39 47 40 21 39 41
2 111 114 107 188 108 86 108 204
3 207 665 193 850 202 581 196 860
4 314 1337 302 1712 312 1179 306 1814
150(160| 204 1 1 49 91 42 g1 43 43 42 107
2 143 295 127 456 133 191 132 471
3 255 1103 230 1688 244 937 234 1534
4 366 1946 348 3167 355 1782 352 2896
155(180 201 1 1 90 358 75 433 78 146 75 421
2 195 571 181 1005 185 354 183 1011
3 323 1602 292 2414 310 1249 294 2327
4 459 2770 434 4327 459 2340 434 4111
160] 200 232 1 1 77 287 66 323 68 131 66 335
2 189 652 180 1104 183 394 176 945
3 313 1973 289 2998 309 1481 290 2571
4 443 3378 432 5215 447 2762 429 4556

