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Abstract

The 3-edge-connectivity augmentation problem for a specified set of vertice (3-ECA-SV for short) is defined by "Given a
graph G'=(V,E"), a cost function ¢:VxV—Z+ (nonnegative integers) with VxV=({ {u,v}lu,ve V,u#v} and a subset I'cV, find a
minimum-cost set E" of edges, each connecting distinct vertices of V, such that G"=(V,E'UE") has at least three edge-disjoint paths

between any pair of vertices in I"." Let 3-ECA-SV(M) denote 3-ECA-SV such that G' may have multiple edges and creation of
multiple edges in G" is allowed. Four approximation algorithms GS-A, GS-M, GS-S and GS-H for 3-ECA-SV(M) are proposed,

and both theoretical and experimental evaluation are given.
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1. INTRODUCTION

The 3-cdge-connectivity augmentation problem for a specified
set of vertice (3-ECA-SV for short) is defined by "Given a
graph G'=(V.E'). a cost function ¢:VxV—-Z% (nonnegative
integers) with VxV={{u.v}lu,ve V.u=v} and a subset I'cV. find
a minimum-cost set E" of edges. each connecting distinct
vertices of V. such that G"=(V.E'UE") has at least three edge-
disjoint paths between any pair of vertices in I"." Such an edge
set E" is called a minimion solution o the problem, and we may
assume IT>2. G" is also written as G'+E". Costs c({u.v}) for

{wv}e VXV is denoted as c(u.v) for simplicity. The problem is
called the weighted version, denoted by W-3-ECA-SV., if there
may exist some distinct edge costs and the unweighted one,
denoted by UW-3-ECA-SV, otherwise.

Let 3-ECA-SV(S) denote 3-ECA-SV with the following
restriction (i)-(iii) on G'. ¢ and E", respectively: (i) G' is a
simple graph: (ii) ¢:E»Z*. with E={(u.v)l{u.v}e VxV} (the
edge set of a complete graph having V as the vertex set). such
that ¢(e)=0 if ec E" and ¢(e)>0 if ee E-E"; (iii) E"cE-E'. (We
assume c(u.v)=1 for any {u,v}e VxV in UW-3-ECA-SV in the
paper.) Let 3-ECA-SV(M) denote 3-ECA-SV such that G’ may
have multiple edges and creation of multiple edges in G" is
allowed. 3-ECA-SV is extension of 2-ECA-SV, which is
defined similarly, and results for W-2-ECA(S) are shown in

[13,14]. If T=V then the problem is called the 3-edge-
connectivity augmentation problem (denoted as 3-ECA). 3-ECA
and k-ECA (generalization of 3-ECA) have been mainly
discussed in literature: see [17.18,19.20,21] for 3-ECA and
[1.2.3.4.7.9.12.15.16] for k-KECA with k>2: k#3.
Concerning UW-k-ECA, only UW-k-ECA(M) has been
discussed so far, while, as for W-k-ECA, only W-k-ECA(S)
has been considered. Since W-3-ECA(S) is known to be NP-
complete [17] and since this proof technique can be used in
proving the NP-completeness of W-3-ECA(M). both W-3ECA-
SV(S) and W-3-ECA-SV(M) are NP-complete.

The subject of the paper is 3-ECA-SV(M). The paper first
shows that therc is an O(IVI+E']) algorithm for solving UW-3-
ECA-SV(M). It is shown that we can equivalently transform
UW-3-ECA-SV into UW-3-ECA in O(IVI+E'l) time in Section
3. Since it is known that UW-3-ECA(M) has an an O(IVI+IE'l)
algorithm (by combining results [6, 8, 10] and [19, 20]: see also
{21]), UW-3-ECA-SV(M) can be solved in linear time. On the
other hand, the above transformation can be used in reducing
W-3-ECA-SV to W-3-ECA: in this case optimality is not always
preserved and we manipulate cost functions so that existence of
solutions to W-3-ECA may imply that of those to W-3-ECA-SV.
Four approximation algorithms GS-A. GS-M, GS-S and GS-H
are proposed for W-3-ECA-SV(M) in Section 4. Each of them is
given as a general scheme GS incorporating any one of
procedures FSA**, FSM** SMC** and HBD** for finding
approximate solutions to W-3-ECA(M), they are denoted as GS-
A, GS-M, GS-S and GS-H, respectively. For simplicity G' is
restricted to 2-edge-connected one in this paper unless otherwise
stated. Both theoretical and experimental evaluation are given in
Section 5. As theoretical evaluation it is shown that both GS-A
and GS-M produce worst approximation no greater than twice
the optimum it they are applied to UW-3-ECA-SV(M). As
experimental cvaluation of W-3-ECA-SV(M), it is shown that
cost(GS-M)<cost(GS-H)<cost(GS-S)<cost(GS-A) and
time(GS-S)<time(GS-A)<time(GS-H)<time(GS-M), where
cost(GS-M) and time(GS-M) are the total cost of an approximate
solution by GS-M and its computation time. and similarly for
others.

It should be mentioned that UW-3-ECA-SV(S) and W-3.

ECA-SV(S) can be solved similarly to the paper: the former is
optimally solved since UW-3-ECA(S) and UW-3-ECA(M) have
the same minimum solution if IVI>4 (see {21]), and, for the
former, it is experimentally observed that the algorithms to be
proposed by the paper produce good approximate solutions.

In the rest of the paper UW-3-ECA-SV(M) or W-3-ECA-
SV(M) is denoted as USV or WSV. respectively, for notational
simplicity.

2. PRELIMINARIES

An undirected graph G=(V(G),E(G)) consists of a finite and
nonempty set of vertices V(G) and a finite set of undirected
edges E(G): an edge e incident upon two vertices u,v is denoted
by (u,v); uand v are the endvertices of an edge e; e is called a
loop if u=v. V(G) and E(G) are often denoted as V and E,
respectively. If there are two edges both of which have the same
pair of endvertices then G is called a multigraph. Such edges
are called mutiple edges: otherwise G is called a simple graph.
A directed graph G=(V(G),A(G)), or simply denoted as
G=(V,A). consists of a set of vertices V(G) and a set of
directed edges A(G). A directed edge from u to v is denoted as
<u.v>. In this paper, only graphs without loops are considered,
and the term "a graph" means an undirected multigraph unless
otherwise stated. The degree of a vertex v in G, denoted by
dG(v) or d(v), is the total number of edges (v,v'), v'#v,
incident upon v, and v is often called a degree-d(v) vertex (of
G).

For a set REV(G). let G[R] denote the subgraph having R
as its vertex set and {(u,v)e E(G)l u,ve R} as its edge set. G[R]
is called the subgraph of G induced by R (or the induced

subgraph of G by R). Deletion of REV(G) from G is to
construct G[V(G)-R], which is often denoted by G-R. If R={v}

then we often denote G-v. Deletion of QCE(G) from G defines a
spanning subgraph of G. denoted by G-Q, having E(G)-Q as its
edge set. If Q={e} then we denote G-e. For a set E' of edges
such that ENE(G)=0. let G+E' denote the graph
(V(G),E(G)UE). If E'={e} then we denote G+e. Shrinking
RcV(G) to a vertex rg is to construct a graph having (V(G)-
Ryu{rg} as its vertex set and E(G-S)U{(rg.v)l(u,v)e E(G),
ue R, ve V(G)-R} as its edge set, where any loop created is
deleted.

A path between u and v, or a (u,v)-path, is an alternating
sequence of vertices and edges u=v(.eq,v1,....vp_1.6n,Vp=V
(n20) such that if n=1 then v(,....vy, are all distinct and e;=(v;._

1.vi) for each i, 1<i<n. The length of this path is n. Vertices
V...V are called inner vertices of this path if n>2. A cycle
is a (vp,vp)-path together with an edge (vq,vp). The length of
this cycle is n+1. A pair of multiple edges are considered as a
cycle of length two.

Two paths P, P' are said to be edge-disjoint (internally
disjoint, respectively) if E(P)YNE(P")=@ (P and P' have no
inner vertex in common). The edge-connectivity (vertex-
connectivity, respectively) of a graph G, denoted by A(G)
(k(G)), is the minimum number of edges (vertices) whose
deletion from G disconnect it. A graph G is k-edge-connected
(k-vertex-connected) if and only if AM(G)2k (x(G)=k). A k-
edge-connected (vertex-connected, respectively) component
of G is a maximal subset of vertices such that, for any two
vertices in the set. G has at least k edge-disjoint (internally
disjoint) paths between them. A k-edge-connected component is



often denoted as u k-ece (a k-vee) in this paper. It is known that
MG)zk (k(G)=k, respectively) if and only if V(G) is a k-ecc (a
k-vee). Note that distinet k-eces are disjoint sets. Each 1-ecc is
often called a component. A set KEE(G) is called a (u,v)-
separator if and only if u and v belong to distinct components of
G-K. Let A(u,v:G) (k(u,v:G). respectively) denote the
maximum number of edge-disjoint (internally disjoint) (u.v)-
paths of G. A tiv)-separator KSFE is called 4 (u.v)-cus if and
only if IKIE=A(U.v:G). A (uv)-cut K is called a (wv)-cutpair or
simply a cutpair if and only if IKI=2 and is called a hridge if and
only if IKI=1. A vertex ve V(G) is called a cutpoint of G it and
only if the number of components of G-v is greater than that of
G. For any cutpoint ue V(G) and each component H of G-u,
GIV(H)U{u}] is called a u-hlock of G. For nonempty disjoint
sets S, S'CV(G). let A(S.S":G)={(u.v)e E(G)lue S and ve S'}.
If S'=V(G)-S then it is written as KG(S) and we denote
d(S,6)=IKg(S).

A leaf of a tree is a vertex with only one edge incident on il.
An arborescence is a directed acyclic graph with one specified
vertex. called the root, having no entering edges. and all other
vertices having exactly one entering edge. A minimum-cost
arborescence is an arborescence of minimum total cost. A
branching of a directed graph G is a graph whose weakly
connected components are arborescence. A cactus is an
undirected connected graph in which any pair of cycles share at
most one vertex: each shared vertex is a cutpoint. A leaf of a
cactus G is a vertex v with either dg(v)=1 or dg(v)=2 and v is
on a cycle.

A pair of edges without sharing vertices in G are said to be
independent. An edge set in which any pair are independent in
G is called a matching of G. and a matching of maximum
cardinality is called a maximum matching. A maximum-cost
matching of a weighted undirected graphis a matching whose
total cost is maximum. A maximum cost matching of a given
graph G is obtained in O(|V||E|) time [11].

3. Solving 3-ECA-SV as 3-ECA

We first explain reduction of 3-ECA-SV into 3-ECA such that a
minimum solution to one of the two problems implies one to the
other. Then we describe a general scheme for solving 3-ECA-
SV as an algorithm GS. where we assume that A(G")=2 for ease
of understanding: the cases with 0sA(G")<1 are omitted due to
shortage of space. Note that all h-components with h<3 of G’
can be found in O(IVI+IE')) time: see [11] for h<2 and [6.8.10]
for h=3.

Let G{'=(V{.E{’) denote the graph obtained by shrinking
each 3-ecc of G’ into individual vertex. and let VoV be the set
of vertices into each of which a 3-ecc containing at teast one
vertex of " Is shrunk, where we assume that each 3-ecc S is
shrunk into a vertex vq in S. If G’ of Fig. | is given then G| is
shown in Fig. 2, where vertices in V, are denoted as black
spots. We denotc vy as «(S) and conversely S as B (vy). Since
we assume A(G)=2, G|' is a cactus consisting of some cycles.
Note that dG(v) is even for every vertex ve V| and that v is a
cutpoint if and only if dGl(v)24. A cycle of G| is called a
pendant if it contains at most one cutpoint. A pendant is called a
core pendant it it contains at least one vertex of V, that is not a
cutpoint. If G has a cutpoint and there is any pendant that is
not a core one then delete all vertices except the cutpoint of this

pendant. and repeat this procedure as much as possible. Let
G2'=(V2,E3") denote the resulting cactus (see Fig. 3). Clearly
any pendant of G3' is a core one and V,c V7. The set V|-V has
a partition V-Vo=W ju..oWy (k>1; WinW;=@ if i) such
that, for each Wj. there is a cutpoint vj for which Xj=W;ju{vi}
induces a vi-block of G|". Each Xj and vj are called an outer
component of Gy’ and the attachment of Xj, respectively.
Clearly G2' is obtained from G}’ by shrinking each Xj into vj,
i=l....k. We denote vi=o3(Xj) and X;=p(v{). Also we denote
a(v)=v and Ba(v)=v for any ve Vo-{v{,..,vk} (V). If Gy'
has a (v, vp)-path of length n>2 with inner vertices vi¢ V, and
dG(vjy=2, i=1,...,n-1, then delete all inner vertices vy,...,vy_]
and add an edge (v(.vy). Repeat this procedure as much as
possible, and let x(G7') denote the resulting graph, which is
called the condensation of Gp'. Denote x(Gy') as

G3'=(V3,E3") (Fig. 4). Note that V,c V3 and any vertex v with
dGy(v)=2 belongs to V,. Let L3={ve V3ldGgy(v)=2} (cVa).
Let vg,v|....vy (n21) be a sequence of vertices of Gy’ such

that ViEVj for ije {0,1....n}, izj. If we consider each pair
{vi.vi+1} as an edge (v{,vj;|). i=0,...,n-1, then this sequence
represents a (vq,vp)-path. Hence we often call it a (vO,vn)-
sequence of V7. Suppose that A(G')=2 and 1V 123. Let w,w' be
a pair of vertices of V| such that Gy’ has a cutpoint separating
them. Let aj...ag (k21) be the sequence of those cutpoints
separating w from w' of G' such that there is the sequence of
cycles Cy,...,Cg4 | satisfying V(Cj)mV(CjH):{aj},
{w.ap}cV(C)), {ag.w'}cV(Ck4y) for j=1..k. The two
sequences are called the (w,w')-cutpoint sequence and the
(w.w')-cycle sequence of Gy', respectively. Note that
{w.w'bolag.... ag ) is a 3-ecc of Gp'+(w,w'). Put
Kww={aj....ak}. Let {u,v'} and {u'v} be two distinct pairs
of vertices of Gp'. (Consider u=1, u'=6, v'=10 and v=4 in Gy'
of Fig. 5 as an example: {a|=2, ap=3} in the (u,v)-cutpoint
sequence of Gp'.) These pairs are called crossing if the
following (i) and (ii) hold:
(i) if there is a.cycle C containing {u,v'} of Gy’ then C
includes {u',v} and they appear as u,u’,v',v in this order
clockwise;
(i) if G has a cutpoint separating u from v' then u' and v
belong to distinct aj-blocks of G, where G" is obtained
from Gy' by shrinking Ky;y*w{u.v'} into the first cutpoint
aje Kyy' of the (u,v')-cutpoint sequence.
[t is easy to see that Go'+{(u,v),(u',v)} has a 3-ecc S
containing {u.v'Ju{u'.v} if and only if {u,v'} and {u',v} are
crossing pairs.

Example 3.1. Consider a graph Gp' of Fig. 5.
Vo={l1.... 10}, Va={1.4} and cp' is shown in the figure
between pairs of vertices. where costs not shown are assumed to
be very large. E»"={(1,10). (4.6)} is a minimum solution with
total cost 20. In G3' of Fig. 6, if we have ¢3(1,4)=20 then we
will obtain {(1.4)} as a minimum solution to W-3ECA for G3',
while if ¢3(1,4)=c5(1.4)=300 or ¢3(1,4)=210 (which is the
length of a shortest (1.4)-path in G7') then a minimum solution

to W-3ECA for G3' is not a minimum one to WSV for G'. ¢

Now we describe an algorithm GS.



Algorithm GS

/¥ Input: a graph G'=(V.E"), a set 'CV of specified vertices
and a cost function ¢:VxV—Z¥(nonnegative integers) such that,
in case of USV. c(u.v)=1 for any {u.v}je VxV, where

VxV={{u.v}luve V.auzv}. */
/* Ouipui: a minimum-cost set E" of edges. each connecting

distinct vertices of V., such that A(u.v:G'+E")>3 for any pair of
vertices u.ve I, #/
1. (1) Construct a graph G|'=(V[.E1") from G’ by shrinking
each 3-ecc of G' into individual vertex.

(2) Let VgV be the set of vertices into each of which a 3-
ecc containing at least one vertex of I is shrunk.

(3) In WSV, define a cost function ¢[:V[xV[—Zt and a
backpointer b{:VxV|—=VxV by

cp(u,v)=min{c(u'.v)u'e Bi(u), veBi(v)}.

by(u.v)=(u".v") such that ¢ (u.v)=c(u".v").

2. Find all outer components X|.....Xk (k20) of G1".
3. (1) If k=1 then construct Go'=(V2.E5") by shrinking each
outer component Xj into its attachment vj. i=1.... k.

(2) In WSV, define a cost function ¢2:VoxVo-5Z% and a
backpointer bp:VoxVy—V|xV| by
cp(u.v)=min{cy(u'.vHiu'e Br(u). v'eBo(v)}.
bo(u.v)=(u".v") such that co(u.v)=c(u".v").
4. (1) Construct the condensation x(G7") and denote x(G2') as
G3'=(V3.E3".
(2) In WSV, define a cost function ¢3:V3xV3—Z* and a
backpointer
b3:V3xV3—{(v(.vp)-sequences of a complete graph
Gp=(V2.Ep)lv.vue Vo )
by
c3(u,v)=(the length of a shortest (u.v)-path P in G5'. and
b3(wv)=Pyy.
(For efficiency. if Py, has an inner vertex we V, then
c3(u,w)ethe length of Py, b3(u.w)ePyy.
c3(v.wiethe length of Pyy,. b3(v.w)ePyyy.
where Pyy, and Py, are the (u.w)-subpath and (v,w)-subpath
of Pyy.)
(3) In WSV. for each pair u,ve V4 of G3', define a cost

function c4:V3xV3—Z* and a backpointer

ba:V3xVi—={(u.v)lu.ve Vo, uzv}
Ui tuv o' i{avi#{uv] wu'vive Vo
by
cq(u,v)=min{{c3(u.v)}u{co(u,vi+co(u’,v)l
{u.v'} and{u'.v} are a crossing pair of G2'}}.

j{ (u,v)} if C3(u,v)SC2(u,v')+02(u',v),

bg(u,v)=
Q(u,v'),(u'.v)] otherwise.
5. (1) In USV, solve UW-3ECA for G3' (that is, find a set E3"

of minimum cardinality such that A(G3'+E3")=3) by means of
an O(IV3'I+E3’l ) algorithm, denoted as ATEC, proposed in
[19.20,21].

(2) In WSV, find an approximate selution to W-3ECA for
G3' (that is, find a set E3" of small total cost such that
MG3'+E3™)=3) by means of any one of FSA** FSM**,

SMC** and HBD** to be proposed in Section 4.
6. Define E" by

E"={b(ba(b3(bg(u.v)))l(u.v)e E3"} (with multiplicity
deleted). ¢

Remark 3.1. If SMC is used for solving WSV then Step 4(2)
is omitted.

The relation among G', Gp' and G3' are shown by the
following lemmas.

Lemma 3.1. There is an edge set E" of minimum total cost

c¢(E") such that Adu,v;G'+E")23 for Vu,ve I' if and only if there
is an edge set Ep" of minimum total cost ca(E2") such that

Mu' v Go'+Ep")23 for Y ve Va. where c(E")=cp(Ep"). ¢

Lemma 3.2. In USV. there is an edge set E9" of minimum

cardinality such that A(u',v:Gy'+Ep™)23 for Yu' v'e Vg, if and
only if there is an edge set E3" of minimum cardinality such that

MG3'+E3")23, where [E3"I=IE3". In WSV, there is an edge set
E2" such that ¢cp(Ep")=c3(E3") and Au',v;G2'+E2")=3 for
Yu'.v'e V, if there is an edge set E3" of total cost c3(E3") such
that A(G3'+E3")23.¢

We obtain the next theorem.

Theorem 3.1. USV can be solved optimally by GS-U in
O(IVIHE') time if M(G)=2. ¢

(It should be mentioned that, in USV, a similar propositon
holds for cases 0<A(G')<1.) For WSV, constructing G3', ¢3
and b3 from Gp', ¢y does not always preserve equivalence
between two solutions of minimum total costs: it depends upon
how to define c3 from c;. In the next section, we propose
approximation algorithms for solving WSV: finding a solution
of small total cost to W-3ECA for G3' so that it may make a
good approximate one to WSV for Gp'.

4. APPROXIMATION ALGORITHMS FOR WSV
Four procedures FSA** FSM**, SMC#** and HBD** that
produce approximate solutions to W-3-ECA(M) for G3' in Step
5(2) of GS will be proposed. They run in O(IVI2),
O(VI3logIVh, 0(VI3) and O(VI3logIV1) time, respectively,
since we can devise an O(IV13) algorithm for Step 4(3) of GS
(the detail is omitted here). Similar procedures FSA*, FSM*,
SMC* and HBD* have been proposed as approximation
algorithms for W-3-ECA(S) in [18], and they are modified so
that they may make approximation ones for W-3-ECA(M),
resulting in FSA**, FSM** SMC** and HBD**. Let
Gg'=(Vg.Eg") denote G3', and note that L3 is the set of all
leaves (degree-2 vertices) of Gg'.

4.1 Procedure FSA** Based on Minimum-Cost
Arborescence
The first procedure to be proposed is FSA* based on a



minimum-cost arborescence algorithm [5]. The idea, using
minimum-cost arborescence in finding solutions to W-3-
ECA(M). is based on the results for W-2-ECA(S) in [3]. The
algorithm is outlined as follows. First, Gg' is changed into a
simple graph by deleting multiplicity, and then a tree G'y, will be
constructed as follows: for each cycle C that is remaining in this
simple graph, a new vertex v is added. For every cycle C, each
vertex on C and v are connected by an edge. Then all edges of
C arc deleted. Let Gp'=(Vp.Ep) denote the resulting tree. Next,
we choose a specified degree-1 vertex r of Gy' as the root. and
direct every edge of G'p toward r. Let Gy’ denote the resulting
directed graph. Some modification of costs will be done. Let G},
and d' be the complete directed graph on Vi, and a final cost
function, respectively. We find a minimum-cost arborescence
T=(Vp. Ap") of G, with respect to d'. Finaily an approximate
solution is obtained by means of backpointers.

We first present procedure REMAKE that changes a cactus
Gy' into a spanning tree Gy

procedure REMAKE: .
/% Input: Gg'=(V¢.Eg". Qutput:Gy'=(Vy.Ep'). */
1. Delete multiplicity of edges in Gg', making it simple. Then
find all cycles by a depth-first-search.
2. For each cycle C, add a dummy vertex w(, connect we to
every vertex on C and delete all edges (u,v) of C. Let
Gp'=(Vp,Ep") be the resulting graph. Define a cost function
c"iVpxVp—=ZtU{eo} as folows: for all pairs u,ve Vg, set
¢"(u,v)=c'(u,v); for all dummy vertices w¢ and all vertices u of
Vg, set ¢"(W,U)=co.

We use a distance function d:VpxVp—Z+U{eo}. This

function is introduced in [3] in order to avoid poor choice of
edges in finding minimum-cost arborescence, and is defined by

d(u,v)=min{c'(x,y)| u and v are on a path from x to y
in Gp'}.
The following procedure has been proposed in [3] and is
rewritten here so that it can be applied to Gy,

procedure DIST: :

/¥ Input: a graph Gp'=(Vp.Ep'), a cost function
c":VpxVp—Z1tU{eo ), a backpointer b. #/

/* Output: A distance function d:VypxVp—ZTU{eo} and a
backpointer b':VpxVy—VpxVy, such that ¢'(b'(u.v)=d(u,v). */
1. For each pair u,ve V,, compute the number a(u.,v) of edges
on the path between u and v in Gy', and find the vertex s(u,v)
adjacent to v on this path. Let

d(u,v)é=c"(u,v) and b'(u,v)e—(u.v).
2. Bucketsort the pairs (u,v) in VpxVy, into nonincreasing order
of a(u,v). For each edge (u,v)e VpxVy, do the following in its
sorted order:

d(u,s(u.v))¢=d(u,v) and b'(u.s(u.v))<b'(u,v)
if d(u,v)<d(u,s(u,v));

d(s(v,u).,v)e=d(u,v) and b'(s(v,u),v)<=b'(u.v)
if d(u,v)<d(s(u,v),v).

It can be proved, similarly to [3]. that DIST correctly
computes the distance function d and the backpointer b' in

0(|V|2) time. For two different edges (u.v).(u'.v)e VpxV, it

may happen that b'(u.v)=b'(u’.v'). Hence, in general,

b(Z)={b'(u,v)l(u,v)e Z} may be a multiset for a set ZEVpxVp,
However. we assume that b'(Z) denotes the one with
multiplicity deleted unless otherwise stated, for notational
simplicity. Similar notation will be used for other backpointers
to be defined later. Procedure FSA** is stated as follows.

procedure FSA®%;

/¥ Input: a gl;z_iph Gg'=(Vg.Eg) with ec(G")=A, a cost function
¢ VgxVg—Z Ufeo}, and a backpointer b:VxVg—VxV. #/

/* Output: A set Eg" of edges, each connecting distinct vertices
of Vg, such that E¢" is a solution to Gg'. */

1. Construct a complete graph Gy, from Gg, and a tree Gy,' from
Gg' by using REMAKE.

2. Compute d:VpxVp— Z1 and b:VpxVp— VXV, by using
DIST.

3. Ape— . Insert <u,v> and <v,u> into Ay, for each pair
{u.v}e VpxVy. constructing a complete directed graph
Gp=(Vp,Ap).

4. Choose any degree-1 vertex of Gp' as the root r. Let Ay’ be
the set of directed edges generated by directing each edge in Epy’
toward r. Denote the resulting graph by Gp'=(Vp.Ap).

5. d'<u,v>¢ d(u,v) and d'<v,u>« d(u,v) for all
{u,v}e VpxVp,.

6. For <u,v>e Ay, if ug Vg or v Vg then d'<u,v>¢-oo; if
<u,v>e Ap' and {u,v}C Vg then d'<u,v>¢0 and d<v,u>¢oo;
if v=r then d'<u,I>¢—co.

7. Find a minimum-cost arborescence T=(Vp,Ap") with the root
r of Gy, with respect to d'.

8. For each edge <u,v> in Ap" with 0< d'<u,v> <ee, insert the
corresponding edge b'(u,v) into Eg" (with multiplicity deleted).

Remark 4.1. In Step 5 of FSA** we may define d' and b" as
in Step 5 of FSM** (to be given in 4.2) by finding shortest
paths. We implemented this version and applied it to 120 data,
but no improvement has been observed so far. Hence in this

paper Step 5 of FSA** is left as it is. 4
The following lemma can be proved.

Lemma 4.1. FSA** generates a set of directed edges Ap" such
that (Vpp,Ap'UAp") is strongly connected. ¢

We obtain the next theorem.

Theorem 4.1. GS-A generates a set E" such that AM(G'+E")23
in O(V|3) time ¢

4.2 Procedure FSM** Based on Maximum-Cost
Matching

The second procedure to be proposed is FSM** based on a
maximum-cost matching algorithm. The idea is very simple. As
a set of [|L3)/2] edges, each connecting a pair of leaves in a
cactus Gg', the one E¢y" with minimum total cost is selected by
using a maximum-cost matching algorithm in O(|V||E|) time,
which is 0(|V|3). If M(Gg'+E(")<3 then similar process will be
repeated: repetition is at most O(log|V|) time. The description
of FSM** is given as follows. We denote J;i'=(Y;,B;") and
Hi'=(W.F}).

procedure FSM#*%;

/% Input: a graph Gg'=(Vg,Eg"), a cost function



c':VSxVS—>Z+u{oo}. and a backpointer b:VxV —E. #/

/* Ouipur: A set of edges Eg" that is a solution to Gg'. */

1. Jo=Gg. Jo'e- Gy, cg'e=c'. i1=0.

2. Construct a tree Gy’ from Ji' by using REMAKE.

3. Hi'«-Gy.

4. Find a distance function di:WiXWiaZﬁJ[w} with a back
pointer bi":"WixW;—=YxY; by using DIST. For each dummy
vertex w¢ added within the cycle C of Gy, di(we.v)é—co for
any vertex v on C.

5. Compute di'sWxWi—Z Ufes} and b;":WixWi— W;xW; by
finding, for each pair u.v of degree-1 vertices of H;'. a shortest
path P(u,v) in a complete graph on W; as follows: for the edge

set Ep of P(u.v). dj'(u,v)«<=dj(Ep) and b;"(u.v)«-Ep (actually
bi"(u,v) is a pointer to the list maintaining Ep).

6. Construct a complete subgraph Sj on the set of all degree-1
vertices of H;'.

7. For each cost di'(u,v) with (u.v)e E(Sj). dj"(u.v)«MAX+]1-
dj'(u,v), where MAX is the maximum edge-cost of S;. Find a

maximum-cost matching MjCE(S;) of Sj with respect to d;".

8. For each edge (u,v)e Mj, insert the corresponding set of
edges bj'(b;"(u.v)) into E;" (and then any multiplicity is deleted).

9. If E{" is not a solution to Jj' then A«<E;" and execute (i)-(iii):

(1) Jj4.1'«—the cactus constructed by shrinking each of 3-eccs of

Ji'+E;" into a vertex:

(ii) define a new cost function ci+|:Vi+|><Vi+1-92+u{ool by
Cix1'(wv)=min{ci'(x.yl(x.y)e VixVi. xe S, ye Sy }.

where Sy, denotes the set of vertices of J;'+A that are shrunk

into we Y4 | and the edge (x.y) is referenced by a backpointer

bi+1(u.V)= (x.y). where bj11: Vit 1XVis] 2 VixVi.

(iii) i<—i+1 and goto step 2.

10. If Ej" is a solution to J; then do the following (i) and (ii):

(i) Eg"«Eq™

(ii) if i1 then for each j

Eg"¢Eg"Ub|(...(bj(E{")...).

(=1, ... i) repeat

We obtain the next theorem.

Theorem 4.2. GS-M generates a set E" such that M(G'+E")23
in O(IV|3log|V]) time if Step 4(3) is omitted or in O(IVI4) time
otherwise. ¢

4.3 Procedure SMC#** Based on Minimum-Cost
Edges ’

The third procedure to be proposed is SMC**, which is a
greedy algorithm that finds approximate solutions without using
a maximim-cost matching algorithm. The description of SMC**
is almost the same as that of FSM**, The only difference is that
SMC** finds a solution to Gg' by choosing. at each leaf v. a
minimum-cost edge ¢, among those incident upon v.

Description of SMC**. Delete Step 5, replace Step 7 by the
following statement in FSM** and rewrite b;'(b;j"(u,v)) as
bj'(u,v) in Step 8, and SMC** follows:

Step 7. For each degree-1 vertex v of Hj', let ey denote an edge
connecting a pair (u,v)e WixW; with
dj'(w.v)=min{dj'(u".v)l(u'.v)e W;xWi}, and
Mj<{eylv is a degree-1 vertex of H;'}

(with multiplicity deleted). ¢
We obtain the next theorem.

Theorem 4.3 GS-S generates a set E” such that M(G'+E")>3 in
O(V3) time. o

4.4 Procedure HBD** by Combination of FSM**
and SMC**

HBD*#* is a combination of FSM** and SMC**, and is
almost the same as that of FSM**. The only difference is that a
maximum-cost matching algorithm, to be repeatedly used in
finding a solution to Gg', is applied to the set E(Kj)={eylv is a
degree-1 vertex of Gg'} (with multiplicity deleted) instead of the
set of all edges connecting degree-1 vertices of Gg'.

Description of HBD**, If we replace Step 7 of FSM** by
the following statement then the description of HBD** is
obtained:

Step 7. For each degree-1 vertex v of Hj, let f, denote an
edge(u,v)e E(Sj) with dj'(u,v)=min{dj'(u',v)l(u',v)e E(S})},
and E(Kj)<{fylv is a degree-1 vertex of Hj'} (with multiplicity
deleted). Let K; denote the subgraph (V(S;),E(Kj)) of S;. For
each cost dj'(u,v) with (u,v)e E(K}), dj"(u,v)&MAX+1-
dj'(u,v), where MAX is the maximum edge-cost of K;. Find a

maximum-cost matching M;CE(K;) of Kj with respect to d;". ¢
We obtain the next theorem.

Theorem 4.4. GS-H generates a set E" such that A(G'+E")23
in O(IV3logIVI) time. ¢

5 EVALUATION OF WORST APPROXIMATION
Worst approximation by proposed algorithms is evaluated
theoretically for unweighted cases and experimentally for
weighted cases. Let OPT or APP denote total cost of optimum or
approximate solutions to 3-ECA-SV, respectively. The ratio
APP/OPT is going to be evaluated concerning USV and WSV
with M(G')=2.
5.1 Theoretical Evaluation for USV

It sufficies to consider UW-3-ECA(M), for which an
optimum solution can be obtained in O(|[V|+[E']) time, and it is
shown in {19,20,21] that OPT= q/2], where g=IL3l and we
assume c(e)=1 for any ecE-E'. Clearly OPT=q/2.
(1) GS-A. A minimum arborescence to be found by FSA**
has total cost at most g-1, and we have APP<q-1. Therefore
APP/OPT<(g-1)/(q/2)=2-2/g<2.
(2) GS-M and GS-H. Let G denote a complete graph on
no(=q) degree-2 vertices of Gg'. Let Mg be a maximum

matching of Gy, and ep=|Mql=Lno/2<q/2. G{=Gg+Mg has at
most n1=|—n0/2-|Sq/2+1/2 degree-2 vertices. In general, for
i=1,...m=[logq1-1, Gi=Gj.|+Mj. has at most nj=| n;.1/2]
degree-2 vertices, where logq is abbreviation of log,q and

=l 0y 2 lq/QRD+1/2iy+...+172.



If M; is a maximum matching of G; then its cardinality
ei:|Mi|:Lni/2J, where
Lni/2l<q/2i+ D+ 1@+ D +1/022).
Hence Gj; | =G;{+M; has at most ni_,.l:fni/ﬂ degree-2 vertices.
At the final stage.
= N 172 1K@/ 1/(2M )44+ 1/2=3-2/n<3
and npy=2. Hence ey =1 and nyy 4 1=0. Thus the total number of
edges added is
eptejt..+em-1+Cm
/20 g/ /22) P A QM L2 M)+ +1/(22
)+
=q-5/2+(1/2)ogq+2/q.
‘We can prove that
APP/OPT<(q-5/2+(1/2)logq+2/q)/(q/2)=2-
Sla+(loga)/a+4/(q?)
and

lime_, . (APP/OPT)S2.

It seems that this is slightly overestimated, since only
APP/OPT<2 has been observed so far in our experimentation by
FSM#* and HBD**.

5.2 Experimental Evaluation for WSV

Experimental evaluation of the four algorithms for WSV is
given. It suffices to consider FSA**, FSM** SMC** and
HBD** for W-3-ECA(M).

(1) Input data. We explain how input data, G' and c. are
constructed as in Steps 1-3.

1. The number |V] of vertices is given as follows:

[Vl {10,15.20.,40.60,80.100,120,140.160,180.200}.
2. Two types of data are provided: type C and type T
constructed as follows.
2.1. (type C)

(1) Partition V={1....,]V]} into four sets Li..... L4 with
|Lil=[VI/4 if |V[240, where if [VI<20 then V is partitioned into at
most two sets.

(2) For each i, construct a cycle C; of |L} vertices.

(3) Add ki edges to C;j randomly. where kj satisfies
1<kj<|Ljl/2 and is given randomly.

(4) Let Gj be the resulting graph. Construct G2 (G34.
respectively) by coalescing a pair of vertices, one from G| (G3)
and the other from Gy (Gy4). Let G be the graph given by
coalescing a pair of vertices, one from G2 and the other from
G34. All pairs of vertices are chosen randomly.

2.2. (type T)

(1) Partition V={1,...,|V]} into k sets Lj....Lg, where k is
given randomly.

(2) For each i, I<i<k. choose two vertices wq,w|€ L. and
add two edges (wq,v), (wy.v) for each ve Li-{wg.w}. Let Gj
denote the resulting graph, and let R={Gy.....Gg .

(3) Choose any GieR, R<~R-{G;j} and G<Gj. Then repeat
the following (i)-(iii) until R becomes empty: (i) choosing
Gje R. (i) RER—{GJ}. and (iii) G« the graph given by
coalescing a pair of vertices, one from G and the other from Gj,
where a pair of vertices are chosen randomly.

3. (TI/IVHX100e {10,20.....90}(%) is randomly chosen, and

vertices of T are also randomly selected.
4. Costs on edges are selected randomly from the set {1,....99)}

of integers.
(2) Experimental results. We have tried 4240 data so far

concerning WSV with A(G)=2. A workstation SUN SPARC
STATION is used. Tables | and 3 show a part of our
experimental results on GS-A, GS-M, GS-S and GS-H. For

1000 data with [V]=10,15,20 among them, optimum solutions
are sought by exhaustive search. Tables 2, 4 and 5 show some
statistical data on approximate solutions. Table 2 shows

error=(AP/OP-1)x100(%) for S00 data of type C in (1) or for
those of type T in (2): average of the ratio cost(*)/OPT over 500
data for each of types C and T in (3), where * is any one of GS-
A, GS-M, GS-S and GS-H. Table 4 shows average of the ratio
cost(*)/cost(GS-M) over 2120 data for each of types C and T.
Table 5 shows distribution of these ratios concerning 2120 data
for each type: type C in (1) and type T in (2). Main points
shown by our experimental results are the following (1)-(3).

(1) For almost all data,

cost(GS-M)<cost(GS-H)<cost(GS-S)<cost(GS-A)
is observed. Especially for data of type T, optimum or nearly
optimum solutions are obtained by GS-M.

(2) We have 1000 data to each of which an optimum solution
is found by exhaustive search. For 414 data (82.80%) of type C
and 459 data (91.80%) of type T. GS-M generates approximate
solutions with errors (APP/OPT-1)x100<10%. In total GS-M
generates such approximate solutions for 873 data (87.30%)
among 1000 data.

(3) In general,

time(GS-8) <time(GS-A)<time(GS-H)<time(GS-M)
is observed.

5.3 Unbounded approximation. We show two examples
for which FSA**, FSM** or SMC** generates solutions to W-
3-ECA(M) such that APP/OPT fails to be bounded by constants.
For the graphs shown by solid lines in Figs. 7 and 8, suppose
that they represent Gg' and that all costs except those specified in
the figures are very large, where M>5 in Fig. 7. For Fig. 7, an
optimum solution is shown in halftone lines and OPT=5. FSA**
finds a solution with total cost APP=2M+5, and
APP/OPT=2M/5+1. FSM** generates a solution
{(a,g),(b,).(c,e),(d,h)} with total cost APP=2M+2, and
APP/OPT=2M/5+2/5.

For Fig. 8, we have OPT=2 (the edge (a,g)), while SMC**
generates a solution shown by halftone lines and APP=[V|-
1(=6). Hence APP/OPT=(|V|-1)/2 (=3).

[t is observed in our experimentation that FSM** produces
good solutions for data to which SMC** gives unbounded
solutions, and vice versa. HBD** is proposed in order to
overcome these unbounded cases: it finds an optimum solution
to each of these two cases, and good approximate ones are
produced in our experiment.

6. CONCLUDING REMARKS

This paper proposed four approximation algorithms GS-A, GS-
M, GS-S and GS-H for 3-ECA-SV(M), and both theoretical and
experimental evaluation of their approximate solutions are given.
The following (1) through (3) are left for future research:

(1) theoretical evaluation of HBDM, which is being continued
(our conjecture is APP/OPT<2);

(2) proposing approximation algorithms for k-ECA-SV(M);

(3) providing more experimental results on 3-ECA-SV(M) with
A+6=3 and 8>2.
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1
Fig. 7. An example for which each of GS-A
and GS-M generates a solution whose total cost
cannot be bounded by a constant.

Fig. 8. An example for which GS-S generates
a solution whose total cost cannot be bounded
by a constant.

Table 1. A part of our experimental results for data with [V}=20: (1) type C; (2) type T, where optimum
solutions are sought by exhaustive search. The columns, cost, AP/OP and time denote total costs of
solutions, ratio of costs APP/OPT and CPU time in 1/60 second, respectively.

Table 2. Distribution of error=(AP/OP-1)x100(%) for 500 data of type C in (1) or for those of type T in (2);
average of the ratio cost(*)/OPT over 500 data for each of types C and T in (3), where * is any one of GS-A,
GS-M, GS-S and GS-H. In each column (except the leftmost) in (1) and (2), the total number of cases with

(1) type C

# v el Tm GS-A GS-M GS-S GSH OoPT
cost [AP/OP] time | cost [AP/OP] time | cost | AP/OP] time | cost | AP/OP] time | cost _ time

25] 20| 26] 2 3 1| 8 3 1| 4 3 1 3 3 1 4 3 7

4 9 il 5 9 | 5 9 1| 4 9 1§ 9 95|

6 24 i 7] 24 1| 8 24 il 5 24 1| 7] 24 288

8 25 11905 6 23 1.0052] 5| 23 1.0052] 5 22 10476] 7| 21 218

1] 28 112] 71 2 104 7| 2 11 s 26 104 6 25 304

12 28 112 71 26 104 7| 25 1| s 26 104 & 25 287

14 38 148750 11| 36 1125 10| 36 1125 6| 35 10038 10 32 1022

16| 42 11053 11| 38 1) 10| 42 110s8) 7| 30 10263 8 38 127§

18] 54 10588 13| 51 1| 1] st 7 s 1 10| 51 6609

30[ 20] 26] 2] 4 i 4 4 1] 4 4 1| 4 4 NE 4 5|

4 4 i1 s 4 1| 3 4 | 2 4 i| 3 4 5

8 17 | 5| 25 ta708] 4 20 17089 3l 25 14708 5| 17 13

8 18 il 5 18 | 4 18 i 2 18 | 4 18 20)

10| 30 16667 5| 18 1| 4 30 166677 4 18 il s 18 41

12) 30 16667 4| 18 1| 5| 30166670 3 18 i1 s 18 41

14 30 | 8| a0 1| s 30 | 4 a0 | 4 30 78

16 3e 1 8 38 i1l s if 4 =8 il 71 a8 60)

18| 38 i 8 38 1 6 a8 | 4 = 1 8 38 60

(2ltype T
BN ERE] GS-A GS-M GS-S GS-H OPT
cost | AP/OP] time | cost [AP/OP] time | cost JAPIOP] time | cost JAP/OP] time | cost  time

22| 20| 3g 2 3 i s 3 D 3 1| 4 3 i 4 3 7]

4 4 1| 5 5 125 4 5 125 4 5 125 § 4 21

6 8 13333 5| 6 1| 5 6 1 5 6 1] 5 6 14

8 33 11 8 a0 il e a0 1| s a3 14 7 30 s

1] 33 i 8 a3 11 71 a3 1| 6o 33 i 71 83 ass

12 12 1| 71 12 1 8 12 i s 12 1 6 12 27]

14| 67 10469 o 64 1| 10| e 1| 6 67 10469 10| &4 18384

16| 53 1.0818] 11| 55 1a224f 11| a0 1| 8 5811837 11| 49 1143

18| 70 1.0606] 13| 66 1| 12 es 1| 8 75 11364 12| 66 7379

30| 20[ 38 2 1 1 4 1 1| s 1 1| 4 1 NIE 1 7

4 1 1| 4 1 1| 4 1 1| 4 1 1| 4 1 7|

§] 4 | e 4 il 5 1250 5 4 1| ¢ 4 60|

8 7 |7 7 1| g 8 1.1429| ¢ 7 1| 6 7 475

10 8 i 8 8 1| 4 9 1125 ¢ 8 1l 7] 8 1097

12l 10 11111 8 [ 1|70 10| e 9 117 9 3386

14 12 12 8 10 | 8 12 12 & 10 1| o 10 16003

16| 12 10808 11| 11 1| 10 13 1a818) 7] 1 1| 1o 11 14388

18] 12 10009 12 11 il 1 13 11818 9| 11 | 12l 11 7700

the corresponding error is on the left and its ratio on the right.

(1) type C (2)type T
err. GS-A GS-M GS-S GS-H err. GS-A GS-M GS-S GS-H
err.=0% 219 43.80%| 342 68.40% | 236 47.20% | 295 59.00% err.=0% 256 51.20%] 424 84.80% | 349 6€9.80%] 358 71.60%
0%<err.s5% 24 480%| 30 6.00% | 38 7.60% | 63 1260% 0%<err.<5% 22 440%| 20 4.00% | 11 220% | 28 560%
5%<err.<10% 30 6.00%| 42 840% | 35 7.00% | 47 9.40% 5%<err.<10% 25 5.00%| 15 3.00% | 28 560% | 38 7.80%
10%<err.<15% 24 480%{ 26 5.00% | 36 7.00% | 32 6.40% 10%<err.<15% 55 11.00%| 26 5.20% | 44 8.80% | 45 9.00%
15%<err. 203 40.60%| 61 12.20%| 156 31.20% | 63 12.60% 15%<err. 142 28.40%] 15 3.00% | 68 13.60%| 30 6.00%
(3) type C and type T
A GSM] G35 |
type C| 1.1694] 1.0547] 1.1475]
type T| 1.1021 1.0173[ 1.0524]
all | 1.1357] 1.0360f 1.0999

_9‘




Table 3. A part of our experimental results for data with 180<|V|<200: (1) type C; (2) type T, where the
columns cost, ratio and time denote total costs of solutions, cost(*)/cost(GS-M) and CPU time in 1/60
second, respectively, where * denotes any one of GS-A, GS-M, GS-S and GS-H.

(1) type C
# |Vl IEY [ D GS-A GS-M GS-S GS-H
cost ratio time fcost ratio time |cost ratio time |cost ratio  time

105} 180| 256/ 18 10 1.1111 40 9 1 34 10 1.1111 31 9 1 35
36| 22 11 83 20 1 84 21 1.05 63] 20 1 o1

54 20 1 83 20 1 86 24 1.2 65 20 1 105

72 40 1.0256 195 39 1 222 43 1.1026 149 39 1 355

90 51 1.0625 203, 48 1 227 54 1.125 166 48 1 436

108, 59 1.0926 227 54 1 264 58 1.0741 181 54 1 507|

126 65 1.1207 250 58 1 286 62 1.069 196 59 1.0172 443|

144 75 1.2097 382 62 1 381 70 1.128 260] 62 1 445

162 78 1.2188 355 64 1 458 71 1.1094 269 65 1.0156 426

112{ 2007 235{ 20| 18 1 595 18 1 614 22 1.2222 531 18 1 787
40| 39 1.1818 808 33 1 851 36 1.0909 739 32 0.9697 1001

60| 52 1.1818 1012 44 1 1135 49 1.1136 985 43 0.9773 1292

80 58 1.1837 1123 49 1 1261 54 1.102 1048 50 1.0204 1804

100 75 1.2712 1220 59 1 1438 67 1.1356 1158 59 1 1450

120 87 1.2794 1373 68 1 1646 76 1.1176 1313 67 0.9853 1580

140 99 1.2632 1342 79 1 1757 86 1.0886 1222 79 1 1788

160 110 1.2791 1435 86 1 1740 84 1.093 1275 86 1 1655

180 125 1.2376 1557, 101 1 1971 112 1.1089 1366 102 1.0099  1783]

(type T
# IVl {IE] }Im GS-A GS-M GS-8 GS-H
cost ratioc time |cost rato time jcost ratio  time |cost ratio  time

110| 180 18 19 1.1176 70 17 1 60 20 1.1765 53 17 1 67
36 38 1.0556 109 36 1 102] 38 1.0556 79 36 1 132

54 65 1.0656 202 81 1 202 61 1 144 61 1 278!

72 78 1.0986 283 71 1 316 71 1 214 72 1.0141 365

90 94 1.1605 370 81 1 a7 82 1.0123 285 83 1.0247 451

108| 108 1.1489 613 94 1 877! 97 1.0319 491 94 1 763

126 129 1.1944 788 108 1 947 114 1.0556 673 109 1.0093 837,

144 150 1.2295 1008 122 1 1602 127 1.041 874 123 1.0082 1060

162] 172 1.2374 1348| 139 1 1999 150 1.0791 1194 144 1.036 1557

115| 200 20 18 1 82| 18 1 76| 18 1 63] 18 1 127
40| 35 1.0606 161 33 1 149 34 1.0303 118] 33 1 217

60 50 1.087 256 46 1 274 46 1 187| 46 1 385

80 66 1.2 363 55 1 374 58 1.0545 278 55 1 396

100 84 1.2353 523| 68 1 638 71 1.0441 430 69 1.0147 571

120] 98 1.2564 701 78 1 955 80 1.0256 587 78 1 788

140 117 1.3295 1016 88 1 1314 96 1.0909 854 90 1.0227 1081

160 127 1.3093 1263 97 1 1718 104 1.0722 1109 101 1.0412 1419

180 142 1.3786 1666 103 1 2141 112 1.0874 1547 108 1.0485 1790

Table 4. Average of the ratio cost(*)/cost(GS-M) over 2120 data for each of types C and T,where * denotes
any one of GS-A, GS-M, GS-S and GS-H.

T

type C and type
AT G

S-M

-H | #data

type C
type T

1.1

1.1203]
320]

al

1.0000]

1.1262] 1.0000]

1.0000

1.1016] 1.0058] 2120]
1.0483| 1.0127| 2120]
1.0749] 1.0092] 4240

Table 5. Distribution of the ratio cost(*)/cost(GS-M) concerning 2120 data for each type: type Cin (1) and

type T in (2). Each column (except the leftmost) shows total number of data on the left and its ratio on the

right.
(1) type C () type T
[R=cost(*)/cost(GS-M) GS-A GS-M GS-S GS-H __|[R=cost(*)/cost(GS-M) GS-A GS-M GS-S GS-H
R<1 45 212%] 0 0.00% | 63 297% | 196 9.25% R<t 28 1.32%| 0 0.00% | 70 3.30% | 53 2.50%
R=1 452 21.32%]2120 100.00%| 436 20.57% | 1346 63.49% R=1 409 19.29%]2120 100.00%| 708 33.40% [ 1258 59.34%
1<R<1.05 164 7.74% | 0 0.00% | 273 12.88%| 462 21.79% 1<R<1.05 80 377%| 0 0.00% | 441 20.80% | 656 30.94%
105<R<1.10 | 373 17.50%| 0  0.00% | 486 2292%| 76 3.58% 105<Rs<1.10 | 321 15.14%| 0  0.00% | 590 27.83% | 115 5.42%
1.10<R 1086 51.23%| 0  0.00% | 862 40.66%| 40 1.89% 1.10<R 1282 60.47%| 0  0.00% | 311 1467%] 38 1.79%




