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CONGRUITY OF POINT SETS IN THREE DIMENSIONS
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This paper presents an O((log n)*) time O(n/logn) processors parallel algorithm for determining
the congruity of two point sets in three dimensions on a CREW PRAM. In the algorithm, the

original problem is reduced to the two dimensional congruity problem by selecting a set of at

most 12 points in three dimensions.” The algorithm can be applied for graphs such that each

vertex corresponds to a point and each edge corresponds to a line segment. The algorithm can be
modified for computing the canonical forms and determining the similarity.



1 Introduction

In this paper, we discuss on the problem of de-
termining whether two objects are congruent
or not in three dimensional Euclidean space.
Especially, we consider such objects as point
sets and graphs such that each vertex corre-
sponds to a point and each edge corresponds
to a line segment. Objects such as mechanical
parts in mechanical CAD systems and three di-
mensional structures of chemical compounds in
chemical database systems are represented as
such graphs. Thus, determining the congruity
of two such graphs is practically important.
Several studies have been done for the con-
gruity problem. O(nlog n) time algorithms for
determining the congruity of various ob jects in
two dimensions were developed by Manacher
[12], Atallah [4] and Highnam [8].
algorithm, the original problem is reduced to

In each

the substring matching problem. Sugihara de-
veloped an O(nlogn) time algorithm for de-
termining the congruity of two polyhedra [13]
based on the planar graph isomorphism algo-
rithm. Atkinson developed an O(nlogn) time
algorithms for determining the congruiiy of
two point sets in three dimensions [5]. Al-
though his algorithm was complicated, Alt
et.al. developed. another.simple algorithm for
the same problem [1]. In their algorithm, the
original problem is reduced to the planar graph

ispomorphism problem. Moreover, they showed .

that the congruity of point sets in d-dimensions

was determined in O(n¢-2logn) time and they

claimed that their algorithm could be modi-
fied for such ob jects as graphs. Although these
works and this paper are concerned with exact
matchings, approximate matchings are practi-
cally important. Approximate matchings have
been studied extensively [1, 3, 7, 10].

By the way, we consider parallel algorithms

for exact matchings. It is easy to modify

the algorithms in two dimensions to paral-
lel ones with a little overhead. However, it
seems difficult to parallelize the algorithms in
three dimensions with a little overhead. To
my knowledge, the best parallel algorithm for
planar graph isomorphism is an O((logn)3)
time O(n'%/(logn)?) processors algorithm de-
veloped by Gazit [6]. Therefore, about O(y/n)
overhead is required to parallelize the algo-
rithm of Alt et.al [1]. It seems difficult to par-
allelize Atkinson’s algorithm with a little over-
head, too. Therefore, we develop a parallel al-
gorithm based on another idea. In this paper,
we show an O((logn)3) time O(n/logn) pro-
cessors parallel algorithm on a CREW PRAM
for determining the congruity of point sets or
graphs in three dimensions. We assume that
each arithmetic operation including square
root and trigonometric functions for real num-

.bers is carried out in one step.

2 Preliminaries

Let U denote the three dimensional Euclidean

space. An object is a (finite or infinite) set of
points in U. Two types of objects are consid-
ered in this paper. One is a finite set of points.
The other is an undirected graph in which each
vertex is a point in U and each edge is a line
segment connecting two vertices.

We define the congruence of objects in a

similar way as Ref.[13]. A mapping T of U

onto itself is said to be isometric if |PQ| =
IT(P)T(Q)] for any two points P and Q. For
any object X, we define T(X) = {Q|(3P €
X)Q = T{P))}. Let X and'Y be two ob-
jects. If there exists an isometric mapping T
which satisfies Y = T(X), X and Y are said
to be congruent. Moreover, such T is called
a congruent mapping of X onto Y. It is well
known that T is composed from translations,
rotations and reflections.



For searching a database which consists of
A data
structure C(X) representing an object X is
called a canonical form of X if it satisfies the
condition that C(X) = C(Y) holds if and
only if X and Y are congruent. Once canoni-

objects, canonical forms are useful.

cal forms are computed, the congruity can be
tested only by comparing them. Moreover,
such technique as binary search can be used

to search the database for an identical object.

3 Parallel Algorithm in Two
Dimensions

In this section, a parallel algorithm for deter-
mining the congruity of two graphs (as well
as two point sets) in the plane is described.
It reduces the original problem to the string
matching problem. The similar reductions are
used in the sequential algorithms [4, 8, 12].
Let G(V, E) and G'(V', E') be graphs in the
plane.
generality) that |V| =

We assume w.l.o.g. (without loss of
V| = n and |E| =
|E’} = m. The case of point sets can be treated
by considering graphs with no edges.” We as-
sume w.l.o.g. that congruent mappings do not
contain reflections.

Before describing a parallel algorithm, we
show a sequential algorithm. Let V =
{Pry-++, Po}and V' = {P],---, P.}. First, the
centroid O of V is computed. For each' P}, 6;
denotes the angle ZP,OP;. The angles are de-
fined in such a way as the range of the angles
is {0,2r). Wedefine P; < P as follows

(P < P;) <+ ((6:<8;)V
(8 ‘91)/\(I0P§<|0PJI)

By sortmg V accordmg to '<’, P;s are renum-
bered so that P, < P, < --- < P, holds. P/s
are renumbered in the same way.

Let A = {{P,_,PPis\} U {LP]_, ,’,H}
and L = {{BPn|}u {{PP,, 11} where in-

AP PPy

dices are computed in modulo n. We sort
A and L, Let sorted lists
be (@y,02,--+,ay) and (1,1,
tively. Let a(F;) denote j such that a; =
Let {(P;) denote j such that
l; = |P;P1|. «(P!) and I(P!) are defined in
the same way.

respectively.
,Ir), respec-

P,

Py

P
3 Ps

Py

P,
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Figure 1: Construction of  str(G).
str(Py) ="#T7:1:2:2:64" where o( P;) = 7 and
(P) = 1. str(Pg) —”#4:3:3:1:5:6#” where
a(Pg) = 4 and I(Pe) =3

We construct a string str(G) as follows (see
Fig.1). Let I; denotes j + n — ¢ modulo n. For
each Py, {Pn,, Pny, -+, Pn,} is aset of the a,dja-
cent vertices of P; where [, < I, < -+ < I,

holds. For two strings s; and sz, s3$2 ‘denotes

a concatenamon of s; and sg. Forieach P;, we

define a string str(P;) as follows:

StT(P;‘) — n#” Q(R) n.» I(IJ:) n.» ] o

”Ly R .
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str(G) is defined as str(G) = str( Py )str(P,)

- str(P,). str(G') is defined in the same way.
Then, G(V,E) and G'(V',E’) are geometri-
cally congruent if and only if str(G’) is a sub-
string of str(G)str(G) (note that the lengths
of str(G) and str(G') are the same). Next,
we analyze the time complexity. Since it is
easy to see that the other parts can be done
in O(n + m) time, we consider the time re-
quired for the sorting and the substring match-
ing. The length of str(G) (resp.str(G’)) is
O(n+m) where we assume that the size of each
index is O(1). It is easy to see that the total
number of elements to be sorted is O(n + m).
Since substring matching can be done in linear
time and sorting of N elements can be done
in O(N log N) time, the time complexity (the
total work) is O((n + m)log(n + m)).

Next, we consider a parallel implementation.
Sorting and substring matching are critical for
a paralle] implementation. Sorting of N ele-
ments is done in O(log N) time using O(N)
processors on a CREW PRAM (as well as
EREW PRAM) [11]. Substring :matching of
length N and M (N > M) for general alphabet
is done in O(log M) time using O(N/log M)
processors on a CRCW PRAM ([11]. There-
fore, the (sorting_ and the substring matching
can be done in O((log(n + m))?) time using
O((n+ m)/ log(n+m)) processors on a CREW
PRAM. Since it is easy to see that the other
parts can be done in O((log(n + m))?) time
using O((n + m)/log(n 4+ m)) processors, the
following theorem holds. '

.[Theorem 1] Whether two graphs G(V, E)
and G'(V’,E') in two dimensional space are
geometrically congruent or not is determined
in O((logn)?) time using O(n/logn) pro-
cessors on a CREW PRAM where n =
max{|V], |EJ, |V'}, | E"]}. R

The canonical form of G is computed in
the following way. aj---aya;---aj_y is said
to be the canonical form of a (circular)
string a,---an if the following condition is

satisfied[9):

(1SV1$ N)( Az ---anay +-ajq <

@+ -aNGy - Qi)

It is easy to see that the concatenation of
(a1,--,0p), (L, +-,lk)} and the canonical
form of str(G) becomes the canonical form of
G. Since the canonical form of a circular string
of length N over an alphabet of size O(N) can
be computed in O(log N) time using O(N) pro-
cessors on a CRCW PRAM [9], the canonical
form of G’ can be computed in O((log n)?) time
using O(n) processors on a CREW PRAM.
Note that both determining the congruity and
computing the canenical form can be done
in O(logn) time using O(n) processors on a
CRCW PRAM.

4 Parallel Algorithm in
Three. Dimensions

In this section, a parallel algorithm for deter-
mining the congruity in three dimensions is de-
scribed. It reduces the three dimensional prob-
lem to the two dimensional problem. Although
the algorithm for point sets is described, it can
be modified for such objects as graphs.

4.1 Reduction to the Two Dimen-
sional Problem

Alt et.al. showed that the d dimensional con-
gruity problem could be reduced to the d — 1
dimensional congruity problem [1]. Since their
reduction is not efficient, we develop a similar
but different reduction. - ' o



[Definition 1] A mapping ¢p(.5) which maps
a point set § C R? to a point set ¢p(S) C R?
is called a CMC (Characteristic Mapping for
Congruity) if the following conditions are sat-
isfied:

¢ For any isometric transformation T,

cp(T(5)) = T(cp($5)),
¢ |ep(S)] is bounded by a constant K,

e cp(S) does not contain the centroid of §.
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Figure 2: Projection to a Hyperplane

If there is a CMC ¢p(S), the problem of
determining the congruity. of point sets in
d dimensions can be reduced to the prob-
lem of determining the congruity of (labeled)
point sets in d — 1 dimensions as follows.
We assume w.l.o.g. that § = {P,---,P.},
8§ ={P{,---, P}, ep(§) = {C1,---,Ck} and

ep(§') = {Cf,--+,C};} are given.

We construct a point set proj(5,Ch)ind—1
dimensions for each C} as follows (see Fig.2).
proj(§’,C}) is constructed in the same way.
First, S and C}, are translated and rotated so
that the origin O coincides with the centroid
of § and O_C_;:.= tO_ﬁ for some t > 0 where
U =(0,0,---,0,1). Hereafter, we assume that
S and Cj are already transformed in this way.
Next, each P; = (z1,---,24) in § is projected
on the hyperplane 5 = 0, that is, each P; is
projected to (£ZL, 22 ... =1 ) Thep, a

t—rg’t—zq’ Yt—zg?

set of projected points {Q1,---,Qm} becomes

proj(S,Ch). Since multiple points may be pro-
jected on the same point, projected points are
labeled. Let a(Q;) = {t; | CTPZ = tjm
where P; is projected.to Q;}. Each Q; is
labeled so that label(Q;) = label(Q;) holds
if and only if a(Qi) = a(Q;) and [CQ;| =
|C@;]| hold.

It is easy to see that, for each C}, § and S’

. are congruent if and only if there is C} such

that proj(§,Cy) and proj(S’,C!) are congru-
ent (including labels). Thus, the congruity in
d dimensions can be determined by testing the
congruity in d— 1 dimensions at most K times.
Note that the parallel algorithm in the plane
can be modified for the case where points are
labeled. It is easy to see that proj(S,C}) can
be computed in O((logn)?) time using O(n)
processors on a CREW PRAM.

4.2 Com’puting CMC

In this subsection, we show that there is a
CMC in 3 dimensions which can be computéd
efficiently in parallel. Indeed, the procedure
CMC(S) computes such a CMC.

In the procedure, S P denotes the surface of
the sphere of radius 1 whose center is the cen-
troid O of the point set S. cv(V) denotes the
convex hull of the point set V. For each point
Vi € V, deg(V;) denotes the vertex degree of

—21—



V: when the convex hull cv(V') is regarded as
a planar graph. F(cv(V)) denotes the set of
faces of cv(V). For each face f € F(cv(V)),
fdeg(f) denotes the number of edges of f. For
each face f € F(cv(V)), pr(f) denotes the pro-
jected point of the centroid of the face f (see
Fig.3).

Procedure CMC(S)
begin
Let O be the centroid of §;
Project each P; € S from O on SP;
[¥let V = {Vj,---,Vi} be asct
of projected points */ '
if £ < 12 then return V;
if V lies on a plane then return {U;,U,};
/* Uy, Uz are the points on SP such that
OU; is perpendicular to the plane */
Construct the convex hull cv(V) of V;
if cv(V) is not a regular graph then
begin
Dy — {Vi|deg(V;) is the minimum }
Dy « V - Dy;
if |D1| < | D] then return CMC(Dl)
else return CMC(D;)

" end; o
Foe{f11 € F(eu(V)) A fdeg(f)=3);
Fr—{f1f€F(co(V)) A fdeg(f)>3};
if ev(V) is 3-regular and |Fy| = 0 then

return CMC( {pr(f)lf €F }) A
else if |[F}]| < |F2| then

return CMC {pr(f)lf € F, })
else

return CMC({pr(f)lf € F })

end

[Proposition 1] If cv(V) is. d-regular, d is'3,
4orH:

In tfle followings, v denotes the number
of vertices of cv(V), e denotes the number
of edges of ev(V), f denotes the number of

faces of cv(V), f; denotes the number of faces
of cv(V) such that fdeg(f) = 3 and f; de-
notes the number of faces of cv(V) such that

fdeg(f) > 3.
centroid of £
SpP

pr(f)

face:

Figure 3: Definition of pr(f)

[Proposition 2] If cv(V) is 5-regular and
v > 12, then f; < %v \ fl < ;—';v holds.

(Proof) From Euler formula, v—e+ f = 2. (1)
Since each face is surrounded by at least 3

edges, 3f < 2e. : (2)
Since cv(V) is 5-regula.r 5v = 2e. 3)
From (2) and (3), f < % fe < —v : (4)
From (1) and (3), 2f — 31) =4. ' (5)

If f; =0, v.= 12 is derived from 2f;
and 3f1=2e = 5v. Thus, f >0.
From fi+f2 = $v+2and 3fi +4/2 < 2e < 5v,
fi2v+8>0. '

Therefore, since fi' > 0 A fa > 0 holds, the
propositioni holds. . o

-3v=4

[Proposition 3] If cv(V) is 4-regular and
v > 6, then f1:'< 3va2 '—v holds.

(Proof) As in Proposition 2, e'= 2v (l) and
f< 3e < -v (2) hold. -

From (1) and Euler.formula, f = v 4 2. : (3)
If f2 =0,v = 6is derived from f; = v+ 2 and
3f1 = 2¢ = 4v. Thus, f3 > 0.

From fi4 fo = v4 2and 3f; +4f, < 2e < 4v,
fi 28



Therefore, since f; > 0 A f; > 0 holds, the
proposition holds. o

[Proposition 4] If co(V) is 3-regular and
v > 4, then (fy =0-—vf2§%v)/\(f1 >
0—- fi < %vv fa < :}v) holds.

(Proof) From 3v = 2¢ and 3f < 2, f < v
holds.

If f =0, v =4is derived from 2f; = v+ 4
and 3f; = 2e = 3v. Thus, f; > 0.

If fi =0, f2 < 3v holds from 4f, < 2e = 3v.
Iffi>0,(< —v or f < —v holds from f < v.
a

[Lemma 1] The number of recursive calls of
CMC(S)is O(log|S)).

(Proof) Let S; be the parameter of ith re-
cursive call of CMC(S). If co(V) for S; is
not regular, [Siy]| < %IS;| holds.
[Si+1] < 21Si] holds from the above proposi-
tions. Thus, |Siy1] < 2|S;| holds for all i and
the lemma follows. a

Otherwise,

[Theorem 2] The congruity of two point
sets in three dimensions is determined. in
" O((log n)3) time using O(n/ log‘n)lprocessors
on a CREW PRAM. » .

(Proof) Tt is easy to see that the procedure
CMC(S) selects a CMC which contains at
most 12 points. Therefore, making the pro-
~ jection and applying the algorithm in two di-
mensions, the- congrmt) of pomt sets can be
determined.

Next, we consider the time complexity and
Since O((logn)?)
time and O(n/logn) processors are enough

the number of processors.

for the projectian and determining the con-
gruity in two dimensions, we consider the pro-
cedure’ CMC'(S) It is known that the con-
vex hull of N’ points can be constructed in
O((log N)?) time using O(N) processors on

a CREW PRAM [2]." It is easy to see that

O(logn) time and O(n) processors are enough
for executing the other part of one recursive
step of CMC(S). Since CMC(S) is executed

O(logn) times, O((logn)*) time and O(n) pro-
cessors are enough.

The number of processors can be reduced by
applying Brent’s theorem [11] as follows. Let
S; be the parameter of ith recursive step of
CMC(S). Since |Siy1] < £]5:] holds, the total
work for CMC(S) is

5 0(Si(log 5:)?)
< (L4343 +-)0(1S ogS1)Y)
O(n(log n)?) .

Il

Since O((log n)?) time is required, O(n/logn)
processors are enough from Brent’s theorem.
Indeed, if O(n/logn) processors are allocated,
at most max(cy(2)~1(log n)?, c2(log n)?) .

time is required for ith recursive step of
CMC(S) where ¢; and c; are the appropri-

ate constants. Therefore, O((logn)3) time is

enough. a

Note that the algorithm can be modified for
computing the canonical forms if the modified

algorithm. in two. dimensions is applied.

5. Concludmg Remarks

' In this paper, an O((log: n)3) time O(n/logn)

processors parallel algorithm on a CREW

- PRAM for determining the :congruity of two
. point sets or two graphs in three dimensions is

shown. |
Although we assumed a real PRAM as a

computational model in which each-arithmetic

operation including square root and trigono-
metric functions for real numbers is carried out
in one step, it seems possible that square root
and trigonometric functions are removed and
the algorithm is modified for rational numbers.



The algorithm can be.modified for deter-
mining whether two objects are similar in the
sense that.they differ only in their sizes. This
problem is discussed in Ref.[13] and a similar
method can be applied for our cases. For that
purpose, it is enough that the size of each input
object is normalized by expanding or shrinking
it according to the length between the centroid
and. the farthest vertex from it.:

While exact matchings are treated in this
paper, approximate matchings are more im-
portant for practical applications. Although
several algorithms have been developed for ap-
proximate matchings [1,-3, 7, 10], they do not
seem to be practical. Therefore, practical al-
gorithms for approximate matchings should be
developed.
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