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Abstract
Many combinatorial problems can be efficiently solved for partial k-trees. The edge-
coloring problem is one of a few combinatorial problems for which no linear time algorithm

has been obtained for partial k-trees. This paper gives an algorithm which optimally edge-

colors a given partial k-tree in linear time.



1. Introduction

This paper deals with the edge-coloring problem which asks to color, using a minimum
number of colors, all edges of a given graph so that no two adjacent edges are colored
with the same color. The chromatic indez x'(G) of graph G is the minimum number of
colors used by an edge-coloring of G. This problem arises in many applications, including
various scheduling and partitioning problems [FW]. Since the edge-coloring problem is NP-
complete [Hol, it seems unlikely that there exists a polynomial time algorithm to solve
the problem for general graphs. On the other hand, it is known that many combinatorial
problems can be solved very efficiently, say in linear time, for series-parallel graphs or
partial k-trees [ACPD, AL, BPT, C, TNS]. Such a class of problems has been characterized
in terms of “forbidden graphs” or “extended monadic logic of second order” [ACPD, AL,
BPT, C, TNS]. However the edge-coloring problem does not belong to such a class, and is
indeed one of the “edge-covering problems” which, as mentioned in [BPT], do not appear
to be solved efficiently for partial k-trees. Terada and Nishizeki gave an O(|V|?) algorithm
for series-parallel simple graphs, i.e., partial 2-trees [TN]. Zhou, Suzuki and Nishizeki gave
a linear algorithm for series-parallel multigraphs [ZSN]. Bodlaender gave an O(]V|A2m+l))
algorithm for partial k-trees [B] where k is a constant but the maximum degree A is not
always a constant. In this paper we give a linear algorithm for partial k-trees, which
determines the chromatic index x'(G) of a given partial k-tree G and actually finds an
edge-coloring of G using x'(G) colors.

2. Terminology and definitions

In this section we give some definitions. Let G = (V, E) denote a graph with vertex
set V and edge set E. We often denote by V(G) and E(G) the vertex set and the edge
set of G, respectively. The paper deals with simple graphs without multiple edges or self-
loops. An edge joining vertices u and v is denoted by (u,v). The class of k-trees is defined
recursively as follows:

(a) A complete graph with k vertices is a k-tree.

(b) f G = (V,E) is a k-tree and k vertices vy,vs,- -+, vx induce a complete

subgraph of G, then H = (VU {w},E U {(v;,w)]1 <7 < k}) is a k-tree
where w is a new vertex not contained in G.

(¢) All k-trees can be formed with rules (a) and (b).

A graph is a partial k-tree if and only if it is a subgraph of a k-tree. Thus partial k-trees
are simple graphs. In this paper we assume that k is a constant.

The degree of vertex v € V(G) is denoted by d(v, G) or simply by d(v). The mazimum
degree of G is denoted by A(G) or simply by A. For a vertex v € V(G), denote by na(v)



the number of vertices which are adjacent to v and have degree A(G). The graph obtained
from G by deleting all edges in E' C E(G) is denoted by G — E'. Similarly the graph
obtained from G by deleting all vertices in V' C V(G) is denoted by G — V.

3. Determining the Chromatic Index

By the classical Vizing’s theorem, x'(G) = A(G) or A(G) +1 for any simple graph G
[FW]. In this section we first show that x'(G) = A(G) holds for any partial k-tree G with
A(G) = 2k, and then show that the chromatic index x'(G) can be determined in linear
time for any partial k-tree G.

Hoover [Hoo] has claimed that x'(G) = A(G) holds for any partial k-tree G with
A(G) 2 4k, but his proof contains a flaw. His “proof” is based on “Theorem 4.5” in [Hoo):
if the chromatic index of a general graph G is A(G) + 1 then
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However this “Theorem” is incorrect as seen from the following counterexample. Let G be
a graph obtained from K7, a complete graph of seven vertices, by inserting many vertices,
say seventy vertices, in an arbitrary edge e of K7. Then A(G) = 6, |[V| = 77 and |E| = 91.
Clearly x'(G) = A(G) + 1 = T since 7 < x'(K7 — e) < x'(G). However

,
< VIaG)

IB] < =5

contrary to the “Theorem.” This flaw looks to stem from an incorrect interpretation of a
result on “critical graphs,” Theorem 13.6 in [FW].

We prove a claim slightly stronger than his: x’(G) = A(G) holds for any partial k-tree
G with A(G) 2 2k. An edge (u,v) of G is eliminable [TN, NC] if the following equations
hold:

d(u) + na(v) < Aif d(u) < A; and
na(v) =1if d(u) = A.
The following lemma is an expression of a classical result on “critical graphs,” called

“Vizing’s adjacency lemma” (see, for example, [FW], [TN] or [NC]).

Lemma 3.1 If(u,v) is an eliminable edge of a simple graph G and x'(G—(u,v)) < A(G),
then x'(G) = A(G).

For a partition Sy,S5;,---,5; of V(G), let Uy = ¢ and U; = Uj’:] S; for each i,



1 < i < I. Furthermore for each v € S;, 1 <7 <, let
Ey(v,G) ={(v,w) € E| w € Ui},
E¢(v,G) ={(v,w) € E| w € V(G) - U;_1},
dp(v, G) =|Ep(v, G)|, and
ds(v, G) =|Es(v, G)|.
Thus d(v, G) = dy(v, G) + dgs(v, G). (See Figure 1.) We have the following two lemmas.

Ui

Eb(v, G) Ef(v, G)

S, S, Si-1 S; Sin1 S
Figure 1. Hlustration of notations.

Lemma 3.2 For any partial k-tree G = (V, E) there ezists a partition Sy, Sz, ---, St of
V' such that dg(v,G) < k for everyv € V.

Proof. Since G is a partial k-tree, G has a vertex of degree at most k. Let S; be
the set of all such vertices, and let G; = G — §; = G — U;. Since G; is also a partial
k-tree, Gy has a vertex of degree at most k. Let S; be the set of all such vertices, and let
Gy = Gy — Sy = G — U;. By repeating the operation above, one can obtain a required
partition Sy, Sz, -+, Srof V. Q.£.D.

Lemma 3.3 If a partial k-tree G = (V, E) has mazimum degree A(G) > 2k, then G has
an eliminable edge.

Proof. Let S, = {v € V(G)| d(v,G) <k} and S, = {v € V(G — S1)| d(v,G — S1) < k}.
Then S, S; # ¢ since A(G) > 2k. Furthermore there exists an edge joining vertices u € S
and v € S;, because k+1 < d(v,G) and d(v,G— S1) < k. Every vertex w € 5; has degree
d(w,G) < k < A(G), and d(v,G — S;) < k. Therefore d(u) < k < A, na(v) < k, and
hence d(u) + na(v) £ 2k < A. Thus edge (u,v) is eliminable. Q.ED.

Using Lemma 3.3, we have the following theorem.



Theorem 3.4 If a partial k-tree G has mazimum degree A(G) 2 2k, then X' (G) = A(G).
Proof. By Lemma 3.3 G has an eliminable edge e;. Since G —{e;} is also a partial k-tree,
G — {e1} has an eliminable edge e, if A(G — {e1}) > 2k. Thus there exists a sequence of
edges ey,¢€g, -+, e, such that

(a) A(G') = A(G) —1 where G' = G — {e1, €2, -, em}; and

(b) ei, 1 <i < m, is eliminable in G — {e;,€2,---,€i_1}.
By the classical Vizing’s theorem [FW], x'(G') < A(G') + 1 = A(G). Therefore, applying
Lemma 3.1 repeatedly, we have x'(G) = A(G). Q.£D.

Since A(G) can be computed in linear time, the chromatic index of a partial k-tree
G with A(G) > 2k can be determined in linear time. On the other hand Bodlaender
[B] has given an algorithm which determines x'(G) of a partial k-tree G and obtains an
edge-coloring of G with x'(G) colors total in time O(|V|A22(k+l)). Clearly his algorithm
runs in linear time if A(G) < 2k. Note that k is a constant. Thus we have the following

theorem.

Theorem 3.5 The chromatic indez of a partial k-tree can be determined in linear time

if k 18 a constant.

4. Obtaining an Edge-Coloring

In Section 3 we have shown that the chromatic index x'(G) of a given partial k-tree G
can be determined in linear time. In this section we give a linear algorithm which actually
obtains an edge-coloring of G with x/(G) colors. Using Bodlaender’s algorithm [B], one
can obtain an edge-coloring of G with x'(G) colors in linear time if A(G) is a constant.
Therefore it suffices to give a linear algorithm only for the case A(G) > 5k.

The proofs in the previous section do not yield a linear algorithm for the case A(G) >
5k, as follows. Lemma 3.3 implies that a partial k-tree G with A(G) > 5k necessarily
has an eliminable edge. If (u,v) is an eliminable edge in a graph G and an edge-coloring
of G — (u,v) with A(G) colors is known, then, using a standard technique of “shifting a
fan sequence,” one can obtain an edge-coloring of G with x'(G) = A(G) (> 2k) colors in
time O(|E|) [NC, TN]. By Lemma 3.3 there exists an edge-sequence ey, ez, -+, €m, such
that A(G — {e1, e, -,em}) = 5k and e; is an eliminable edge in G — {e1, €2, -, €i_1}
for every 7, 1 < ¢ < m. Using Bodlaender’s algorithm, one can obtain an edge-coloring
of G' = G — {e1,e2, -, em} with ¥'(G') = 5k (> 2k) colors in time O(JV]). Add edges
€m,€m—1, - -,€2,€1 to G' in this order, and modify the edge-coloring of G' to an edge-
coloring of G with A(G) colors by repeatedly using the technique of “shifting a fan se-
quence.” Such a repetition of recoloring would require time O(|V|?).

Our idea is to decompose G into several subgraphs as in the following lemma.



Lemma 4.1 If a partial k-tree G = (V, E) has mazimum degree A(G) > 5k, then E
can be partitioned into subsets Ey, Ey, -, E, such that the subgraphs Gj, 1 < j < s, of G
induced by E; satisfy

(a) A(Gj) =2k for each j, 1 <j<s—1, and

(b) 3k < A(G,) = A(G) — 2k(s — 1) < 5k.
Furthermore such a partition of E can be found in time O(|V]).

Since 2k < A(Gj) < 5k for each j, 1 < j < s, by Theorem 3.4 x'(G;) = A(G;). Using
Bodlaender’s algorithm, one can obtain an edge-coloring of G; with A(G}) colors in time
O(IE;]). Since A(G) = T0;., A(G;), one can immediately extend these edge-colorings of
Gi,Gs, -+, G, to an edge-coloring of G with A(G) colors in linear time.

In order to prove Lemma 4.1, we need the following lemma. Let Va(G) = {v €
V(&) d(v) = A(G)}.
Lemma 4.2 Let G = (V, E) be a partial k-tree, and let S1,S,,---,Si be a partition of V
such that dg(v,G) < k for every vertezv € V. Let I = {i1,i2,-+-,ip}, 1 <11 <ip <+ <
ir <1, and let S}, © € I, be a nonempty subset of S; such that dy(v,G) > 2k for every
vertez v € Si. Then G has a subgraph G' such that A(G') = 2k and VA(G") = J;¢; St
Furthermore G' can be found in time O(|E(G')|) if Ep(v,G) for all vertices v € V are

known.

Proof. A required subgraph G’ can be constructed as follows.

1 Procedure Subgraph;

2 begin

s let G = (Uses St )

4 for j := ' downto 1 do

5 for each vertex v € S;; do

6 add to G' any 2k — d(v, G') edges in Ey(v, G)
7 end.

Whenever line 6 is going to be executed, d(v,G') < k for a current graph G' since
df(v,G) < k. Therefore k < 2k — d(v,G') < 2k. Furthermore dy(v,G) > 2k, and none
of edges in Ej(v,G) has not been added to G’ so far. Thus one can always add to G’
2k — d(v,G") (= k) edges in Ey(v, G) which have not been added to G’ so far.

Clearly d(v,G') = 2k holds for the final graph G' if v € |J;¢; Si- On the other
hand d(v,G') < ds(v,G) < k holds if v € V(G') — U;¢; Si- Thus A(G') = 2k and
Va(G') = Uier Si- Given lists containing Ey(v,G) for all vertices v € V, one can easily
execute the procedure above in time O(|E(G")|). Q.ED.

We are now ready to prove Lemma 4.1.



Proof of Lemma 4.1 The following algorithm finds a required decomposition G1, G2, -,
G, of G.

1 Procedure Subgraphs;
2 begin
3 A= A(G);
4 find a partition Sy, Sz, -, Si of V(G) mentioned in Lemma 3.2

such that ds(v, G) < k for every vertex v € V;
5 for eachi,1<i <1, do S!:= {v e S dw,G) > 3k};

{ dy(v,G) > 2k for every vertex v € S}, 1 < ¢ <l }

6 I'={ij1<i<land S} # ¢};

7 s:=[%7—}ij; {3k < A—-2k(s—1) <5k}
8 for j:=1tos—1do
9 begin {AG)=A-2k(j —1)>5k}
10 find a subgraph G; of G such that A(G;) = 2k and VA(G;) = U;er S

{ Lemma 4.2 }
11 G := G — E(Gj); { A(G) decreases exactly by 2k }
12 S!:={v e S| dv,G) > 3k} foralli,i € I; { update S} }
13 In={iellS!+#¢} { update I }
14 end;
15 G, = G;
16 return G1,G,, -+, G,
17 end.

Whenever line 10 is executed for a current graph G, ds(v,G) < k holds for every
vertex v € V, and dy(v,G) > 2k holds for every v € S}, 1 € I. Therefore by Lemma 4.2
G has a subgraph G; such that A(G;) = 2k and VA(G;) = ;¢ Si- Since A(G) > 5k,
A(G) decreases exactly by 2k whenever line 11 is executed. Thus we have 3k < A(G,) =
A — 2k(s — 1) < 5k. Hence the algorithm above correctly finds subgraphs G;, Gy, -+, G,.

We now analyze the time complexity. Lines 4 and 5 can be done in time O(|E|). By
Lemma 4.2 line 10 can be done in time O(|E(G})|) for every j. Therefore the for loop at
lines 8-14 can be done total in time O(Z;;i |E(G;)]) < O(|E|). Since |E| < 2k|V| the
algorithm above runs in time O(|V}). Q.ED.

This paper concludes the following theorem.

Theorem 4.3 The edge-coloring problem can be solved in linear time for partial k-trees
if k 13 a constant.
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