FAZTY XA 3-8
(1993 3 18)

28FET 71T B
ReERDETIERAKERD DIEHERI7/0T) X L
fiE 22— 0 E=H
A ERTEAY

¥57 G=(V,E) DEvOBLI e(v) Lo LEETELRREMTERSIND, RO
DR E® G oL EFRS,

ERETII5 2 ON 28T 57 G = (V,E) EEBDEr e VI LT, r’TOHLER S
G DERA T ROV A7 VT XARRT,

A Linear-Time Algorithm
for Centering a Spanning Tree
of a Biconnected Graph
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Given a biconnected graph G = (V, E) and any vertex r in V, we show
a linear-time algorithm to construct a spanning tree T of G with r in the
center of T'.



1 Introduction

In a graph G = (V, E), the shortest path blength between u and v is denoted by

disg(u,v). The eccentricity e(v) of a vertex v is defined to be

e(v) = maz{disg(v,u)|u € V}.

The center of a graph G consists of the set of vertices having minimum eccentricity.
It was shown in [1] that for any vertex 7 in a biconnected graph G, there exists a

spanning tree T of G such that 7 is in the center of T and an O(|V|- |E|) algorithm

was given for constructing such a spanning tree. In this paper, we show a linéar-tilne

algorithm for it.

2 Preliminary

We refer readers to [3] for basic graph terminology. We deal with a simple undirected
graph G = (V,E). For a vertex v of G, Ng(v) = {u|(v,u) € EF}. A graph G is
biconnected if there exist two vertex-disjoint paths between any two vertices in G.

A tree T is an undirected graph thaf is connected and acyclic. A rooted tree is
a tree T with a distingﬁisheci vertex r, called the root. The distance disr(r,v) from
the root to v is cailed th;a depth of v and is denoted by depthp(v). The depth of T'is
defined to be the maximum of depthr(v).

The following proposition is an alternative characterization for a root being in the

center of a tree, which is useful for the purpose of the algorithm shown in this paper.

Proposition 1 [1] Let T be a rooted tree with root r. The root r is in the center of

T iff there ezist two vertices a and b such that
1. the path between r and a and the path between r and b are vertex-disjoint,

2. |depthr(r,a) — depthy(r,b)] < 1 and



3. for every vertex u, depthr(r,u) < maz(depthr(r,a),depthr(r,b)).

3 s-t Numbering

An s-t numbering for a biconnected graph is developed in the linear time algorithm
for testing planarity of a graph [2] and it is used to solve several graph problems in
linear time such as bipartition of biconnected graphs [5], 2-path tree problem [4] and
optimal routings for connected graphs [6]. In this paper, for a biconnected graph G
and a vertex r of G we will construct a spanning tree T' with root r such that r is in
the center of T in linear time by using the s-t numbering.

Given an edge (s,t) of a biconnected graph G = (V,E), a bijective function
9:V = {1,2,...,|V]| = n} is called an s-t numbering if the following conditions are

satisfied:
o g(s)=1, g(t) =n and

* Every vertex v € V — {s,t} has two adjacent vertices u and w such that g(u) <

9(v) < g(w).

Proposition 2 (2] Let G = (V, E) be a biconnected graph. For any edge (s,t) € E,

an s-t numbering can be computed in O(|E|) time.

4 A Linear—I‘ime Algorithm

We assume that G = (V, E) is a biconnected graph whose vertices are r-r' numbered
for an edge (r,7') € E . For a vertex v in V — {r} and an r-7' numbering g, we define

two vertices p(v) and s(v) as follows:

9(p(v)) = min{g(u)|u € Ng(v)} and



o(s(0)) = maz{g(wlu € Ne(v)}(if v # '), 5(r') = 7.

For a vertex v in V, Left subgraph L(v) and right subgraph R(v) are defined to
be

L(v) = (V = {ulg(v) < g(v)}, E1 = {(u, p(w))|u € V;}) and
R(v) = (Ve = {ulg(v) < g()} U {r}, Er = {(u, s(u))|u € Va — {r}}).

Clearly both L(v) and R(v) are trees with root r. Let C(v) = (VL UVg, EL U ER).
Let d(L(v)) and d(R(v)) be the depth of trees L(v) and R(v). Figure 1 shows examples
of G and left and right trees.

The depth of L(v) is monotone non-decreasing function of g{v) from d(L(r)) =0
to d(L(r")) and the depth of R(v) is monotone non-increasing function of g(v) from
d(R(r)) to d(R(r")) = 0. And it holds that d(R(r)) — d(L(r)) = d(R(r)) > 0 and
d(R(r")) — d(L(r") = —d(L(r")) < 0. Moreover, for u and v such that u,v € V and
g(u) = g(v) + 1, it holds that d(L(v)) < d(L(u)) < d(L(v)) + 1 and d(R(v)) >
d(R(u)) > d(R(v)) — 1. Therefore, it holds that 0 > (d(R(u)) —d(L(w))) — (d(R(v)) —
d(L(v))) > -2 for v and u such that g(u) = g(v) + 1. This property implies that
there exists a vertex z such that d(R(z)) —d(L(z)) < 1 and we can show the following

main lemma.

Lemma 1 For a biconnected graph G = (V, E) and an r-r' numbering of G ((r,7') €

E), there ezists a vertex x € V such that r is in the center of the tree C(z).

Proof By using the properties about d(L(v)) and d(R(v)) explained above, we can
find a vertex z such that d(R(z))+1 > d(L(z)) > d(R(z)). If let a be a vertex whose
depth is d(L(z)) in L(z) and let b be a vertex whose depth is d(R(z)) in R(z), then

a and b satisfy the three conditions of Proposition 1. 0



@—@  edge of (v,s(V))
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Figure 1: An example of G, L(v) and R(v).



We can obtain the following algorithm CST from Lemma 1.
Algorithm CST:Centering a Spanning Tree
{Input: G=(V,E)and r € V}
{ Output: a spanning tree T of G with 7 in the center of T'}
begin
1. Compute an 7-r' numbering g for an edge (r,’) € E;
{g71(?) represents the vertex v such that g(v) = i.}
2. Select edges p(v) and s(v) for v € V — {r};
3.1 Compute the depth of each v € V in the tree L(r’) and
store it in dL[g(v)];
3.2 Compute the depth of v € V in the tree R(r) and
store it in dR[g(v)];
4.1 Compute the depth of L(v) for v € V and
store it in mazdL{g(v)];
4.2 Compute the depth of R(v) for v € V and
store it in mazdR[g(v)];
5.1 dLz «— mazdL[l]; dRz «— mazdR[1];
5.21 « 1;
{dLz < dRx}
5.3 while dLz < dRz + 2 do
531171+ 1+4+1;
5.3.2 if mazdL[i + 1] > mazdL[i] then dLz « dLz + 1;
5.3.3 if mazdR[i + 1] < mazdR[i] then dRz « dRz — 1,
6. T « C(g7'(i))

Aend



i 1 2 3 4 5 6
g-1(i) r X y z w r
dL 0 1 1 2 2 2
dR 0 2 2 3 2 1
maxdL 0 1 1 2 2 2
maxdR 3 3 3 2 1 0

Figure 2: An example of execution of CST and a solution

Figure 2 shows an example of execution of CST for the graph G and the r-r/
numbering g shown in Figure 1 and a' solution.

Since every tree L(v)(1 < g(v) < |V]|) is a subtree of L(r’) and they have the
root r in common, dL[g(u)] gives the depth of u in L(v) for every vertex u in L(v).
Similarly, dR[g(u)] gives the depth of u in R(v) for every vertex u in R(v). The
while loop of the line 5.3 always exits after at most n iterations from the behavior of
d(R(v)) — d(L(v)) mentioned above.

Thus, the algorithm CST computes a spanning tree T with r in the center of T

correctly from Lemma 1.

Theorem 1 For a biconnected graph G = (V,E) and a vertez v € V, we can con-

struct a spanning tree T' with root r such that r is in the center of T in O(|E|) time.

Proof It is sufficient to show that the time complexity of the algorithm CST is
O(|E]). From Proposition 2, it takes O(|E|) time in the line 1. For each v, s(v)

and p(v) can be selected in O( degree of v) time. Thus, it takes O(|E|) time in the



line 2. The line 3.1 is computed in O(|V]) time, because the depth of all vertices
in the tree L(r') is computed by traversing each vertex with preorder. Similarly,
it takes O(|V]) in the line 3.2. Since the depth of L(v)(or R(v)) can be computed
as mazi<i<g(v)dL[i](or mazym)<i<ividR|[i]), it takes O(|V]) time in the lines 4.1-4.2.
Clearly, it takes O(1) time in the lines 5.1-5.2. Since the while loop of the line 5.3
iterates at most O(|V|) times and it takes O(1) time in the lines 5.3.1-5.3.3, it takes

O(]V]) time. Therefore we have proved the theorem. 0O
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