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A sequence of nonnegative integers S = (s, 53, ..., 8, is graphical if there is a graph with
vertices vy, vy, ...,vn such that deg(v;) = s; for each ¢ = 1,2, ...,n. The graphical degree
sequence problem is: Given a sequence S of nonnegative integers, determine whether it
is graphical and, if so, construct a graph having S as a degree sequence. In this paper,
we consider several variations of the graphical degree sequence problem and give efficient
algorithms.
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1 Introduction

A sequence of nonnegative integers S = (si,82,...,8n) is graphical if there is a graph with
vertices vy, v2, ..., vn such that deg(v;) = s; for each 1 = 1,2,...,n (deg(v:) is the degree of v;).
The graphical degree sequence problem is: Given a sequence of nonnegative integers, determine
whether it is graphical or not. The graphical degree sequence problem was first considered by
Havel [9] and then considered by Erdés and Gallai [5] and Hakimi [7].

Many variations can be considered. For example, if we admit multigraphs, then the multi-
graphical version is obtained. Takahashi [10] recently studied variations described below. A
set of sequences of nonnegative integers {51, S2, ..., Sk} with S; = (si1, $i2, ..., Sin;) is k-partite
graphical (k-pariite multigraphical) if there is a k-partite graph (k-partite multigraph) of k inde-
pendent vertex sets {Vi, Va, ..., Vi.} with V; = {vi1,vi2, ..., Vin; } such that deg(vij;) = sij; for each
1=1,2,....,kand j; = 1,2, ...,n;. The k-partite graphical (multigraphical) degree sequence prob-
lem is defined as follows: Given a set of sequences of nonnegative integers, determine whether
it is k-partite graphical (multigraphical) or not. For these problems, Takahashi proposed char-
acterizations leading to efficient algorithms {10]. However, there were holes.

The problems stated above are all about undirected graphs. Directed versions can also be
defined. For example, a pair of nonnegative integer sequences (S, $~) with $* = (s§, 57, ..., 1)
and 87 = (s7,83,...,8;) is digraphical (multidigraphical).if there is a directed graph (directed
multigraph) with vertices vy,vs,...,v, such that deg™(v;) = s} and deg™(v;) = s; for each
i=1,2,...,n {deg¥(v;) and deg~(v;) are the outdegree and indegree of v; respectively). The
digraphical (multidigraphical) degree sequence problem is defined similarly.

In this paper, we consider variations of the graphical degree sequence problem described
above and present efficient algorithms including an O(n) time algorithm to determine whether
a sequence of nonnegative integers S = (31, $2,...,5,) is graphical or not and an O(m) time
algorithm to construct a graph having S as a degree sequence if S is graphical (m = Y7 5:/2).

2 .Graphical Degree Sequence Problem

In this section, we consider the graphical degree sequence problem and present efficient al-
gorithms. We first recall the previous results. Havel [9] and Hakimi [7] gave Proposition 1
independently and Erdds and Gallai [5] gave Proposition 2 in the following. Their proofs can -
be found in standard books of graph theory [3, 8].

Proposition 1. Let S = (s3, s2, ..., ) be a sequence of nonnegative integers with n > sy >
§9 > ... > sp and let S’ = (s}, 5%, ..., s,_;) be a sequence of nonnegative integers obtained from
S by setting st = siz1 — 1 (2 = 1,2,...,51) and s} = 5541 ( =81 +1,..,n—1). Then S is
graphical if and only if §' is graphical.

Proposition 2. Let S = (s1, $9,...,5n) be a sequence of nonnegative integers with n > s; >
82 2 ... 2 Sn. Then S is graphical if and only if 32}y si <4(i— 1)+ X fo;y min{é, sc} for each
1=1,2,...,n.

For a sequence of nonnegative integers S = (s, $92,...,s,) with n > 51 > 59 > ... > s,, if
Y, si is odd then S is not graphical. Furthermore, if s, = 0 then S is graphical if and only
if (s1, 82, .-+, Sn—1) is graphical. Thus, we assume throughout this section that Y1 ; s; is even,
sp2landm=3 7 5/2

Based on Proposition 1, one can easily determine whether S is graphical or not in O(n?) time.
A graph G with S as a degree sequence can also be obtained in O(n?) time. Similarly, it is trivial
to determine whether S is graphical or not in O(n?) time based on Proposition 2. However, it
is difficult to use Proposition 2 to actually obtain a graph G with S as a degree sequence even
if we know in advance that S is graphical.
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In the following, we first present an algorithm to determine whether S is graphical or not in
O(n) time based on Proposition 2. Next we give an algorithm for actually constructing a graph
G with S as a degree sequence in O(m) time if we know in advance that S is graphical.

Let § = (s1, 82, ..., 5n) be a given sequence of positive integers with n > s; > s2 > ... > s,.
Let a; = Yh_; s and b; = Zif_._,-_,,l min{i, sy }. Then Proposition 2 will be: S is graphical if and
only if a; <i(4 — 1)+ b; foreachi=1,2,...,n.

Since a1 = s; and a; = a;_1 + s; for each i = 2,3,...,n, we can compute all a; in O(n)
time. We will show that all b; can also be computed in O(n) time. Let o(3) = min{j|s; < i}
for each ¢ = 1,2,...,n (we assume s,,; = 0). Then o is a decreasing function because s; >
§3 2 ... 2 Sp, and thus we can compute, in O(n) time, all o(¢) and a unique integer a such
that o(a) > eand o(@+1) < o+ 1. Ifi > e+ 1 then 0(i) < o(e+1) < a+1 < i and
Sk < 8i < So(i) <t (k=1+41,..,n), and thus, b; = Y h=it1 5k = Gn —a;. Foreachi=2,3,..,q,
we have o(2) > o(a) > a > i and s > So()-1 2t (k=1+1,..,0(&) — 1) and s < Sa(iy < 1
(k = 0(3),...,n) and thus, b; = i(c(i) =1 — 1) + ap — @g(i)~1- Of course, by = n — 1. Thus all
bi can also be computed in O(n) time. Since sorting n integers between 1 and n requires O(n)
time [1], we obtain the following theorem.

Theorem 1. For a sequence of nonnegative integers S = (s1, 82, ..., 5,), we can determine
whether S is graphical or not in O(n) time.

Next we present an algorithm for actually constructing a graph for a given graphical degree
sequence S based on Proposition 1. One drawback to use Proposition 1 is that si>sh>..2>
sl,_, does not always hold in §'. Thus we have to sort again to use Proposition 1 recursively.
To avoid sorting, we modify the proposition as follows. It can be proved in the same way as
Proposition 1. '

Proposition 3. Let S = (s1,s9,...,5,) be a sequence of positive integers with n > s; >
82 2'... 2 8, and let T = (#1,13, ...,tp~1) be defined by using k = s,,, z = min{j}s; = s} and
y =max{j|j <n—1,s; = s} as follows.

£ = si—1 fl<i<z—-lory—k+z<i<y,
K 'Y fz<i<y—k+z—-lory+1<i<n—1.

Then S is graphical if and only if T is graphical. Furthermore, t; > t9 > ... > t,_;.

- Based on Proposition 3, we can obtain the following iterative algorithm CG for constructing
a graph G having S as a degree sequence. In the algorithm, L is first set L = {jlsj—1> 85,5 =
2,3,..,n} U {1} and represented by a doubly-linked list and pre[j] < j < suc[j] for each j € L,
where pre[j] and suc[j] denote the previous element and the next element of j € L. Note that
T = (t1,%9,...,t,) is initialized T = S and then maintained to satisfy ¢; >t > .- > t,. Lis
also maintained to satisfy L = {j[t;—1 > ¢;} U {1}. Thus, Lorelj] = tpre[jl4l = *+* =t > t; =
tig1 = -+ = 1451 for each 5 € L.

Algorithm CG.
Input. A graphical sequence S = (s1, s9, o Sp) withn > 8 >8> .25, > 1.
procedure CG; {comment this calls procedure add_edge described below}
begin

fori:=1tondot; :=s;

L:={1}; for i := 2 to n do if s;_; > s; then insert i into L;

for h :=n downto 1 do begin

if h is not in L then insert A into L; add_edge(h); delete h. from L end

end; 13—



procedure add_edge(h); { this adds edges between vj, and other vertices appropriately}
begin
if t; # 0 then begin
§ :=the first element of L; while j < t), do j := suc[j]; {7 > tn > pre[j]}
for i := 1 to pre[j] — 1 do begin add edge (vp,v:); t; :=1; — 1 end;
Jnew =7 —th +P7‘C[j] -1
for 4 := fpew to j — 1 do begin add edge (vh,v:); ti :=1; — 1 end,;
if t, < j — 1 then begin {jnew —prelj] =7 —1—1t, > 0 and tj,.,—1 > tjpew }
insert jpew into L; {jnew is inserted between pre(j] and 5}
if tyrefj] = tprelj)-1 then delete pre[j] from L end;
if t; = t;—1 then delete j from L
end
end;

Tt is easy to see that Algorithm CG correctly constructs a graph G with S as a degree sequence
and that it takes O(m) time, if we observe that pre[j] and j—1 play roles of z and y in Proposition
3 respectively. Thus we have the following theorem.

Theorem 2. For a graphical degree sequence S = (s1, 52, ..., $n), a graph with § as a degree
sequence can be obtained in O(m) time, where m = Y 1 s;/2.

3 Bipartite Graphical Sequence Problem

In this section we consider the bipartite graphical degree sequence problem: Given a pair of
nonnegative integer sequences {S1, Sz} with S; = (s11, 812, ..., S1n,) and Sa = (s21, 522, -+-, 52n3 ),
determine whether {Si, S2} is bipartite graphical (i.e., there is a bipartite graph with two inde-
pendent vertex sets Vi = {v11,v12, ..., V1n, } and Vo = {va1,v22, <oy U2u, } such that deg(vij;) = sij;
for each 7 = 1,2 and j; = 1,2,...,n;). The bipartite graphical degree sequence problem can
be solved in almost the same way as the graphical degree sequence problem. We assume
Yy 810 = Y2, s2; because otherwise {81, S2} is not bipartite graphical. We can also assume
without loss of generality that ng > s11 > s12 2 +*+ 2> 81, and 1 < $22 < -++ < Somy < N1

Then the following proposition corresponding to Proposition 2 holds.

Proposition 4. Let S; = (s11, 512, ..., 51n,) and Sz = (s21, 822, ... san) be a pair of nonneg-

ative integer sequences with Y72, s1; = 2;—1 825, M2 = 811 2 $12 2 +++ 2 Sy, and 893 <2 <

- £ 89n, < ny. Then {S1, 82} is blpa.rtxte graphical if and only 1fzk —151k <1 ng—g)+2k —1 S2%k
foreachz-l? —»ny, 3=1,2,.

This proposition can be proved by the max-flow min-cut theorem by Ford and Fulkerson [].
Based on Proposition 4, we can determine whether {S1, S2} is bipartite graphical or not in O(n)
time (n = n, + na) as follows.

For each 1 = 1,2,...,n1, we consider p(i) defined by p(i) = max{j|s3; < i} (we assume
s20 = 0). Then Proposition 4 can be rewritten as follows: {S1,S2} is bipartite graphical if and
only if Yh_; six < i(n2 — p(d)) + EZ(;)I sor for each 7 = 1,2, ...,n;, since

120] (i)
i(ne — J) + Z sok = ing + Z(S'uc —1) 2ing + Z(S% —i) =i(ng — p(i)) + D 2%
k=1

for each j = 1,2,...,na. We can compute all p(z) in O(n) time, since p is an increasing function
and s9; < s99 < +++ < $2n,. Thus, we have the following theorem.
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Theorem 3. For a pair of nonnegative integer sequences S; = (811, 812, ..., 51n,) and Sy =

(821,522, ..., S2n, ), we can determine whether {Si, S2} is bipartite graphical or not in O(n) time,
where n = ny + no.

Next we present an algorithm for actually constructing a bipartite graph for a given bipartite
graphical set of degree sequences based on the following proposition, which can be proved easily.

Proposition 5. Let Sy = (s11,512, ..., 81n,) and Sy = (821,822, ..., $2,) be a pair of nonneg-
atxve integer sequences with Z,_l s1; = E;’;l §2j, 8§11 = S12 2 *** 2 S1a, and sp; < n3. Let
= (t1,12, ..., tn, ) be defined by using k = s9; , = min{j|s1; = s14} and y = max{j|si; = sk}
as follows.
t:{ s1i—1 ifl1<i<z—lory—k+z<i<y,
' 81 fe<if<y—k+z—-lory+1<i<n.

Then {S, S} is bipartite graphical if and only if {T,S2 — s2;} is bipartite graphical, where
So — 821 = (822, 523, ..., 52, ). Furthermore, t; > 19 > ... > t,,.

Based on Proposition 5, we can obtain the following algorithm CBG for constructing a bipar-
tite graph G with {S1, So} as a pair of degree sequences. The algorithm is almost the same as Al-
gorithm CG. In the algorithm, L is initialized L = {j|s1j-1 > 515,57 = 1,2,...,n1 }U{1,n1+1} and
represented by a doubly-linked list as before. T' = (¢1,13,...,1,) is initialized to be 7' = $; and
then maintained to satisfy t; > t3 > -+ > t,. L is also maintained to satisfy L = {j [ti-1 > t;}.
pre[j] and 7 — 1 play roles of z and y in Proposition 5.

Algorithm CBG.
Input. A bipartite graphical set of degree sequences {S1,S2} with S; = (s,l, 8i2, .ov Sin;)
(’t =1 2) and ng 2 > 811 > 819 2 > - -2 S1n, -
procedure CBG;
begin
for i :=1to n; do t; := s1;;
L:={1,n; +1}; for i := 2 to n; do if s1;-) > s1; then insert i into L:
for h:=1tony do
if s9p # 0 then begin :
J :=the first element of L; while j < s3; do j := suc[j]; {j > so1 > pre[4]}
for i :=1 to pre[j] — 1 do begin add edge (vap,v1;); ti :=1t; — 1 end;
Jnew =3 — sau +p're[j] -1
for i := jyew to j — 1 do begin add edge (von,v1;); t; :=t; — 1 end;
if s3p < 7 — 1 then begin
insert jnew into Lj if tppefj] = tpre(jl-1 then delete pre[j] from L end;
if t; = t;_1 then delete j from L
end
end;

It is easy to see that Algorithm CBG correctly constructs a bipartite graph G with Vi =

{vit, vi2, .-, vin;} (3 = 1,2) having {S1, S2} as a pair of degree sequences and that it takes O(m)
time, where m = E;_l s15. Thus we have the following theorem.

Theorem 4. For a bipartite graphlca.l set of degree sequences {S1,S2} with §; =
(si1, 8i2, ..., Sin) (2 = 1,2), a bipartite graph G with V; = {wi1,vi2, ..., vin;} (i = 1,2) having
{51, 52} as a pair of degree sequences can be obtained in O(m) time, where m = L1815

We note that the digraphical degree sequence problem shrares many properties in common
with the bipartite graphical degree sequence problem here and can be solved in alimost the same

way.
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4 Multigraphical Degree Sequence Problem

In this section we consider multigraphical versions of the degree sequence problem. We first
" consider the multigraphical degree sequence problem: Given a sequence of nonnegative integers
S = (s1, 89, ..., 8p), determine whether it is multigraphical (that is, there is a graph with vertices
V1,9, ..., U such that deg(v;) = s; for each ¢ = 1,2,...,n) or not. The following proposition can
be easily obtained.

Proposition 6. Let S = (s1,s2,...,5p) be a sequence of nonnegative integers such that
$1 > 89> ... > sy and 37 s; is even. Then S is multigraphical if and only if s; < Yoo Si.

Proof. Since the necessity is trivial, we consider only the sufficiency. We use induction on n.
If n = 2 then s; = s and thus S is multigraphical. If n = 3 then thére is a multigraph G with
(s1 + s2 — 53)/2 edges connecting v; and vo, (s2 + s3 — 81)/2 edges connecting vz and v3 and
(s3 + 51 — 52)/2 edges connecting vz and v;. Thus § is multigraphical.

Suppose the proposition is true for n < N for an integer N > 4. Now consider n = N. Let
A = s1 — s9. We consider three cases.

Case 1. If A > $p then S’ = (51 — sy, 52, ..., $n—1) satisfies the conditions s; — sp > 52
and s; — s, < Y775 s; and thus S is multigraphical by the inductive hypothesis. Let G be a
multigraph having S’ as a degree sequence. Then the graph obtained from G’ by adding vertex
vp and s, edges connecting v; and v, has S as a degree sequence.

Case 2. If 0 < A < s, then §' = (81 —A, 82, ..., Sn~1, Sp — A) satsifies the conditions s; —A >
s9 and 51 — A < Y%, s — A and can be reduced to the following case since sy =38 — A=ss.

Case 3. If A = 0 then S’ = (51, 82, ..., Sn—2, Sn—1 — Sn) satisfies the conditions 57 = s and
51 < Z:‘__}} s;—sp, and §' is multigraphical by the inductive hypothesis. Thus S is multigraphical
in Cases 2 and 3.

Based on Proposition 6 and its proof described above, one can easily obtain an O(n) time
algorithm to determine whether S is multigraphical and, if so, construct a multigraph G with S
as a degree sequence. Note that, in the algorithm for constructing G, first Case 1 occurs (several
times) and next Case 2 occurs (at most once) and then Case 3 occurs (several times) and finaly
only three elements will remain and edges are added among the three vertices. Thus only O(n)
pairs are connected by edges. ‘

Theorem 5. For a sequence of nonnegative integers S = (si, $2,..., ), it can be determined
in O(n) time whether S is multigraphical or not. Furtheremore, if S is multigraphical and
$1 > 89 > ... > sy, then a multigraph G with S as a degree sequence can be constructed in O(n)
time.

Next we consider the bipartite multigraphical degree sequence problem: Given a pair of non-
negative integer sequences {5, Sz} with S; = (811,812, -+ S1n, ) and So = (821, 822, .-, 820, ),
determine whether {S1, S} is bipartite multigraphical (that is, there is a bipartite multigraph
with two independent vertex sets V4 = {v11,v12, ..., V1n, } and Vo = {v21,v22, ..., v2n, } such that
deg(vij;) = sij; for eachi=1,2 and j; = 1,2, ...,n;) or not. The bipartite multigraphical degree
sequence problem can be solved easily.

Proposition 7. Let S = (511,12, ..., 51n,) and Sz = (21,5922, ... ,S2n,) be a pair of non-
negative integer sequences. Then {51, S2} is bipartite multigraphical if and only if Y s =

"11 §2j-

Based on Proposition 7, the following bipartite multigraph construction algorithm is imme-
diately obtained: If {S1,So} is bipartite multigraphical, then add min{s11, 521} edges between
two vertices v11,v2; and do recursively for {S7, S3}, where
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g = (s11 = 821, 8125 .-, S1ny ) if S11 > 821
! (8125 -y S1ny) otherwise

gt = | (s21= 811,80,y 800,) i 511 < s
(522, oy S2my) otherwise.

Theorem 6. For a pair of nonnegative integer sequences S; = (511, 512, ..., S1n;) and Sz =
(521, 522, -+ 52n,), it can be determined in O(n) time whether {Si, S2} is bipartite multigraphical
and, if so, a bipartite multigraph G with {51, S2} as a pair of degree sequences can be constructed
in O(n) time (n = ny + ny).

Next we consider the k-partite multigraphical degree sequence problem: Given a set of se-
quences of nonnegative integers {51, Sy, ..., Sk} with S; = (si1, 8i2, ..., Sin;), determine whether
{81, 82, ..., Sk} is k-partite multigraphical (that is, there is a k-partite multigraph of & indepen-
dent vertex sets {Vi,V2,...,Vi.} with Vi = {vi1,viz,...,in;} such that deg(vij;) = si;, for each
t=1,2,.,k and j; = 1,2,...,n;). The k-partite multigraphical degree sequence problem can
also be solved easily.

Proposition 8. Let {S51,92,...,St} be a set of sequences of nonnegative integers with S; =
(i1, 812y v Sin; ). Let t; = E;":l sij. Then {51, S2, ..., Sk} is k-partite multigraphical if and only
if ©F . t; is even and maxt_ {t:;} < TF  t:/2.

Based on Proposition 8, it is trivial to obtain O(n) time algorithm to determine whether
{S1,S2, ..., Sk} is k-partite multigraphical or not, where n = nj +ng + - -+ + n;. To construct
a k-partite graph G with {S},S2,...,S¢} as a set of degree sequences, we first construct a
condensed multigraph H with k vertices wy, wy, ..., wy which has T' = (13,12,...,%) as a degree
sequence. H can be obtained in O(k) time based on the proof of Proposition 6, if we have
done sorting of {t1,ta,...,2¢} in O(klogk) time. Suppose that there are just hi; edges in H
connecting two vertices w; and wj. Restricting the vertex set of G to V; and Vj, we construct a
bipartite multigraph G;; with h;; edges based on the bipartite multigraph construction algorithm
described above and then modify the degree sequences of S; and S;. Repeating this procedure
iteratively, we can construct a required multigraph G in O(n) time.

Theorem 7. For a set of sequences of nonnegative integers {Si,5s,...,S¢} with S; =
(8i1, $i2y -y Sin; ), it can be determined in O(n) time whether {S1, Sy, ..., S;} is k-partite multi-
graphical (n = ny +ng +- -+ mn) and, if so, a k-partite multigraph G with {51, 52,...,5:} as a
set of degree sequences can be constructed in O(n) time except for O(klog k) time for sorting.

Next we consider the multidigraphical degree sequence problem: Given a pair of nonnegative
integer sequences (S*,5~) with St = (s},s},..,sF) and S~ = (s7,55,...;s7), determine
whether it is multidigraphical (that is, there is a directed multigraph with vertices vy, vy, ..., v,
such that deg* (v;) = s} and deg™(v;) = s7 for each i = 1,2, ..., n). The multidigraphical degree
sequence problem can be solved in a similar way as the bipartite multigraphical degree sequence
problem. The following theorem can be obtained by the max-flow min-cut theorem.

Proposition 9. Let (S*,57) be a pair of nonnegative integer sequences with St =
(sF,s3,...,sF) and S~ = (s7,83,.-,57). Then (S*,57) is multidigraphical if and only if
Xi=1 s;' =Y i1 s; and st+s7 < Y=t s}'.

Based on Proposition 9, the multidigraphical degree sequence problem can be solved in O(n)
time. Furtheremore, if (S*,5~) is multigraphical, then a directed multigraph G with (8*,87)
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as a pair of degree sequences can be constructed in O(n) time by Dinic’s max-flow algorithm
[4). Thus, we have the following theorem.

Theorem 8. For a pair of nonnegative integer sequences St = (s7,s3,...,s;}) and S~ =
(8757 -+ 8 ), it can be determined in O(n) time whether (S*,S™) is multidigraphical and, if
50, a directed multigraph G with (S*,87) as a pair of degree sequences can be constructed in
O(n) time.

5 Concluding Remarks

We have considered variations of the graphical degree sequence problem and given optimal
algorithms. Algorithms described here constructing a graph are all concerned with representing
a graph explicitly. If an implicitly represented graph is satisfactory, for example, if we represent
edges connecting vertex v; and other vertices in terms of a constant number of intervals, we can -
obtain faster O(nloglogn) time algorithms for constructing graphs and bipartite graphs (see
[2]). We conjecture that there may be O(n) time for these problems.

Takahashi [10] considered the k-partite graphical problem. Although this problem is polyno-
mially solvable based on maximum matching algorithms, Takahashi’s algorithm is more efficient.
However, we will give a remark here that there is a hole in his proof and his algorithm works
only for 3-partite graphs.

Acknowledgments

The third author was supported in part by Grant in Aid for Scientific Research of the Min-
istry of Education, Science and Culture of Japan, by the Ohkawa Institute of Information and
Telecommunication, and by the Alexander von Humboldt Foundation.

References

[1] A.V. Aho, J.E. Hopcroft and J1.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] T. Asano, An O(nloglogn) time algorithm for constructing a graph with a prescibed degree sequence,
in preparation.

[3] M. Behzard, G. Chartrand, L.L.- Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, 1979.

[4] E.A. Dinic, Algorithm for solution of a prbblem of mazimum flow in a network with power estimation,
Soviet Mathematics Doklady 11 (1970), 1277-1280.

[5] P. Erdés and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat. Lapok 11
(1960), 264-274.

[6] LR Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

[7] S. Hakimi, On the realizability of a set of integers as degrees of the ‘vertices of a graph, J. SIAM
Appl. Math. 10 (1962), 496-506.

[8] F. Harary, Graph Theory, Addison-Wesley, 1969.

{9] V. Havel, A remark on the ezistence of finite graphs (Hungarian), Casopis Pést. Mat. 80 (1955),
477-480.

[10] M. Takahashi, An algorithm of constructing a k-partite graph from a k-partite graphical sequence
set, Technical Report TR92-AL-30-4, Information Processing Society of Japan, 1992.

—118—



