7 =y X A 33—11

(1993. 5. 29)

Partial Construction of an Arrangement of Lines
and Its Application to Optimal Partitioning of Bichromatic
Point Set *

Tetsuo Asano
Osaka Electro-Communication University

Takeshi Tokuyama
IBM Research, IBM Tokyo Research Laboratory

SUMMARY This paper presents an efficient algorithm for constructing some portion of an arrange-
ment of lines in the plane in time roughly proportional to the complexity of the partial arrangement,
i.e., the number of intersections in the arrangement. Then, we apply the algorithm to a bipartitioning
problem of a bichromatic point set: For m red points and n blue points in the plane and a directed line
L, the figure of demerit f4(L) associated with L is defined to be the sum of the number of blue points
below L and that of red ones above L. The problem we are going to consider is to find an optimal
partitioning line to minimize the figure of demerit.

BIEOT LoV A 0 FOBIER 7L LY
2BAESOREASEMBADISHE

ZHEX KREKEEXZTHEHEEFIER)
#®zxE (BFX I BMER E%Eﬁnf’ﬁ)

HH5FL AR CRFALOBHROT LY P 2> FO—EI % 12T OBME, ThbbTLryday
FPRORAOBRICHAT IRE TR T 3RO LT AT Y AR RETZ, XbIC, OFATY
ZLERDESKEEINZ 2B05 200 3BB0DLMEICEAT 5 : FELIC mBOFKAE n @
ODHERDVGAONAEE, AAERLOTKEH3HAOHERE LIV LCH2FRA0@MBOMEER L
DFAY 7 P fa(L) E VWS ERTIEE, COFAY v VEBNMNCTIRBADERERD X,

*This work was partially supported by Grant in Aid for Scxenhﬁc Research of the Ministry of Education, Science and
Cultures of Japan.

1 Introduction

Duality transform is a kind of algorithmic techniques to solve geometric problems not in the original
setting but in the dual setting. An example is a problem of finding a largest-area empty triangle for
a set of points. Given a set of n points in the plane, we want to find a traingle containing no other
point in it that has the largest area. A brute-force algorithm which examines every combination of
three points obviously takes O(n*) times. The use of duality transform reduces the time to O(n?).
That is, a point (a,b) is mapped into a line ¥ = az + b and a line y = —cz -+ d is mapped into a point
(c,d). Since this mapping preserves relative vertical position between points and lines, the problem is
reduced to evaluating triangles corresponding to three lines in the dual plane such that one line lies
immediately above or below the intersection of the remaining two. A key to the solution is to construct
an arrangement of lines, a kind of graph structure which represents every incidence relationship among
lines and intersections. A simple incremental algorithm(®® which constructs the arrangement of n lines
in ©(n?) time is known. This algorithm is optimal in its time complexity since an arrangement of n
lines contains O{n?) intersections. A topologocal sweep algorithm(® can evaluate all possible pairs of
lines and intersections of lines also in O(n?) time but only using linear space.

A pair of duality transform and arrangement of lines is a powerful tool to solve a number of geometric
problems, but one of its limits is that once we decide to use arrangement of lines the running time
must be at least quadratic in the problem size. In some cases, however, only partial construction of
the arrangement is sufficient instead of the whole construction. In such cases the complexity of the
partial arrangement may be subquadratic. This paper presents an algorithm for constructing a partial
arrangement in time roughly proportional to its complexity, that is, the number of intersections in the
portion.)

Then, we apply the algorithm to a bipartitioning problem of a bichromatic point set: For m red
points and n blue points in the plane and a directed line I, the figure of demerit fa(l) associated with
! is defined to be the sum of the number of blue points below ! and that of red ones above I. Given a
constant k, we want to find a line ! which minimizes the figure of demerit fq(!) if the associated value of
fa(l) is not greater than k. An algorithm which solves the above problem in O(kn + VEnlog? n) time,
which is subquadratic if k is sublinear.

2 Preliminaries

Let £ be a set of n lines in the plane and A(L) be its arrangement. A k—level of A(L) consists of a-
sequence of line segments of A(L) such that at most k — 1 lines lie strictly below it and at most n - k
lines strictly above it. See Figure 1 for an example of a k—level in which the 2-level is shown by bold
lines.

A Ek—belt of A(L) is defined to be the region bounded by the k-level and (n — k)—level of the
arrangement A(L)”. It is known that the k—belt can be constructed in O(nvklog®n) time and
O(nVk) space(V. A [a,b]—belt of A(L) is an extension of a k—belt. It is defined to be the portion of
A(L) bounded by its a—level and b—level, a < b. Notice the difference between the two notions: The
k~belt is just the region bounded by the two levels, and the {a, b]—belt is not a region but a portion of
the arrangement A(L) bounded by its a—level and b—level. Several complexity results are known(®),

[Lemma 1] For en arrangement of n lines in the plane, the complexity of its i—level is O(\/fn), and
it is constructed in O(v/inlog? n) time.

[Lemma 2] For an arrangement of n lines in the plane, the total complezity of i—levels fori = 1,2,..., h
is O(hn).

Now, the problem is whether the {1, 2]—belt can be constructed in time roughly proportional to its

T

Figure 1: 2-level of an arrangement of 4 lines.

complexity, O(hn). This paper presents such an algorithm based on Topological Walk Algorithm(®
proposed by the authors, which runs in O(nh + \/i_xxnlog2 n) time.

3 Algorithm for Constructing [1, h]—Belt

This section describes an algorithm for constructing a [1, h]—belet. Given a set of n lines in the plane, we
first construct its h—level by using the ray-shooting technique(*), The resulting h—level is a sequence of
line segments monotone in the z—direction. Let it be (eg,e1,--+,em_1). We direct those line segments
from left to right (we assume as usual that there is no vertical line). Then, we add an additional vertical
line at z = —co. Obviously the line intersects e,,—;. Removing the portion of the vertical line above
the intersection with e,—; and the portion of e,,_; to the right of the intersection results in another
sequence of line segments which ends in the downward vertical half line. Let (eg, ey, --- »em—1,€m) be
the resulting sequence.

Starting with e, we traverse the resulting sequence to the left in the reverse order €m,€m—1,""",€1, €g,
At each corner between e; and e;;; during the traverse, if e; — €;+1 is a right turn, we do nothing.
Otherwise, we emanate a ray r(e;) as an extension of e; to the right starting at a point just beyond
the intersection (e;, e;41) until it encounters some line segment (it certainly encounters some line seg-
ment). Then, we add the ray r(e;) to the sequence. This operation results in a directed tree T' rooted
at negative infinity on the half line e,, {see Figure 2). In the above operation, if a ray (r;) first hits
another ray r(e;) which has been added to T so far, the starting point of e; lies to the left that of e;
due to the monotonicity of the sequence (eg,e;,---). By the assumption the ray 7(e;) does not hit any
ex, k > i before hitting r(e;). Therefore, the slope of 7(e;) is larger than that of r(e;). This means that
the resulting tree is equivalent to a lower horizon tree(® used in the topological sweep.

It is easily seen that the lower horizon tree T partitions the portion of the arrangement below the
h—level into convex regions. Furthermore, as is verified in {2), the depth-first search of the lower horizon
tree gives a sequence of regions to visit, which has the following properties.

(1) Every region is visited.

(2) The length of the sequence is at most twice larger than the number of regions.

(3) For cach edge (directed from left to right) of the lower horizon tree, the region lying to its right is
visited before the one lying to its left (see Figure 3).

Y

Figure 2: Definition of rays and lower horizon tree T'.

R,
Ry

R,

R’y

r

Figure 3: Partition of the arrangement by the lower horizon tree and the order of visiting regions.

This implies an ordering of the regions to be processed. Actually we construct an arrangement of
lines acéording to the ordering, using Topological Walk.

Topological Walk works as follows: Let P be a convex polygon and £ be a set of lines in the plane.
For each line I of £, we compute its left and right intersections pr(!) and pr(l), respectively, with P.
The boundary of the convex polygon P can be decomposed into upper and lower chains. Starting with
the rightmost vertex of the lower chain, we traverse the boundary of P in the clockwise manner. Each
time we encounter a left endpoint pr(l), we emanate the ray from pr(l) along the line [toward the
interior of P until it hits its boundary or the rays added so far. Once we encounter a right endpoint
of some line, we let the lines whose left endpoints appear thereafter wait at the boundary. The above
operations result in a tree, which coincides with the upper horizon tree used in Topological Sweep.
Then, we implement the depth-first search on the tree while updating the tree at twigs. When the
portion of the boundary at which some line is waiting is traversed in the depth-first search, the waiting
edge is incorpora.ted in the upper lhorizon tree.

In our case we visit convex regions defined by the lower horizon tree associated with the h—level in
the order induced by depth-first search on the lower horizon tree. Since each such region is convex, we
can apply Topological Walk to enumerate all intersections in the region.

As a preprocessing, after constructing the h—level in O(Vhnlog? n) time, we sort all the endpoints
on the h—level in O(vhnlogn) additional time.

To implement Topological Walk in a region R, we need to sort the left intersections of lines with the
bounded boundary of R. The key observation here is that the left endpoint of a line with R is located
on the lower convex chain of R if R is a region in the decomposition induced by the lower horizon tree.
If there is a left endpoint of a line on the upper chain of R, the slope of the line is smaller than the slope
of the intersecting edge of IR, thus, R should be cut by the line in the lower horizon tree decomposition.
In fact, there is no ”"waiting edge” mentioned above.

Thus, we only need to enumerate and sort the endpoints on the lower convex chain. The endpoints
on the lower convex chain is given from the topological walk in the previous stages (we only need linear
time merge operation to obtain the sorted list).

Summarizing the above discussion, we have the following algorithm.
[Constructing [1, h]—Belt]
(Step 1) Construct the h—level using a ray-shooting algorithm.
(Step 2) Build the lower horizon tree T' associated with the h—level.

(Step 3) Decompose the region below the h—level into small convex regions by the lower horizon tree
T.

(Step 4) Sort all the endpoints on the h—level.

(Step 5) Perform a depth-first search on T to determine the order to visit those convex regions.

(Step 6) According to the order we construct an arrangement of each convex region based on Topo-
logical Walk Algorithm.

[Theorem] Given a set of n lines in the plane and an integer h < n, the (1, h]—belt of the arrangement

of the lines can be constructed in O(\/I—m log? n) time.

Finally it should be noted that although the above algorithm describes only how to enumerate all the
intersections it is not so hard to modify it so as to build graph structure to represent the arrangement.
Once the graph structure is obtained, we can label cach edge by its associated level in linear time. This
leads to the decomposition of the arrangement into levels.

Figure 4: Partitioning bichromatic point sets. Filled and empty circles 1'epresei1t blue and red points,
respectively. r(I*) = |R(I*)] = 2,b(17) = |B(I7)| = 2, and we have fq(I) = r(I*) + b(I~) = 4.

4 Finding Optimal Partitioning of Bichromatic Point Set

Let R and B be point set of in a plane. We call a point in R a red point and that of B a blue point.
The number of red points is 7, and that of blue points is b. Let n = r + b.

For a directed line [in the plane, I* (resp. I”) denotes the half plane above (resp. below) of l. Let
R(I*) be the set of red points in I*, and r(I*) be the cardinarity of it. Similarly, we define B(I~) and
b(I7). An example is shown in Figure 4.

The problems we focus on is the following:

P(1): Optimal separating line finding Find a line ! which minimizes f4(!) = »(I*) + b(I 7).

It is well known that we can determine in O(nlogn) time whether there is a line competely separating
point sets. All we need to do is to compute convex hulls of the point sets and to check whether they
intersect each other. In that case fq(l), the figure of demerit of the separating line [, is zero. Here we
are interested in the case in which there is no such separating line, that is, the two convex hulls have
non-empty intersection.

In many practical cases the figure of demerit is expected to be small compared with the total number
of points. So, the following problem is also meaningful. ’

P(2): Optimal separating line finding for constraint case Given a constant k, find a line [which
minimizes fg(!) if the associated value of fy(l) is not greater than k.

We show below an algorithm for solving P(2) in O(kn + vEnlog? n) time, which is subquadratic if
k is sublinear. , ‘

We dualize the problem, and consider the arrangement of lines. We assume we have computed the
red i—level for i = 1,2, ..., k and blue j—level for j = b—k,b -k +1,...,b. We denote red(i) for the red
i—level, and blue(y) for the blue j—level. :

The algorithm consists of two steps. First one is the initial setting, and the second one is the main
routine. :

At the initial step, we find the highest (i.e. the smallest indexed) red level intersecting the blue(b— k).
If red(1) is below blue(b — k), we set the level to red(1). If red(k) is above blue(b — k), then we return
false and exit the algorithm. This level is found in O(nk) time. Without loss of generality, we can
assume that the red level is red(1).

Now we start the main routine.

Algorithm:

1. p= k+1.

2. Fori=1tok;

3. Find the lowest blue level blue(b — j) intersecting red(z) such that i +j < p
4. If there is such j as above, set p =i+ 3

5. endfor

The number p above is called the target number. For finding the lowest blue level blue(b — j), we
apply the plane sweep method. Notice that, as the output of topological walk, the vertices on each level
are sorted with respect to the z coordinate value.

We first locate the left endpoint (at z = —oo0) of the red level red(i) in the blue arrangement.
Suppose it is just between blue(b — s) and blue(b — s~ 1). If s < p—1i — 1, we set t = 5, otherwise we
set t = p—1i—1. We sweep on red(i) and blue(b — t) from the left until we find an intersection between
them. Once we find it, we update t to t — 1. Then, while keeping the current position in the red level,
we sweep the new blue(b — t) from its left end until it goes beyond the current position. Note that the
new blue(b — t) never intersects red(i) before the current position since it lies above the old blue(b — t)
to the left of the current position. Then, we perform the plane sweep again for red(i) and blue(b — t).
We report ¢ as the sweep end.

It is clear that the algoirthm correctly finds an optimal partitioning line. The sweep operation
concerning red(i) needs the time proportional to the complexity of red(i) and those of blue(b — t) for
t=p—i—1,p—i—2.,t' =p'—i, where t' is the output of the subroutine, and p' is the target number
for the next step (where 7 is replaced by i + 1.). Notice that a blue level is used only once in the main
routine.

Thus, the total complexity of the algorithm is O(kn).

5 Conclusions

In this paper we have presented an algorithm for constructing the [1, h]—belt of an arrangement of lines
in the plane in time roughly proportional to the complexity of the belt. Then, we have applied the
algorithm to solve a bipartitioning problem of a bichromatic point set. Given n points in total, the
algorithm obtained can answer the question whether there is a line separating the bichromatic point set
into two so that the number of points lying in the wrong sides is at most k in time O(nk 4+ nvk log? n)
time and if the answer is "yes” then it outputs an optimal separating line minimizing the number of
points lying in teh wrong sides in the same time complexity. If k is sublinear then this algorithm finds
an optimal separating line in subquadratic time.

References

(1) P. K. Agarwal, "Ray Shooting and Other Applications of Spanning Trees with Low Stabbing Num-
ber”, Proc. 5th ACM Symp. on COmputational Geometry (1989) 315-325.

(2) Te. Asano, L. J. Guibas, and T. Tokuyama, "Walking on an Arrangement Topologically”, Proc.
7th ACM Symp. on Computational Geometry (1991) 297-306.

(3) B. M. Chazelle, L. J. Guibas, and D. T. Lee, "The Power of Geometric Duality”, BIT 25 (1985)
76-90.

(4) H. Edelsbrunner, ” Algorithms in Combinatorial Geometry”, Springer-Verlag, (1986).

(5) H. Edelsbrunner and L.J. Guibas, "Topologically Sweeping an Arrangement”, Proc. 18th Annual
ACM Symp. on Theory of Computing, (1986) 389-403.

(6) H. Edelsbrunner; J. O’Rourke, and R. Seidel, *Constructing Arrangements of Lines and Hyper-
planes with Applications”, SIAM J. on Comput., 15 (1986) 341-363.

(7) H. Edelsbrunner and E. Welzl, ”Constructing Belts in Two-Dimensional Arrangements with Appli-
cations”, SIAM J. on Comput., 15 (1986) 271-284.

(8) E. Welzl, "More on k-sets of finite sets in the plane”, Discrete and Comput. Geometry 1 (1986)
95-100.

