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Abstract

A parallel algorithm is considered efficient if its time complexity is polylogarithniié
with polynomially many processors on the PRAM. NC is the class of problems that have
such algorithms.. Many combinatorial problems can be efficiently solved in parallel for
partial k-trees. The edge-coloring problem is -one of a few combinatorial problems for
which no NC algorithms have been obtained for partial k-trees. This paper gives a first

NC parallel algorithm which finds an optimal edge-coloring of a given partial k-tree.



1. Introduction

This paper deals with the edge-coloring problem which asks to color all edges of a
given graph, using a minimum number of colors, so that no two adjacent edges are colored
with the same color. It is known that many combinatorial problems can be solved very
efficiently for series-parallel graphs or partial k-trees [ACPD, AL, BPT, C, TNSJ. Such
a class of problems has been characterized in terms of “forbidden graphs” or “extended
monadic logic of second order” [ACPD, AL, BPT, C, TNS]. The edge-coloring problem
does not belong to such a class of the “maximum (or minimum) subgraph problems,”
and is indeed one of the “edge-covering problems” which do not appear to be efficiently
solved for partial k-trees. Furthermore the edge-coloring problem is one of a few problems
for which no NC algorithms have been obtained even for partial k-trees. However NC
parallel algorithms have been obtained for the following classes of graphs: planar graphs
with maximum degree A > 9 [CN]; outerplanar graphs [CD, GR]; and series-parallel
multigraphs [ZSN].

In this paper we give an NC algorithm which solves the edge-coloring problem for
partial k-trees G in O(logn) time with O(n/logn) processors if a “decomposition tree” of
any partial k-tree H = (Vg, Ex) can be found in O(log |Vx|) time with O(|Vu|/ log |Vk|)
processors. In the paper n denotes the number of vertices in G. It is known that a
decomposition tree of H can be found in O(log® |V|) time with O(|Vy|) processors [BK].
Therefore an optimal edge-coloring of G can be found total in O(log® n) time with O(n)
processors. This is the first NC algorithm for optimally edge-coloring partial k-trees. We
use the parallel random-access machine (PRAM) as a model of parallel computation. In
a PRAM all the processors access to a common memory and run synchronously. This
model can be divided into subclasses by allowing or disallowing two or more processors
to gain access to the same memory location: exclusive-read and exclusive-write (EREW);

concurrent-read and exclusive-write (CREW); and concurrent-read and concurrent-write



(CRCW). The parallel computation model we use is an concurrent-read exclusive-write

parallel random access machine (CREW PRAM).
2. Terminology and definitions

In this section we give some definitions. Let G = (V, E) denote a graph with vertex set
V and edge set E. We often denote by V(G) and E(G) the vertex set and the edge set of
G, respectively. The paper deals with simple graphs without multiple edges or self-loops.
An edge joining vertices u and v is denoted by (u,v). The degree of vertex v € V(G) is
denoted by d(v,G) or simply by d(v). The mazimum degree of G is denoted by A(G) or
simply by A.
The class of k-trees is defined recursively as follows:
(a) A complete graph with k vertices is a k-tree.
(b) If G = (V,E) is a k-tree and k vertices vy,vs,- -+, v induce a complete
subgraph of G, then H = (V U {w}, E U {(v;,w)|1 < i < k}) is a k-tree
where w is a new vertex not contained in G.
(c) All k-trees can be formed with rules (a) and (b).
A graph is a partial k-tree if and only if it is a subgraph of a k-tree. Thus partial k-trees
are simple graphs. In this paper we assume that k is a constant.
A decomposition tree of a graph G = (V,E) is a tree T' = (Vp, Er) with a family Vp
of subsets of V satisfying the following properties:

. U X;=V;
XieVy
o for every edge e = (v,w) € E, there is a node X; € Vi with v, w € X;; and
¢ if node X lies on the path in T from node X; to node X1, then X; N X, C Xj;.
Figure 1 illustrates a partial 3-tree and its decomposition tree. The treewidih of a decom-

position tree T' = (V, Er) is Joax |Xi|—1. The treewidth of G, denoted by treewidth(QG)
A T

is the minimum treewidth of a decomposition tree of G, taken over all possible decompo-



sition trees of G. It is known that every graph with treewidth < k is a partial k-tree, and

conversely, that every partial k-tree has a decomposition tree of treewidth < k.

X,={a b, c}

X ;={ab,c.e) X 5=(a,b,c.f)

X ¢=(a,cfg)
X ,={b,c,d,e} X s={b.,c.f.h}

X s={cfihi )

(a) (®)
Figure 1. (a) A partial 3-tree and (b) its decomposition tree.

3. NC Parallel Algorithm

In this section we give an NC parallel algorithm for the edge-coloring problem of partial
k-trees. It runs in O(logn) time with O(n/logn) processors if a decomposition tree of any
partial k-tree H = (Vy,En) can be found in O(log |Vy|) time with O(|Vw|/log|Val|)
processors. It is known that a decomposition tree of H can be found in O(log® |Vg|) time
using O(|Vg|) processors [BK]. Therefore the edge-coloring problem of partial k-trees G
can be solved total in O(log® n) time using O(n) processors.

There is a general theorem which relates the number of processors to the parallel time -

and to the total number of basic operations m that have to be carried out [GR].

Theorem 3.1. Let A be a given algorithm with a parallel computation time of t. Suppose
that A involves a total number of m computational operations. Then A can be implemented

using p processors in O(m/p+t) parallel time.

It is rather straightforward to modify Bodlaender’s sequential algorithm [B] of time
complexity O(nAzz(k“))‘ to an NC parallel algorithm as in the following theorem, the proof

of which is omitted in the paper for lack of space.



Theorem 3.2. Let G be a partial k-tree with mazimum degree A given by its decom-
position tree. Then there is an algorithm which solves the edge-coloring problem for G in

O(logn) time using O(nAzq(Hl)/log n) processors.

Although the algorithm in Theorem 3.2 is an NC parallel algorithm, it uses too many
processors and is not optimal. However, the algorithm runs optimally for every partial
k-tree G with small maximum degree A(G), say A(G) < 5k. Therefore it suffices to give
an optimal parallel algorithm for edge-coloring any partial k-tree G with large maximum
degree A(G), say A(G) > 5k. We have the following lemmas, the proofs of which are

omitted in the paper for lack of space.

Lemma 3.3. If a partial k-tree G has mazimum degree A(G) > 2k, then X'(G) = A(G).

Lemma 3.4. Let G = (V,E) be a partial k-tree. Then E can be partitioned into subsets
E\,Ey,--+,E, such that the subgraphs H;, 1<j<s, of G induced by E; satisfy

(a) A(Hj) =2k for each j,1<j <s— 1, and

(b) 3k < A(H,) = A(G) — 2k(s — 1) < 5.
Furthermore such a partition of E can be found in O(log n) time using O(n/logn) broces-
sors if a decomposition tree éf any partial k-tree H = (Vu, Eg) can be found in O(log |Vy|)

time using O(|Vy|/log |Vy|) processors.

Then we have the following algorithm to edge-coior a partial k-tree G = (V, E).
Pfocedure Edge—Cplor(G);
begin
1 if A(G) < 5k then
2 begin
3 find a decomposition tree of G;

4 edge-color G using x'(G) colors by the algorithm in Theorem 3.2

5 end



s else

7  begin

8 find a partition Ey, E,- -+, Es of E mentioned in Lemma 4.1; { Lemma 3.4 }
9 for each 7, 1 <i < s, in parallel, do

10 find edge-color H; using A(H;) colors; { Theorem 3.2 }

{ H; is the subgraph of G induced by the edges in E;. }
1 | extend the edge-colorings of Hy, Ha,- -, H, to an edge-coloring of G using A(G)
colors
12 end
end;

By Theorems 3.1 and 3.2 and Lemmas 3.3 and 3.4 we conclude the following theorem.

Theorem 3.5. Suppose that a decomposition tree of any partial k-tree H = (VH,EH)
can be found in O(log |Vu|) time with O(|Vy|/log |Vu|) processors. Then an edge-coloring
of a given partial k-tree G with a minimum number of colors can be found in O(logn) time

with O(n/logn) processors.

Proof. The correctness of the a.lgorlthm above is an 1mmedxate consequence of Theorems
31 '\nd 3.2 a.nd Lemmas 3.3 and 3.4. Therefore we prove the claim on the time and
processor complexities. From the supposition line 3 can be done in O(logn) parallel time.
By Theorem 3.2 and Lemma 3.3 lines 4,‘ 8, 9 and 10 can be done in O(lég n) parallel time.
Line 11 can be done in O(1) parallel time. Furthermore the total number of coinpuéz;tiohal
operations above is O(n). Therefore by Theorem 3.1 the algorithm above runs in O(loé n)

parallel time using O(n/logn) processors. o ‘ Q.ED.
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