7T Y XA 34-1
(1993. 8. 19

FHERA v v o EOBEATEHET A=) XA
R

(BK) FSCHWEDT SBETTRDT
T 350-03 HyEIR ARG LIRT5R7 2520

ARX TR nxnfBO7a ey DR 2HHERA v V2 ECBFVT, £ vy HiC o B
R yBRESLIBEATHILT A=Y X8 %RT, COTATY X LOFERR I,
23 2 DEEREE T A bit-transfer D & & O(logn) BfEl. exclusive-word-transfer ® & %
O(loglog n) F§fé, . bitwise-word-transfer ® & % O(log" n) KfEjCH» 5, - o

- Opfimal Initializing Algorithms for ‘Rééon'ﬁguré,blé M.eshesy‘ |)

_Koji Nakano

Advanced Research Laboratory, Hitachi, Ltd.
Hatoyama, Saitama 350-03, Japan
e-mail : na,ka,no@harl.hitacili.co. ip

- This paper presents optimal initializing algorithms for a reconfigurable mesh of n x n
processors arranged in a 2-dimensional grid with a reconfigurable bus system. The:
algorithms assign .z and y coordinates to each processor under the following: con--
straints: O(logn) time for the bit-transfer model, O(loglogn) time for the exclusive-
- word-transfer model, and O(log* n) time for the bitwise-word-transfer model.

1 Introduction

A reconfigurable bus system is a bus system whose con-
figuration can be dynamically changed. A reconfigurable
mesh (abbreviated as RM) is a processor array that con-
sists of processors arranged in a 2-dimensional grid with a
reconfigurable bus system (Fig. 1). Processors on an nxn
RM are denoted by PE(4,7) (0 < i <n—-1,0< j < n—1).
As shown in Fig. 1, each processor has four ports denoted
by N, S, E and W. The ports facing each other are connected
by static busses. All processors work synchronously and
execute the following phases in a unit of time:

Phase 1 Change configuration of a reconfigurable bus
system by connecting or disconnecting its own ports
by busses internally.

Phase 2 Send data to each port.

Phase 3 Receive data from each port. The data sent in
the previous phase is received in this phase.

Phase 4 Execute a constant number of RAM instruc-
tions.

All processors execute the phases'synchronously, that is,
no processor executes a phase before all processors finish
the previous phase. Efficient algorithms for a reconfig-
urable mesh have been investigated, including, for exam-
ple, sorting [1,4, 6], graph problems [1-3,5] and so on.
However, every algorithm presented in the above pa-
pers was based on an initialized reconfigurable, that is,
every processor on the mesh learns its z and y coor-
dinates beforehand, although the assumption sometimes

may not be explicit in the literature. More precisely, ev- -

ery algorithm is implemented on a reconfigurable mesh
as follows: All processors execute the same program to
complete the algorithm, but each can refer its own co-

ordinates stored in reserved variables of the program, so,

the performance of processors differs according to ‘their
coordinates. In this paper, we assume an uninitialized re-
configurable mesh. That is, all processors are completely

0,3 1,3H 2.3 3.3
02 1.2 22 3.2~y (W,
W E
0,1 1,1 2,1H 3,1 S
,]~

0,0/ 1.0M 2,01 3,0

Figure 1: 4x4 reconfigurable mesh

identical: they have the same program, constants, and
variables and cannot refer to their coordinates.

If a reconfigurable mesh is implemented on material
which may have faults, such as a WSI (Wafer Scale In-
tegration), recovering fault processors becomes an issue
to consider. In that case, extra processors must be used
instead of fault processors, or a column which has fault
processors must be bypassed, for example. In a fault en-
vironment, it is more desirable that every processor on a
reconfigurable mesh be completely identical and a recon-
figurable mesh be initialized when it is booted instead of -
when it is manufactured, because the coordinates of each
processor may be changed. The objective of this paper is
to show optimal initializing algorithms on an uninitialized
reconfigurable mesh in which every processor executes the
same program and learns its £ coordinate and y coordi-
nate.

In general, the computation times of algorithms on re-
configurable meshes differ with the communication capa-
bility of the bus system. This paper deals with three kinds
of communication capabilities: the bit-transfer model (a
value of a single bit can be transferred through a busin a
unit of time), the ezclusive-word-transfer model (any value
can be transferred through a bus in a unit of time), and
bitwise-word-transfer model (any value can be transferred
through a bus in a unit of time and the bitwise-or of the
value is transferred in case of simultaneous sending to the
same bus). We first show the lower bounds of the compu-
tation times for initializing reconfigurable meshes of the
three models. Then, we present initializing algorithms on
an n X n reconfigurable mesh for the following constraints:
O(log n) time for the bit-transfer model, O(log log n) time
for the exclusive-word-transfer model, and O(log* n) time
for the bitwise-word-transfer model, where log* n is the
minimum integer k such that loglog.--logn < 1. These

P —. 4

ktimes
algorithms are optimal because their computation times

- are equal to the lower bounds.

2 Lower bounds

Let us start with the lower bounds of the computation
time for initializing an RM.

For the bit-transfer model, it is easy to prove the fol-
lowing theorem:

Theorem 2.1 Initializing an RM of the bit-transfer model
requires at least Q(logn) time.

Proof. For an initializing algorithm, let S(t) be the
number of states of processors at time ¢. On an RM of
the bit-transfer model, a single bit value is transferred
through a bus. Since each processor can receive from its
four ports, it can get at most four bits of information from
outside. Hence, the next states of two processors whose
present states are identical may differ only if the four bits
of information received by them are different. Thus, we

have

{S(o) = 1,
S(t) < S(t-1)x2* (#>1).

To solve the initializing problem in T time, all processors
must fall into different states in T time. Hence, S(T) > n?
holds. Therefore, T = Q(logn) holds. o
In order to fall into a different state, each processor must
receive {¥(log n) bits of information from its ports. From
this fact, Theorem 2.1 can be understood intuitively.

For the word-transfer model, we have the following
theorems:

Theorem 2.2 Initializing an RM of the ezclusive-word-
transfer model requires at least Q(loglogn) time.

Proof. S(t) is defined in the same way as for Theo-
rem 2.1. Since each processor may send different values
to its four ports, 4-5(t) different values may be transferred
through busses at time ¢. Hence, we have

{S(O) = 1,
S(t) < S(t-1)x(4-St-1))* (t>1).

Since S(T) > n? must hold to solve the initializing prob-
lem in T time, T = Q(loglog =) holds: g o
The crucial constraint of the bus system in the above
proof is that every received value actually be sent. There-
fore, this lower bound holds, even if one of the sent values
is actually transferred in a case of simultaneous sending.

Theorem 2.3 Initializing an RM of the bitwise-word-
. transfer model requires at least (log* n) time.

Proof. S(t) is again defined, in the same way as for
Theorem 2.1. Since each processor may send different
values to its four ports, 4 - S(t) different values may be
sent to ports. Furthermore, since the bitwise-or of sent
values is transferred in a case of simultaneous sending,
at most 245" different values are transferred through
busses at time t. Hence, we have

5(0) = 1, :

S < St-1)x (2*N* (¢>1).
Since S(T) > n? must hold to solve the initializing prob-
lem in T time, T = Q(log* n) holds. o
The proofs of Theorems 2.2 and 2.3 are independent of
the internal computation of processors. Thus, the the-
orems hold even if the processors have stronger internal
instruction set. o

3 Initializing for bit-transfer model

To clarify some concepts of initializing, this section starts
with an inefficient but simple initializing algorithm on an
RM of the bit-transfer model. Then, some basic algo-
rithms are shown. Finally, we show an efficient initializing
algorithm for the bit-transfer model whose computation
time matches the lower bound.

3.1 Simple linear time initializing algorithm
for bit-transfer model

At the first step, each processor learns whether it is on
the boundary as follows: Every processor sends 1 to X
and then tries to receive 1 from its S. A processor fails
to receive 1 iff it is on the north boundary (i.e., PE(i, 7)
such thatj = n — 1). Therefore, every processor can de-
termine whether it is on the north boundary and, in sim-
ilar process, whether it is on the south boundary, the east
boundary, and for the west boundary.

At the second step, every processor learns its z co-
ordinate. Each PE(0, j) (i.e., each processor on the west
boundary) sends 1 to E, and every processor tries to re-
ceive it from its ¥. A processor succeeding in receiving
1 recognizes that it is PE(1, j) for some j. Next, PE(1, ;)
sends 1 to E, and every processor tries to receive it from
its W. A processor succeeding in receiving 1 at this step
recognizes that it is PE(2, ;) for some j. Repeating sim-
ilarly towards the east, every processor recognizes its z
coordinate. Each PE(%,7) receives.l at the ith iteration.
However, there is a problem: Each PE(n -1, j) cannot no-
tify the other processors that the repeating should end,
that is, every processor keep trying to receive from its
W. Thus, at each iteration every processor must check
whether the repeating should end. To do this all proces-
sors connect ports horizontally (i.e. W-E) and each tries
to receive from its ¥. Each PE(n — 1,5) sends 1 to the
horizontal bus when it recognizes that it is PE(n — 1, 7)
As every processor succeeds in receiving, it terminates the
iteration. Note that this check, the background confirma-
tion, should be executed at every iteration.

After finishing the iteration, every processor learns
its z coordinate. Then, substituting the vertical for the
horizontal direction in the algorithm, €Very processor can
also learns its y coordinate. As a result, using this simple
algorithm, initializing an RM of the bit-transfer model
can be performed in O(n) time. ‘

From this algorithm, we can informally state the fol-
lowing propositions on an RM of the. bit-transfer model:

¢ Each processor can recognize whether and to which
boundary it belongs in constant time.

® By using the background confirmation, if at least
one processor recognizes the time when iteration
must be terminated, each processor can terminate
the iteration at that time.

From now on, we assume that each processor already
knows which boundary it belongs to, by executing the
first step of the above algorithm. Furthermore, for sim-
ple explanations, we will omit mention of the background
confirmation in initializing algorithms when iteration is
used.

3.2 Assigning quadrants

Determining which quadrants a processor belongs w.r.t.
a given processor is fundamental for initializing a RM.

We say that a processor is marked if a single processor is
specified and it knows that it is marked. For example, af-
ter each processor recognizes which boundary it belongs
to, PE(0,0) (i.e., a processor both on‘the south bound-
ary and on the west boundary) can be considered to be
marked. Thatis, we can write a statement usmg 4 marked
processor, say, PE(O 0) sends 1 to'W,” on an mltla.hzmg
algorithm.

For a given marked processor, we will introduce rel-
ative coordinates of all processors and the quadrants w.r.t.
the marked Processor. Let the marked processor be PE(z, 3)-
Then, PE(z +1, y + j) is denoted as PE[i, 5], giving the rel-
ative position w.r.t. the marked processor. Note that,in
general, each processor does not know its relative position
and only the marked processor knows that it-is PE[0, 0].
For-a given marked processor, we divide the RM into the
quadrants as shows in Fig. 2. :

It is not difficult to assign each processor its quad-
rant. The following algorithm determiines whether each
processor is on the z-axis and whether in the quadrant I.
Determining whether each processor is on the other quad-
ratits can be performed ‘analogously.

[Assigning quadronts]

Step 1 All processors except Pﬂﬁ 0] connect ports hor-
izontally and try to receive from it, PE[O 0] sends 1
to E and 2 to W. Processors succeedmg in recenvmg
either. 1 or 2 are on the z-axis.

Step 2 All processors except those on the z-axis con-
nects ports wertically (i.e. N-S) and try to receive
from it. Processors which received 1 in Step 1 send
1 to N. A processor succeeding in recexvmg 1 be—
longs to the quadrant I

. Furthermore, we df.ﬁme the dwgonal guaﬂmnts w.r.t

a marked processor (Fig. 2) as quadramt.s rotated -around
- the marked processor by 45 degrees. ‘

It is not difficult to assign each processor its dngonal
quadrant. The following algorithm determines whether
each processor is on the /-diag, on the \-diag, and in the
I-diag. Since determination of whether each’processor is
in the other diagonal’ quadrants, we will omit description
of those processes.

o w

[Assxgmng dxagonal qmth':ants]

Step 1 Every processor except PE[0, 0] connects ports /-
diagonally (i.e., N-Wand S-E). PE[0,0] sends 1 to ¥
and 2 to'S. Every processor tries to receive it from

. N-and S. Processors which succéed in receiving 1 -
from N or 2 {rom S are on the / diag. :

Step 2- Every processor except PE[0, 0] connects ports \
diagonally (i.e., ¥-E and S -W). PE[0,0] sends 1'to N
and 2 to S. Every processor tries to receive from N
and S. Processors which succeed in receiving 1 at

N or 2 at S are on the \-diag.

N R
R R
L R
A T

PE(k,0)

PECK0)

I

Figure 3: Marking double-distance processor

Step 3 Every processor except one either on the /-diag
or on the \-diag connects ports vertically. BEvery
processor which succeeded in'receiving 1 either at
Step 1 or at-Step 2 tries to send 1to N. Every
processor tries to receive it from-its S. Processors
which succeed in receiving 1 are in the I-diag.

Each step can be performed in constant time on an
RM of the bit-transfer model." Therefore, we have

Lemma 3.1 For a given marked processor, the quadrants
and the diagonal quadrants can be assigned in constant
time on an RM of the bit-transfer model. :

3.3 Marklng double and half dlstance proces—
sors

Suppose that PE(k,0) is marked. Let PE(2k,0) and
PE(|k/2],0) be the double-distance processor and the half-
distance processor w.r.t. PE(k,0), respectively. This sub-
section shows algorithms which mark the double-distance
and the half-distance processors' with new ‘marks for a
given marked processor Note that kis an unknowa mte-
ger..

- First, we show an algonthm for matkmg the double-
d:sta.nce PIOCESSOT.

[Marking the double-dlstance processor]

Step 1 Ewery processor recognizes its quadrant w.r.t. the
marked processor.

Step 2 Every processor connect ports as shown in Fig. 3.
After that, PE(0,0) sends 1 to N and each PE(,0)
with k.> 1 tries to receive it. Then, PE(2K, 0) the
double dlstance processor, succeeds in receiving 1.

Next we will show the algorithm for marking the half-
distance processor.

[Ma'rlicing’ the half-distance processor]

Step 1 Every processor learns its quadrant W.I. t PE(O 0)
and w.r.t. the marked processor

Step 2. Any pnocessor at, the mtersectxon of the / dxag
w.I.b. PE(O 0) and the \-diag w.r.t. the marked pro-
cessor is in the same column as the half-distance

Figure 2: Quadrants and diagonal quadrants

processor.- It notifies the half-distance processor by

connecting ports vertically. In this case, k is odd. .

If there exists no intersection processor, k is even,
and the following steps are executed. -

Step 3 Every processor learns its quadrant w.z.t. PE(k—
1,0), the processor neighboring the marked proces-
sor on the west side. . :

Step 4 There exists a processor at the intersection of

the /-diag w.r.t. the marked processor and to \-

- diag w.r.t. the neighbor processor. The intersection

processor is in the same column as the half-distance

processor. It notifies the half-distance processor, by
connecting ports vertically. :

From the above algorithms, we have

Lemma 3.2 For a given marked processor, the double-
distance and the half-distance processors can be deter-
mined in constant time on an RM of the bit-transfer model.

3.4 Optimal initializing for bit-transfer model

Compared with the initializing algorithm for the word-
transfer model, that for the bit-transfer model is fairly
simple, because the lower communication capability of
the bit-transfer model increases the initializing time. This
subsection shows an optimal initializing algorithm for the
bit-transfer model. ' '

For each PE(3, j), let ipip—y---i1 (p = [logn]) be
the binary representation of ;. We will design an ini-
tializing algorithm for the bit-transfer model which com-
putesip, ip.1,-- -, 11 step by step based on the divide-and-
conquer method.

[Initializing for bit-transfer model]

Step 1 Determine PE(2”, 0) where p is the maximum in-
teger such that 2”7 < n. This can be done by re-
peating the double-distance marking p times.

Step 2 Assign the quadrants w.r.t. PE(2?, 0). Each PE(3, 5)
can determine its 7, by the quadrant it belongs to.

"Step 3 Consider that the RM is divided into 2 subRMs

such that the size of one is 27 xn (i.e., PE(4, 7)’s such
that i, = 0}, and the other’s size is (n—2F) xn (i.e.,
PE(3, §)’s such that i, = 1). Determine PE(2"72,0)
for the first each subRMand PE(2P + 277 0) (if it
exists) for the second. This can be done using the
generalized version of the half-distance processor
marking.

Step 4 Assign the quadrants w.r.t. PE(2"™1,0) on the
first subRM and w.r.t. PE(2P + 2"“1,0) on the sec-
ond subRM. Each PE(3, j) can determine its ip—1 by

. the quadrant it belongs to.

Step 5 Continuing analogously, ip—2,1p—2,...,% can be
determined.

Step 1 takes O(p) time. After that, determining ix
takes a constant time for each k = p,p — 1,...1. Fur-
thermore, the y coordinates can be determined. similarly.
Since p = [log n], we have

Theorem 3.3 Initializing an RM of the bit-transfer model
can be performed in O(logn) time.)

From Theorem 2.1, the above algorithm is optimal.

4 Initializing for word-transfer model

The initializing algorithm for the word-transfer model
that we will present is fairly complicated, because its com-
putation time is sublogarithmic and some bits of the co-
ordinates must be simultaneously computed. It is not
possible to attain the sublogarithmic time by the divide-
and-conquer method used in the bit-transfer model. Let
us start with subalgorithms.

From now on, without loss of generality, we assume
that n is even. As shown in the algorithm which deter-
mines the half-distance processor, it is easy to determine
whether n is even. If n is odd, by ignoring processors
on the north boundary and on the east boundary, the
algorithms designed for even n can be executed similarly.

4.1 Marking even columns

This subsection shows an algorithm for marking columns;
that is, each PE(4, j) learns whether i is even or not. In the
algorithm, processors connect ports such that the busses
form two spirals (Fig. 4). Each spiral is shifted by two
with each circuit. Then, by sending 1 to one of the spirals,
1 is transferred alternately.

[Marking even columns]

Step 1 Determine PE(n/2,0) and PE(0, n/2) by marking
the half-distance processor.

Step 2 Divide the RM into 4 subRMs of n/2xn/2 by as-
signing the quadrants w.r.t. PE(n/2,0) and PE(0, n/2).
After that, each processor knows which subRM it
belongs to. Alsa, assign the quadrants w.r.t.
PE(0,n/2 —2).

Step 3 Connect ports as shown in Fig. 4. Then, PE(0,n/2)
sends 1 to E. Each PE(i,n/2) (0 < i < n/2) tries
to receive it from S. A processor which succeeds in
receiving 1 is in an even column. Therefore, each
processor succeeding in receiving 1 notifies proces-
sors on the same column that they are in an even
column. After that, each PE(3,j)} (0 <i<2/2,0 <
J < n) knows whether its i is even.

Step 4 Analogously, each PE(i,j)‘ (nf2<i<n,0<j5<
n) can recognize whether i is even.

Since each step of the above algorithm takes a con-
stant time, we have

Theorem 4.1 Marking even’ columns on an RM of the
bit-transfer model can be performed in constant time.

4.2 Marking power-of-two columns

This subsection shows an algorithm which marks 2°th,

ZISt, Zmd, ceny grth columns, where p is the maximum
integer satisfying 27 < n. That is, after marking power-
of-two columns, each PE(, jl learns whether there exists
an integer k satisfying i = 2%. As shown in the initializa-
tion for the bit-transfer model, by repeating the algorithm
which marks the double-distance processor, it is easy to
mark power-of-two columns in O(log n) time. However,
this section shows a constant-time algorithm for marking
power-of-two columns.

[Marking power-of-two columns)

Figure 4: Marking even columns

Step 1 Divide the RM into 4 subRMs, just as for mark-
ing even columns, and assign diagonal quadrants
w.r.t. PE(0, 0). '

Step 2 Connect ports as shown in Fig. 5. Then PE(n/2—
1,n/2) sends 1 to N. Each PE(i,n/2—-1) (n/2 <
i.< n) tries to receive it from its N. Then, PE(n/2—
142%,0/2~1),PE(n/2 ~1+2",n/2—1), PE(n/2 -
14+2%,n/2-1), ..., PE(n/2 =1+ 27" nf2-1)
succeed in receiving 1.)

Step 3 Every processor connects ports /-diagonally, and
PE(n/2 —1+2°,n/2 —1), PE(n/2 = 1 +2),n/2 —
1), PE(rf2 — 1 + 2%,n/2 —='1), ..., PE(nf2 — 1 +
2P~ n/2—1),'sends 1 to S. Each PE(4, 0) tries to re-
ceive from its S. Only PE(2°,0), PE(2*,0), PE(2%,0),
..., PE(2P7%,0) succeed in receiving 1.

Step 4 Determine PE(27, 0) by marking the double-distance
processor of PE(27™1,0).

Step 5 By connecting ports vertically, PE(2°, 0), PE(2*,0),

PE(22,0), ..., PE(2”,0) notify the processors in the

" respective columns that they are in power-of-two
columns.

Since each step takes constant time, we have

Lemma 4.2 Marking power-of-two columns can be per-
formed in constant time on a bit-transfer model RM.

4.3 Computing remainders

" This subsection shows an algorithm for computing re-

mainders: For a given marked processor PE(0,2*), the
computing remainders algorithm determines whether i mod
2%t < 2% for each ith column on an RM. That is, each
PE(4, 7) recognizes whether i mod 2*** < 2* (or whether
ix41 = 0). This algorithm is used for computing each digit
of the binary representation of coordinates.

[Computing Remainders]

2.
+/ d 7 Fd
P &
Pttt 8
A A
’+f+’+’+’-’44_-.’f4:+' -

Figure 5: Marking power-of-two columns

Step 1 Determine whether each processor is on an even
column by marking even.

Step 2 Mark PE(0,2* — 1) by marking the half-distance
processor.

Step 3 By assigning quadrants w.r.t. PE(0,2% — 1), de-
termine whether j < 2* for each PE(3, 7).

Step 4 Each processor connects ports as shown in Fig. 6.
That is, each PE(3, j) connects ports as follows:

S-E if ¢ is even and j = 2%,

. S-W ifiisodd and j = 2%,

-V ifiis even and j =0,

N-E ifiis odd and j = 0,

/-diagonally if i is even and 0 < j < 2%,
N-S,W-E ifiis odd and 0 < j < 2.

Then, PE(0, 0) sends 1 to W. Every processor on even
columns tries to receive it from W. Since PE(3,7)
(i=10,2,46,...and 0 < j < 2*7) succeeds in
receiving iff i mod 2*+? < 2* it can be determined
whether i mod 2%+? < 2%,

Step 5 Each PE(i,j) which succeeded in receiving 1 in
Step 4 notifies processors in the same column
whether { mod 25! < 2%, Furthermore, each PE(3, 5)
notifies it to its odd-column neighbor, PE(i + 1, 7).

Theorem 4.3 Computing remainders can be performed
in constant time on.a bit-transfer model RM.

Note that the above algorithm occupies 2% + 1 columns
to compute remainders.

Figure 6: Computing remainder

4.4 Optimal initializing for the word-transfer
models

Now, we will show an initializing algorithm for an RM of
the word-transfer models. The algorithms for the exclusive-
word-transfer and the bitwise-word-transfer are almost
the same. The difference is how they implement Step 6.

Let 1pip—1--- 41 (p = [log]) be the binary represen-
tation of 1. The following algorithm computes ipip— - -+ 4;
for each ith column.

[Initializing for word-transfer models]

Step 1 Compute i; in each ith column by marking even
columns.

Step 2 Mark PE(0,2°), PE(0, 2*), PE(0,2%), ..., and
PE(0,27~!) by marking power-of-two columns.

Step 3 Di\/ide the RM into subRMs of size n x 22, n x
2%, ..., n x 272 (Fig. 7). This can be done by
assigning quadrants w.r.t. PE(0,2?), PE(0,2%), ...,
and PE(0, 2°~!) simultaneously.

Step 4 In each ith column of each 2¥*! x n subRM (1 <
k < p - 3), by computing remainders, determine
whether i mod 2**! < 2%, The equation ik41 =0
holds iff i mod 25+ < 2*. After that, processors
in each ith column of each 2*¥*! x n subRM knows
k41

Step 5 Compute i, and ip—; as in the initializing algo-
rithm for the bit-transfer model.

Step 6 In each ith column, compute i from ip, ip—1,..., ;.

Steps 1, 2, 3, and 4 can be performed in constant
time. Step 5 can be performed in constant time, because
PE(0,2P~1) is already marked. Step 6 needs detailed ex-
planation as follows.

After Step 5, on each ith column, the value ix 1<
k < p) is known by at least one processor. Hence, for
simplicity, assume that there exists 0 < j1 < jo < --- <
Jp < m such that each PE(4, jx) (1 < k < p) knows i) after
Step 5 without loss of generality. First, construct an RM
using all processors PE(Z, jx) such that 0 < i <n —1 and
1 < k < p. In other words, all processors except PE(, jk)’s
fix busses vertically. After that, it can be assumed that

0oo00000oo0ooonoooan
[=[n]n] oono aog
(n]n]x]m jn]m|
janin) jajuin]
Dono ooa
[u] O [a]n]s]
8] alslm|
o OO0
o goog
u| w[a[u|
B o
2 Slulnia LI
V) ooo Ono0n oo
gogooooaoor 00

{
- ninjsinju|nisis])
alnlalslsinlals sininlalsls
o S s ==

Figure 7: Division of reocnfigurable mesh

the new RM has. p rows. Then, by recursively computing
the y coordinate of the new RM with p rows, the integer
k can be identified by PE(%, jk).

Secondly, in the blthse-word-transfer model, every
processor connects ports vertically and each PE(s, ji) sends
ix-257? to the bus. Then, since § = i5- 277 o ip1- 2P~ 24

.+ 43 x 2% is transferred in each ith column, proces-
sors in the ith column can recognize i. In the exclusive-
word-transfer model, i can be computed by the binary
tree method as follows:

1. Compute 1 + 12 -2, 13 +l4 .2, 15 +1s 2, .

2. Compute i;+ig?2+(i3+i‘-2)‘2, i +is- 2+ (ir +
) 15 2) 2

3. Compute i3 + 12 - 2+(:3+u 2) 2+(15+zs 24
(i7+15 2) 2) 2,

4. Repeating in the same manner.

Since each PE(i, jx) knows ix and k, the binary tree method

can be performed through vertical communication. By re-

peating the operation at most [log p] times, i =13 + 12 -

2! 4i3-2%+. .- can be computed in O(log p) = O(log log n)

time. : . '
Consequently, we have

Theorem 4.4 Initializing an RM of the ezclusive-word.
transfer model can be performed in O(loglog n) time.

Proof. Let us estimate the computation time. Let T'(n):

be the computation time of this -algorithm. In the al-

gorithm for the exclusive-word-transfer model, the algo-.

rithm for p columns is recursively executed. Hence, we
have the following relation:
0(1),

{ (1)
T(n) T([logn]) + O(loglogn) (n > 1).
Therefore, T(n) =

(1]

O(loglog n). This completes the proof.
o

Theorem 4.5 Initializing an RM of the bitwise-word-
transfer model can be performed in O(log* n) time.

Proof. Analogously to the proof'of Theorem 4.4, let
T(n) be the computation time. Then we have the follow-
ing relation: : :

{ T(1) = 0(1)
T() = T(flognl) +0(1) (s> 1)
Hence, T(n) = O(log n) T}us completes the proof. o

From Theorenis 2}}2,‘3.!,191 '2.3,'the 'a._lgonthms are opti-

5 Conclusions

This paper have shown optimal initializing algorithms
for three kinds of reconfigurable meshes. It remains for
researchers to create optimal initializing algorithms for
three or more-dimensional reconfigurable meshes and for
general rectangular reconfigurable meshes. .

Acknowledgments

The author would like to thank Atsuko Ya.ma.guchl for
helpful comments.

References

1] Y. B'en-Asher, D. Peleg, R.Ramaswami, and A. Schus-
ter. The power of reconfiguration. Journal of Parallel
and Distributed Computing, 13:139-153, 1991.

[2] R. Lin. Fast algorithms for lowest common ancestors
on a processor array with reconfigurable buses. Infor-
mation Processing Letters, 40(4), November 1991.

{3] R. Miller, V. K. P. Kumar, D. Reisis, and Q. F.
Stout. Meshes with reconfigurable buses. * Proc. of
15th MIT Conference on Advanced Research in VLSI,
pages 163-178, March 1988.

[4] K. Nakano, T. Masuzawa, and N. Tokura. A sub-
logarithmic time sorting algorithm on a reconfig-
urable array. IEICE Transactions, E- 74(11) 3894—
3901, November 1991.

[5] B.F. Wang and G. H. Chen. Constant time algorithms
for the transitive closure and some related graph prob-
lems on processor arrays with reconfigurable bus sys-
tems. IEEFE Trans. on Parallel and Distributed Sys-
tems, 1(4):500-507, October 1990.

[6] B. F. Wang, G. H. Chen, and F. C. Lin. Constant time
sorting on a processor array with a reconfigurable bus
system. Information Processing Letters, 34(4):187—
192, April 1990.

