7 o F Yy X A 3T—4
(1994. 1. 25)

ANEBRAS—T 12— TBBEOHEH L SIZDWT
5% .7y - FaAfy
RELTEKRZ BITEHER
BHRIEFHEY EIHEE
BEXKAEL2-12-1

hclau@cs.titech.ac.jp

REERO—DL LTEERMBETHI ANREDA Y Va2 —) v/ MBI L, 0%
BOWRIITOWTHEBRTS. NPEEZAMREAY, Va— v HED Y 5 APSHE
RSB TR MED s 7 A5 FT.

On the Complexity of Manpower Shift Scheduling

LAU Hoong-Chuin

Department of Computer Science,

Tokyo Institute of Technology
Meguro-ku Ookayama 2-12-1; Tokyo 152, Japan
hclau@cs.titech.ac.jp

We consider the problem of shift assignment in manpower scheduling. We enumerate 8
variants of the problem: the schedule may be normal or cyclic, the shift change constraint
may be monotonic or unrestricted, and the demands may be exact or slack. We show
the NP-completeness of four of them, and present polynomial algoriihms to solve two
others. The complexity of two other variants remains open. Our work formaﬂy defines the
computational intractibility of manpower shift scheduliﬁg énd_thus j'ustiﬁes ekisting works

in developing manpower scheduling systems using combinatorial and heuristic techniques.

1 Introduction

Manpower scheduling is a critical operations man-
agment activity in large manufacturing or service
organizations which @pei’ate round-the-clock. It
is concerned with the scheduling of workers to
work on shifts to meet operational requirements
in ways that satisfy the constraints imposed by
the management. labour union and the govern-
ment. The manpower scheduling problem is well
studied in operations research. Receutly, Tien and
Kamiyama [TK82] presented a systemetic frame-
work for solving the general manpower scheduling
problem. Since then, various manpower scheduling
methods have been proposed, such as integer pro-
gramming [KJ91], heuristics [BK87], and network
optimization [BW90]. _
The underlying problem in manpower sche-
duling is the shift scheduling problem [GM86]
which determines the shift patterns assigned to
workers subject to scheduling policies such as those
descrived above. In this paper, we consider a re-
stricted version of the shift scheduling problem,

which we term the Constraint Shift Assignnienj

Problem or CSAP, The problem is concerned with .

finding a satisfying assignient of shifts to workers
such that demands are met and the so-called shift
change constraints are not violated. We study 8
variants of the problem with respect to the nature
of the schedule, the property of the shift change
constraints, and the property of the demand ma-
trix. In this paper, we present NP-completeness
results of 4 variants and propose greedy algorithms
to solve 2 other variants. The computational com-

plexity of 2 remaining variants remains open.

2 Preliminaries

A worker is a unit of manpower. A planning pe-
riod is the number of days for which manpower
scheduling is done. A shift is a period of time
within a day for which a worker turns out for

work. Otherwise, the worker gets an offdey. We

assume different shifts to be numbered 1.2,... and
conveniently use 0 to denote an offday. A sched-
ule, is an assignment of shifts and offdays to in-
dividual workers over days of the planning period.
Each element of the schedule is known as a slot.
We assume that initially offdays are already pre-
assigned to the schedule. A demand matriz shows,
for each day and each shift, the number of workers
required. Figure 1(a) gives an example of a de-
mand matrix; 1(b) gives an example of an initial
schedule; and 1(c) shows a schedule which satis-
fies the demand. A workstretch refers to the con-
tiguous working days between two offdays. The
start day of a workstretch refers to its first work-
ing day. Shift change constraints define what shifts
may follow a shift of any two adjacent slots. As we
assunre that an offday may precede or follow any
shift. shift change constraints need only be consid-
ered within workstretches. A feasible schedule is
one with all its slots instantiated to shifts which
meets the demand requirements and satisfies the
shift change constraints. Each row of ‘the feasible

schedule is known as a shift pattern.

2.1 Problem Definition

CSAP is defined as, given the planning period,
number of workers, nuunber of shifts, demand ma-
trix and shift change constraints, find a feasible
schedule. Let K’ = number of workers, J = plan-
Let D =

I x J demand matrix, where D; ; represents the

ning period, J = number of shifts.

demand units of day 4 shift j, for « = 1.....J and

j = 1,...,J. Let § = shift change matrix which

defines the shift change constraints, i.e., &, j, =

1 if shift j, may follow shift j, and O otherwise,
for j1,72 = 1,0, J. Let S = K’ x I schedule pre-
assigned with offdays. As shift change constraints
apply only within workstretches, from 5, we con-
struct a workstretch-based schedule o by having
each worksf.retch occupy one Tow: F{);I'Aexample
Figure 1(d). isthe o derived from Figure 1(b). Let

K = number of workstretches in &, oy, (or simply

k) denote the kth workstretch, or,; denote the slot
on position (i.e. day) i of ok, and |6y denote the
length (number of slots) of workstretch k. Thus,
an input instance of CSAP is given by a 6-tuple
(I, J, K, D,6,0). The.output is a feasible schedule
o". CSAP is an NP search problem. That is, it
corresponds to the following decision problem that
is in NP:
INSTANCE: (I,J,K, D, é,0).
QUESTION: Is there a feasible schedule?

When discussing NP-completeness, we con-
sider decision problems like above énd refer them
also as CSAP. Clearly, the corresponding searching

problems are harder than decision problems.

2.2 Variants of CSAP

We study several popular variants of CSAP. Firstly
we consider two types of schedules: normal and
cyclic schedules. A cyclic schedule is one in which

shift patterns rotate across workers operationally,

i.e. after I days, a worker k would take the shift)

pattern of worker k+ 1, fork = 1, e K'—1, and
worker K’ would wraparound to take the shift pat-
tern of worker 1. Hence, shift change across shift
patterns will have to be considered. For this pur-
pbse, two adjécent workstretches will be concate-
nated as one if there are no offdays between the
last working day of one and the first working day
of the other. Figure 1(e) is the workstretch-based
cyclic schedule corresponding to Figure 1(b).

Secondly, we consider the case that the total
number of workers not having offdays on a given
day exceeds the column sum of demands for all
shifts on that day. We call this a situation of slack
demand, as opposed to ezact demand. Slack de-
mand units will be satisfied by the assignment of a
special placeholding shift called the *-shift to some
workers. _

Finally, we consider the monotonic shift
change property. In mémpower.scheduling, it is
a common practice that, as the days progress, a

worker’s should be turned up for work no earlier

than the day before so that he maintains a healthy
biological clock.. Assuming that we order shifts
according to their start times, then shifts should
be assigned in non-decreasing order. This non-
decreasing sequence may be broken by an offday
because workers are expected to get enough rest
during the offday to be turned up for an earlier
shift next. In terms of CSAP, this means that the
monotonic shift change matrix is upper-triangular
with all 1's. Where monotonicity is not required,
we refer to the shift change as being unrestricted.

Hence, we define 8 variants of CSAP in terms
of a three-field classification |8}y, where,

1. a = Normal/Cyclic Schedule (N/C)

2. B = Monotonic/Unrestricted Shift Change
Matrix (M/U)

3. v = Exact/Slack Demands (E/S)

For instance, CSAP(N|U|E) refers to CSAP
with normal schedule, unrestricted shift change
matrix and exact demands. Clearly, ‘the normal
schedule is a special case of the cyclic schedule,
the monotonic shift change is a special case of the
unrestricted shift change, and the exact demands
is a special case of the slack demands. Thus, if we
prove that the special case is NP-hard, then the
corresponding general case will also be NP-hard.

3 NP-Completeness

We will show the completeness of CSAP(N|U|E)
by a polynomial many-one reduction from 3SAT.
Note that throughout this section, we consider
only decision problems.

Let U = {Uy,Uy,...,Up} be a set of Boolean
variables. A truth éssignment for U is a function
t:U — {True, False}. If X is a variable in U,
then X and X. are literals over U. A clause C over
U is a disjunction of Iitgf#ls over'U, and we say
that C is sqiisﬁed by a tr'uth"a.séignmeu't -i'f.at least
one of its members is True under that assignment.

A 3CNF over U is represented by a set of clauses

F = {C1,Cz,...,Crm} over U with three literals per
clause. We say that F is satisfiable if there exists
a truth assignment for U that simultaneously sat-
isfies all clauses in F. Now the problem 3SAT is
. defined as follows [GI79]:

INSTANCE: A set U of boolean variables
{U1,Us, ..., Un} and a 3CNF represented by F' =
{C1,C3....,Cm} over U.

QUESTION: Is there a truth assignment for U
such that F' is satisfiable?

Lemma 3.1. For any 3CNF F, there exists a
3CNF F' of m clauses such that

1. F' is satisfiable iff F is satisfiable,

2. for every i € {l,..,n}, pi = P;, where p;
(resp., 7;) is the number of occurrences of U;
(resp., Uz) in F’. and

3. m < P, where P = ¥, pi.

Proof. For any i € {1,...,n}, let g; (G} denote the
number of occurrences of U; (U;) in F. If i > T,

we add clauses Cp1 = Crnp2 = - -+ mtqi—T7 —
(TJ-;V U fo{). Likewise, if g; < T, we add clauses
M2 = = m+q_.-—q,«=(UiVU1vr];)'

The desired F' is F plus these additional clauses.

Cm-i-l =

Clearly, these additional clauses do not affect the
satisfiability of F, thus F' is satisfiable iff F' is
satisfiable. Furthermore, p; = max{g;, T}, and
each variable U; occurs 2p; times (p; times for each
of U; and T7) in F'. Since each clause has three

literals, 3m = 2P; hence m < P. a

Theorem 3.1. CSAP(N|U|E) is
NP-complete, even for fixed I > 5.

Proof. Let F be an instance of 3SAT. In the fol-
lowing, we assume that F is already converted by
Lemma 3.1. U, F, n, m, p;, and P are defined
as above. ‘'We construct an instance of CSAP as
follows {in the following, the ranges of i and & are

respectively {1,...,n} and {1,...,m}):

1. K =2P.

2. I=5.

3. J = 4P + mn + 4, where the shift numbers are
_labelled as follows:

o 35, Fij. Vij. Wij, for all pairsof 2 and j €
{1,...pi},

e cp. for all k, and u, v, 2z, and 6.
4. The demand matrix is set as follows:
¢ D2y; = Dawy; = D3z = DE,z—;,j =1
for all pairs of i and j € {1,...,pi},
D.l,u = D4,y = D5.z = Pv
D4, =1, forall &,

L]

*

Dy g = P —m, and

all the other demand matrix elements are
set to 0.

5. Offdays are assigned within the schedule o as
follows:
o oy =0 (off) for k= P+1,..,2P, and
e o5 = 0 (off) for k= 1,..._.P.
6. The shift change matrix § is defined as follows
(to improve readability, we adopt the notation

a — b (read as shift a can be followed by shift
b) iff §ap = 1)

e for all pairs of i and j € {1,....,pi}

U~ Vij, Vij ~* Tij. vij — Tij,
Ty >y, Ty T 0,
Tiy — 9, Wiy — Tij. and

wij — Ziy, where j'=j—1 (if2<j<
p;i)y and ' =p; (if j = 1);

o for all i,k such that j € {1,...,pi}, zij —
cr (resp. Ty — ci) if Us (resp. T3) oc-
curs the jth time in clause k;

e y— z; and

o all other shift changes are set 1;0. 0.

‘Figure 2 depicts the CSAP instance associ-

ated with the following 3CNF F aud truth assign-

ment t:

F = (VU VU) AU VT VIG)A

OV U VU) AT VT, VTG,

t(Uh) = True; t(Uz) = False; t(Us) = True;
We explain the motivation for the above con-

struction. We call the top-half rows of a sched-

or; for k = 1,...,P) the True Re-

gion (TR) while the bottom-half, the Fulse Region

ule o (ie.

{FR). The demand matrix, offdays assigniments,
and shift change matrix force different shifts to oc-
cupy different regions in the schedule. Essentially,
the shifts u’s are'used to force all v's to occupy
TR, and thus w's to occupy FR. Likewise, the z’s
are used to force all ¢’s and 8 to occupy TR, and
all s to occupy FR.

Bach z;;(Fjj) corresponds to the jth oc-
curence of the literal U; (T;) in F. The idea is
to force all true literals occupy TR while the rest,
FR. To do so, the following two conditions must

be met:

(1) For any z;; in TR, then Ti; is in FR, a.pd vice

versa.

(2) For any z;; in TR, all other zip's (j1 €
{1,..,pi}) are in TR. Same applies to 5.

Condition (1) is made possible by the use of
shifts v and w. For any i, j, since exactly one v
shift and one w shift may be followed by z;; and
Z7;, and that v's and w’s reside in different regions,
zi; and T;; must be in different regions. Condition
(2) is enforced by having the seemingly strange
shift constraint from w’s to z's above. Suppose
Z11 is in FR, then wys has to precede it; since z1,
is preceded only by vy or w2 and wys is taken up,
Z12 cannot but reside in the TR. This implies that
Z1z must be in FR, and the argument repeats.

This completes the definition of our reduction.
Clearly the above reduction can be done in poly-
nomial time. We claim that F has a satisfying
assignment if and only if the constriucted CSAP
instance has a feasible schedule.

First, assume F has a satisfying truth assign-

ment t. Based on this ¢, we define a feasible sched-

ule. For each t(U;) = True, the schedule is defined
so that the corresponding z;;'s occupy TR while
the Z3;'s occupy FR. The reverse occurs for each
t(U;) = False. Since each clause has at least one
true literal, every ¢ residing in TR can be pre-
ceded by some z. Clearly, one can define a feasible
schedule in this way.

The converse also holds. For a given feasible
schedule, we assign U; to True for all z;; residing
in TR, and U; to False for all x5 residing in FR.
Clearly, by the two conditions of non-interfering
literals stated above, each variable in U-is uniquely
set. Since each cy is preceded by an literal z or T
in TR (which means that the literal appears in C},
and it’s value is True under the above assignment),
F is satisfiable. O

We have deliberately used many distinct shifts
to ease discussion. One could replace y and z by
U, v;; by ;5 and w;; by ;. thereby reducing J to
2P +1n 4 2=4m + 2. The following colloraries are

obvious:
Collorary 3.1. CSAP(C|U|E) is NP-complete.
Collorary 3.2. CSAP(N|U|S) is NP-complete.

Collorary 3.3. CSAP(C|U|S) is NP-complete.

4 Polynomially Solvable Variants

We describe an algorithm to solve CSAP(C|M|E)
(and thus CSAP(N|M|E)) polynomially.

4.1 Algorithm

The algorithm is essentially a greedy ‘algorithm
which assigns slots in increasing order of shift num-
bers. As each workstretcli is assigned from left to
right, the following terms are defined. The leftmost
ofa workstretchb.‘at any point in the scheduling pro-
cess is the élot where all left preceding Slbts have
been assigned. The rightmost slot of a workstretch

is literally the rightmost assignable slot. The tail

of a workstretch is the contiguous unassigned slots
from the leftmost to the rightmost slots.

Due to the cyclic nature of the schedule,
we regard the left and right positioning of slots
not in terms of absolute indices, but consider-
ing wraparound.To simplify notation, oy ;—y and
Ok,i+1 refer to the slots to the left and right of o ;
respectively considering wraparound.

Let B be the set of day indices which have
positive demands for shift j. Let A be the set of
indices of workstretches whose leftmost slots’ day
indices are'in B. A thus contains the potential
workstretches for the assignment of shift j. For
simplicity of notation, we will use o as both the
input and the output schedule. The algorithm is

given as follows:

Input: {I,J,K,D,6,0), where é is monotonic.

Qutput: a feasible schedule o or fail.

Procedure:

1for j =1to Jdo

2 while (B — {i<I|D;;>0})#0do

3 A—{k<K|ow: is leftmost slot and i € B}

4 if A= 0Qreturn fail; :

5 pick k € A s.t. k has the longest tail;

6 ori+J; % o, is leftmost slot of &

7 Dij+~Dij—-1L

8 endwhile

9 endfor)
Line {5) picks a potential workstretch with the

longest tail, ties broken arbitrarily. Note that even

if a workstretch has a duplicating day index, there

is no ambiguity of which index as far as Line (6) is

concerned, since each workstretch has at most one

leftmost slot.

4.2 Proof of Correct.rie_ss

Theorem 4.1. The algorithm returns an instan-
tiation of o (i.e. a feasible schedule) if and ouly if

there exists a feasible schedule.

Proof. If the algorithm exits successfully, then all

slots in o would have been assigned shifts in a
monotonic fashion. Thus, o is a feasible schedule.
We prove the converse by showing that, if a feasi-
ble solution exists, then every assignment made in
Line (6) augments a partial solution without vio-
lating feasibility. . The following lemma, called the

Swapping Lemma, is central to our proof.

Lemma 4.1. (Swapping Lemma) Let o be a par-
tial schedule in which shifts 1 to J —1 (for some j)
have been assigned. Let o* be P plus one new as-
signment o ; «— j, where o ;is a leftmost slot and
k is the workstretch with the longest tail among
all workstretches with leftmost slots. Théu, ot
admits a feasible schedule if & admits a feasible

schedule.

Proof. Let o~ represent a feasible schedule derived
hypothetically from o. If o} ; = off; = j; then o+
obviously admits a feasible schedule. Otherwise,
let that particular shift j reside in o, ;(k # k)

instead. Then, the following holds:

1. Since we schedule in non-decreasing shift

numbers, oy ; > 07, ;i and
2. by monotonicity, o3 ;_y < jand of;_; < 7.

If a;f,,i is also a leftmost slot, then the fact that our
algorithm did not pick k' means that k is at least
as long as &’ in tail length. Otherwise, we claim
that &' cannot possibly have a longer tail than &
from position i as follows. Let A"'s leftmost slot
be #’. By monotonicity, slots o, ; to o, ; have to
be assigned j. If the claim is false, then A" would
have been clhosen instead of & since Dy ; > 0 at
that point, a contradiction. ’

Thus, we have the scenerio as shown'in Figure
3. We swap the content of o] ; and o, ;. Surely,
the content of g}, ; (i.e. j) may be moved to o ;.
The reverse is possible if &i,|{+1 20010} isa
righ'_cmost slot; else, 0} ;1) > 0L ;41 SO We apply
the Swappi;lg Lemma recuréively. In this way, k'
will eventuall}; hit the rightmost slot before & does

because the latter is at least as long. Since the

swapping does not violate feasibility, we conclude

that oF also admits a feasible schedule. a

Now we return to Theorem 4.1. To prove that
the algorithm incrementally builds a feasible solu-
tion, we reason by induction on the loop index j.

For j = 0, which is a blank schedule with only
offday assignments, Theorem 4.1 obviously-holds.
Assume that after iteration j — 1 (j =1 < J),
the partial schedule admits a feasible schedule. In

iteration j, a leftmost slot always exists by the

induction hypothesis. By the Swapping Lemma, |
the assignment on Line (6) will admit a feasible

schedule. - a

4.3 Complexity Analysis

The matrix sum of D is the total number of work-
ing slotsin o, which is at most K-I. Each while it-
eration decrements the matrix sum of D by 1 unit.
Thus, the total number of iterations is O(KI). B
may be implemented as an O(J)-sized boolean vec-
tor, which is reset at the beginning of each for
iteration and updated in constant time from one
while iteration to the next (Line (2)). A may
be implemented as an O(K)-sized boolean ~§ect01',
which is written O(KI) times (Line (3)) and read
O(KI) times (Line (5)). Hence, the worst-case
time complexity is O(max(IJ, K21)).

5 Conclusion

We presented a class of the manpower scheduling
problems which is widely researched upon among
the operations research community, and prove that
majority of them are NP-hard. We showed that
where shift changes are monotonic and demands
are exact, a feasible schedule could be found in
polynomial time for both the normal and cyclic
schedules. One of our future research topics is to
determine the complexity of the problem involv-
ing monotonic shift changes and slack demands,
for both normal and cyclic schedules. Our contri-

bution marks a step in formally analyzing the com-

plexity of manpower scheduling problems. Other
interesting research topics include finding compu-
tational complexities of and good algorithms for
problems involving other scheduling coustraints,
in manpower schedulihg as well as related types

of resource scheduling.

-Acknowledgments

I would like to thank Professor Osamu Watanabe

for his valuable advice and suggestions.

References

[BK87] R. N. Burns and G. J. Koop. A modular
-approach to optimal multiple-shift man-
power scheduling. Operations Research,
Vol. 35, No. 1, pp. 100~110, 1987.

[BW90] N. Balakrishnan and R. T. Wong. A net-
work model for rotating workforce sche-
duling problem. Networks, Vol. 20, pp.
25-32, 1990.

[GI7T9] M. R. Garey and D. S. Johuson. Com-
puters and Intractability. 4 Guide to the
Theory of NP-Completeness. W. H. Free-

man and Co, New York, 1979.

[GMS86] F. Glover and C. McMillan. The general
employee scheduling prolem: An integra-
tion of MS and Al. Computers and Oper-
ations Research, Vol. 13, No. 5, pp. 563~
573, 1986.

[KJ91] M. M. Kostreva and K. S. Jennings. Nurse

scheduling on a microcomputer. Com-
puters and Operations Research, Vol. 18,

No. 8, pp. 106-117, 1991.

[TK82] J. Tien and. A. -Kamiyama. On- man-
power scheduling algorithms. SIAM Re-

view, Vol. 24, No. 3, pp. 275-287, 1982.

Shifi\Day Worker\Day Worker\Day

12343567 1234567 1234567
1 1101110 1 -----00 1 4567700
2 0122002 2 - - ee - -0 2 1234450
3 2210321 3 0- - - - - - 3 0122345
4 1011121 4 00 - - - - - 4 0022347
5 1200011 5 -00-- - - 5 8001334
6 1132100 6 - -00- - 6 6670033
7 0011201 7 - - - 00 - 7 5568002
g 2111010 g -----00 8 3366700
9 - - - - - - 0 9 3346680
10---0- - - 108880112
@ ®) (©) '
Workstretch\Day Workstretch\Day
1234567 12345671234567
1 00 1 ------00000000
2 - - - - -0 2 0- - -« - - 0000000
3 0------ 3 00+~ ----- 000000
4 00-- - - - 4 000- - - - - - - 0000
5 - 000000 5 00000- - - - - - 000
6 000- - - - 6 000000------00
7 ---0000 T .- - - - 00000000
§ 00000:- - 8§ ---00000000000
9 ----000 9 0000- - -« - - - - 090
10 000000 -
11 - - ---00
12 - - - - - - 0
13 ---0000
14 0000 - - -
@ (e)

Figure 1. In this example, /=7, /=8 and K=14. (a) shows a demand matrix; (b) shows
an initial schedule pre-assigned with offdays; (c) shows a schedule assigned with shifts
that satisfies the demand matrix; (d) shows the normal workstretch-based schedule
derived from (b); and (e) shows the cyclic workstretch-based schedule derived from (b).

1 2 .3 4 5
1 u Vit XA -
2 u vi2 X12 2 -
3 u V21 X21 [} -
4 u v22 %22 4 -
5 U V3t X3 0

6 u vi2 x32 3 -
1 - w12 X11 y z
8 w1l 22 .Y z
9 - war X2t y z
10 - wo2 X322 y z
11 - w32 A3 y z
12 - wir o X32 Y z

Figure 2. Instance of CSAP constructed by reduction. (xjj represents the complement of x,'j)‘

7,

Figure 3. Contents of slots on rows & and &’ in 6*.

