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Let G be a weighted, complete, directed acyclic graph (DAG) whose edge weights
obey the concave Monge condition. We give an efficient algorithm for finding the
minimum-weight A-link path between a given pair of vertices for any given k. The time ’
complexity of our algorithm is O(ny/klogn + nlogn). Our algorithn uses some prop-
erties of DAGs with the Monge property together with the parametric search technique.
We apply our alg.orithm to get efficient solutions for the foilowing problems, imprbving
on previous results: (1) finding the largest k-gon contained in a given convex polygon.
(2) finding the smallest k-gon that is the intersection of & half-planes out of n half-planes
defining a convex n-gon. (3) computing maximum A-cliques of an interval graph. (4)
computing length-limited Huffman codes. (5) computing optimal discrete quantization.



1 Introduction

Let G = (V,FE) be a weighted, complete, direct-
ed acyclic graph (DAG) with the vertex set V' =
{v1,v2,...,vn}: (For convenience, we sometimes fep-
resent v; by i.) For 1 <'i < j < n,’let w(i,j) denote
the weight associated with the edge (i,7). (See Fig-
ure 1.) An edge in a path in G is called a link of the
path. We call a path in G a k-link path if the path
contains exactly k links. For any two vertices, ¢ and
Jj» we call a path from i to j a minimum k-link path if
it contains exactly k links and among all such paths
it has the minimum-weight.

Figure 1: 2-link path of a complete DAG,

A weighted DAG, G, satisfies the concave Monge
property if the inequality w(i,j) +w(z + 1,7+ 1) <
w(t,j+1)+w(i+1,j) holdsforall 1 < i+1<j < n

In this paper, we are interested in computing the
minimum k-link path from 1 to n in concave Monge
DAGs, i.e., weiglited DAGs whose weights satisfy the
concave Monge property.:

Using the results of Aggarwal et al. [1] and Aggar-
wal and Park [2], it is easy to show that the minimum
k-link path can be computed in O(nk) time for a con-
cave Monge DAG. The main result of this paper is
an O(n/kTogn + nlogn) time algorithm for comput-
ing the minimum k-link path. Note that this algo-
rithm is superior to the O(nk) time algorithm when

= Q(logn). From now on, we assume that this is

the case.

We solve the problem using Megiddo’s parametric
search technique {15, 8] — a powerful technique for de-
signing algorithms, especially in computational geom-
etry [7]. The original parametric search runs a (se-
quential version of a) generic parallel p-processor al-
gorithm (called the guide algorithm) without knowing
the key parameter 7, and calls a decision algorithm
log p times at each stage in order to compute the com-
parisons that involve the unknown parameter.

For our problem, a naive application of the para-
metric search would not suffice since the known par-
allel algorithms for it are not efficient enough. There-
fore, we design a new guide algorithm in a relaxed
model. This guide algorithm has sequential steps and
parallel steps, and the property that all the compar-

isons that involve the unknown parameter are done
in the parallel steps. It is not difficult to see that
this guide algorithm can be used for the parametric
search. Let tg be the number of sequential steps, tp
the number of parallel steps, and p the number of pro-
cessors in the guide algorithm. "Applying parametric
search, the resulting algorithin has time complexity
of O(ts +tp - p+tp-tplogp), where tp is the time
complexity of the decision algorithm.

It is known that parametric search can be some-
times sped up by refining the parallel guide algorithm
[8, 9]; in fact, Frederickson [9] pointed out that the
essential requirement for parametric search is to have
a “nice” partial order of computation. Our approach
is similar in philosophy, although we construct a new
guide algorithm instead of refining an existing par-
allel algorithm. Finally, we note that although it is
almost trivial that a guide algorithm in which only
the comparisons that involve the unknown parameter
are done in parallel is sufficient for parametiic search,
this paper, to the best of our knowledge, presents the
first attempt to use this fact to obtain a more efficient
parametric search.

2 The parametric search

“We show how parametric search can be applied to our

problem. Let G be our weighted DAG. For a real
number 7, define G(7) to be the weighted DAG with
the same sets of edges and vertices as G, in which each
edge e € E has the weight w(e)+ 7 (where w(e) is the
weight of e in G). Note that if G is Monge, then so is
G(7). Define a diameter path in G to be a path from
1 to n.

The following three lemmas are the basis of the
parametric search.

Lemma 1 If for some T the minimum-weight diam-
eter path in G(1) has k links, then this ‘path is the
minimum k-link diameter path in. G.

Lemma 2 For any 1 < k < n —1, there exists a real
number T such that a minimum- wezght diameter path
of G(T) has k links.

Lemma 3 If a minimum- wezght diameter path in
G(7) has k links, then for every £ < T, any minimum-
weight diameter path in G(€) has at least k links.

Both lemmas 1 and 3 hold for any DAG and do
not depend on the fact the'G has the concave Monge
property. Lemma 1 is obvious.

Proof of Lemma 3: Let P and Q be minimum-
wexght paths in G(T) and G(€), respectlvely Suppose



that P has & links, and @ has £ links. Let W.(P) de
note the weight of P in G(7). Then, W, (Q)~W,(P) 2
0 and We(Q) — We(P) < 0. Thus, {(r — £) =
W-(Q) = Wel@) > Wo(P) = We(P) = k(r — €). S-
ince 7 — £ > 0, we have that £ > k. ]

We now prove Lemma 2.

Definition 1 An edge (iy,j1) covers another edge
(i2,42) if i1 < iz < j2 < j1 and (i1, 1) # (32,52).

Let P; and P; be paths in G. Suppose that there
exists a link (i1,71) of P, and a link (724 72) of Py such
that (7;,71) covers (iz,73). We define a path swap op-
eration with respect to this pair of edges. This oper-
ation creates two new paths Q; and Q. Path @, is
given by connecting the prefix of P, ending at é; with
the suffix of P, starting at j; by edge (i1,j2). Path
Q2 is given by connecting the prefix of P, ending at
12 with the suffix of P, starting at j; by edge (2, 71)-

Lemma 4 Let Q, Q2 be paths obtained from P, and

Py by a path swap operation with respect to (t1,71) and
(i2,42). The sum of the weights of paths @, and Q,
is at most the sum of the weights of paths P, and P,.

In particular, if Py and P, are minimum- weight paths
s0 are @ and Q.

Proof. In case i = iy or j; = ja, clearly,

(Ql) + W(Qz) W(P,) + W(P;). Otherwise, i.e.,
i1 < iy < jp < j1, we have W(Q;) + W'(Qz) =

W(P) + W (P;) = w(i1, j1) — w(iz, j2) + w(i1, j2) +
w(iz, 1) < W(P) + W(P,). The inequality follows
from the concave Monge property of the edge weights.
[m] .

For a <'b, let P, and P, be paths from v; to v, and
from vy to vy, respectively. Suppose that P, has k,
links, Py has k, links, and k, > k.

Lemma 5 For any 0 < 2 < k, — ky there are links
€a = (ia,Ja) of Pa and ey = (iy,Jp) of Py with the
following two properties.

1. Edge ey covers edge e,.

2. The prefiz of P, ending at i, has x more links
than the prefix of Py ending at 3,,.

Proof: Omitted in this version. ]

Lemma 6 Let a,b, P, Py, k, and k; be as above. For
any k in the range [ky, kq), there are paths Q, with k
links from vy to.vg and Qp with k,+ky—k links from
to vy such that the sum of the weights of paths Q4 and
Qb is at most the sum of the weights of paths P, and
Py. In particular, if P, and P, are minimum- wezght
paths so are-Q, and Qy.

Proof: Omitted in this version. : o

Definition 2 Denote the weight of the minimum:
weight L-link diameter path in G by P(().

Corollary 7 For 1 < {<n~1, 2P(() < P(( 1) +
P(t+1).

Proof of Lemma 2: The number of links of the
minithum-weight diameter path goes to'l and n — 1 if
T goes to co and —o0, 1‘esperﬁvely Fix some 1 < k <
n — 1. By Corollary 7 P(k) — P(k+1) < P(k—1) —
P(k). We claim that for any P(k) Pk+1) <1<
P(k—1) = P(k) there is a minimum- weight diameter
path in G(r) with k links. Consider some & < ¢ < n.
Applying Lemma 3 it is easy to verify that for all
T 2 (P(k) = P(0))/(¢ = k), & minimum-weight %-link
path in G(7) is no larger than a minimum-weight (-
link path. By Corollary 7 P(k)~P(¢) < (= l.) P(k)-
P(k +1). We get that for all 7 > P(k) — P(k + 1), a
minimum-weight k-link path in G(7) is no larger than
a minimum-weight -link path. Similarly, for 1 < ¢ <
k, for all 7 < P(k — 1) — P(k), a minimum-weight &-
link path in G(T) is no larger than a minimum-weight
£-link path. ) ) a

In the parametric search we search for a value
Topt such that G(T,,pl) has a minimum-weight diam-
eter path with %k links. Suppose that such a Topt i8S
found. To compute a minimum-weight k-link path of
G (or equivalently, a minimum- -weight diameter path
of G(Tops) with k links) we do the followmg Apply the
linear tine algorithm for finding a minimium- -weight di-
ameter path in DAGs with the concave Monge prop-
erty, to find two minimum-weight diameter paths in
G(Topt)t P, with the maximum number of links ;nd
P, with the minimum number of links. It is easy to
see that both known linear time algorithms for this
problem: the one given by Wilber [17] and the one by
Klawe [11]) can be used to find these paths. Then,
to find a minimum-weight diameter path with & links
we apply Lemma 6. It is easy to see that finding the
required links e, and e; in the proof of Lemma 6 and
performing the path swap can be done in time propor-
tional to the length of P,; that is O(n) time.

One way to compute Top; is by binary search. As-
sume that all edge weights are integral, and let U be
the maximum absolute value of the weights.

Lemma 8 The number of links of the minimum-
weight diameter path of G(=3U) is n — 1, while that
of G(3U) is one.

Proof: Consider G(—3U). Let P be a diameter path
with & < n — 1 links. Then there is a link e = (vi,v5)



of P such that j > 7 + 1. We replace e by the pair
of edges (vi, vi+1) and (vi41,v;) to obtain a path with
k41 links. It is easy to see that this path has smaller
weight than P. Hence, the minimum-weight diameter
path of G(—3U) must have n—1 links. The statement
for G(3U) can be shown similarly. ~ O

Since the weights are integral, also the differ-
ences between weights are integral. Recall that any
P(k)y-P(k+1) £ 7 < P(k - 1)~ P(k) can be
taken as 7T,p;. Hence, there exists an integral 7opm
in the range [-3U,3U]. We can use binary search
to find it. Initially, set 7 = -3U and Tp =
3U. Iteratively, compute the minimum-weight path
in G({(rr+ 7r)/2]).. If it has k links then we are
done: 7op = | (12 + Tr)/2]. Else, if it has more than
k links, set 77 = |(rz + 7r)/2] + 1, otherwise, set

g = [(r1 +TR)/2] — 1. Tt is easy to see that 7,p is

found after O(log U) iterations.

Theorem 9 The binary search algorithm finds the
minimum k-link path in O(nlogU) time.

Proof:  The algorithm computes the minimum-
weight path in concave DAGs O(logU) times, and
each minimum-weight path finding is solved in O(n)
time using [11]. o

“We have a weakly polynomial O(nlog U) time algo-
rithm for the minimum k-link path problem. (Bein et
al. [5] discovered the above weakly polynomial algo-
rithms independently.) This algorithm is faster than
the known O(nk) time algorithm when & = Q(log U).
Practically, it often suffices to obtain a solution of an
appromma,ted system where weights are rounded so
that the precision U is bounded by a polynomial of n.
The algorithm finds such an approximate solution in
O(nlogn) time.

From the theoretical point of view, it is important
to design an efficient strongly polynomial algorithm.
We can design a strongly polynomial algorithm based
on the above binary search algorithm by using the
parametric search paradigm [15]. Assume that there is
a parallel algorithm (guide algorithm) that computes
the minimum-weight path in G(r) in tp time using
p processors. Also assume that there is a sequential
algorithm (decision algorithm) that computes it in tp
time. Then, the parametric search scheme [15] finds
the minimum-weight k-link path of G in O(tp-p+tp-
tplogp) time.

Unfortunately, no polylogarithmic tune parallel al-
gorithm that uses O(npolylog(n)) processors is known
for the minimum-weight path problem. The known
polylogarithmic time algorithms require O(n?) proces-
sors; hence, they are not suitable for our use. The best

known algorithm that uses O(n) processors requires
O(y/mlogn) time [13]. Thus, we have the following:

Theorem 10 The minimum k-link path problem can
be solved in O(ny/mlog?® n) time.

The above time complexity is far from satisfactory,
since for k < /mlog®n, it is worse than the O(nk)
time algorithm given by using [1, 2]. In the next sec-
tion we give a better algorithm by using a more so-
phisticated parametric search technique. In this algo-
rithm we use as a guide algorithm an algouthm with
O(n\/ﬁ Togn) sequential steps and O(y/k/logn) par-
allel steps in which we perform total of O(n/klogn)
work, and the property that all the comparisons that
involve the unknown parameter are done in the par-
allel steps. Applying parametric search, we get an
algorithm that runs in O(n+/kTogn) time.

3 The guide algorithm

The outline of the algorithm is very simple. Like other
parametric search algorithms, the algorithm maintain-
s an interval (71, 7r) of the parameter containing Top:-
Whenever the decision algorithm is called this inter-
val is updated, so that every comparison executed so
far in the algorithm is independent of the cloice of T
provided that 7 € (7, 7r)- We explain in details how
to update the interval later. Initially, 7o = —oo0 and
TR = oo. We fix an integer ¢, which will be set appro-
priately in the analysis. For convenience, we assume
that both ¢ and n/{ are integers. The algorithm has
n/t stages. In the t-th stage, for t = 0,...,n/{— 1, we
compute the minimumni-weight paths in G(Topt) With
the minimum number of links and the maximum num-
ber of links (from v;) to vj, for t£ < j < (t+1){. Ifin
the course of this computation, when we update the
interval (r7,Tr), we also find Top, then we are done.
Otherwise, we continue to the next stage. .

At the end of Stage n/{, we have the minimum-
weight diameter paths in G(7op;) with the minimum
number of links and with the maximum number of
links. Then, we find the one with & links as described
above.

Before we describe Stage ¢ of the algorithm we need
a few definitions.

Definition 3 Let K(i) be the number of links in a
minimum-weight path from vy to v; i G(Topt) with
the minimum number of links.

Definition 4 Let P be a path from vy to v;. The left
endpoint of the last link of P 1s called the anchor' of



P. If the anchor of a path P is in an interval I, we
say that the path P has its anchor in I.

We now describe how to compute the minimum-
weight paths from vy to vier1,...,V41)e In G(Topt)-
Recall that this computation is done without knowing
the value of 7,,,. The input to this stage is the current
interval (1, 7r) of the parameter, and weights (as lin-
ear functions of the parameter 7) of minimum-weight
paths in G(7op;) with the minimum number of links
and the maximum number of links to v;, for 1 < j < £
We describe only how to find minimum-weight paths
with the minimum number of links. The ones with
maximum number of links are found similarly. From
now on, whenever we refer to a minimum-weight path
we refer to one with the minimum number of links.

Lemma 11 For all 1 € ¢ < j < n, the following
inequality holds: K (i) < K (7).

Proof: Straightforward from Lemma 6. ]

Lemma 12 For any j > tf, the minimum-weight
path in G(Top:) from vy to v; anchored in [1,¢{] has
either K(tf) or K(tf) + 1 links.

Proof: Omitted in this version. O

For t£ < j < (t+ 1)¢, define a candidate h-link path
from v; to v; to be a minimum-weight h-link path
among the paths whose prefix is a minimum-weight
path anchored in {1, #£} in G(7op:), and their suffix con-
sists of some (possibly zero) links in [t + 1, (¢ + 1)¢].
Note that a minimum-weight h-link path from v; to
vj in G = G(0) need not be a candidate h-link path.
However, it is easy to see that if some minimum-weight
path from vy to v; in G(Topt) has h links, then any can-
didate h-link path is a minimum-weight path from v,
to v; in G(Topt).

Stage ¢ consists of four steps:

Step 1: For all t£ < j < (t + 1){, compute the

minimum-weight path in G(7op:) from vy to v
anchored in {1, ¢£]. '

Step 2: Find an integer m satisfying K (¢ + 1)) —
K@) <m < 2(K((t+ 1)8) = K(88)).

Step 3: For all ¢ < j < (t+ 1)¢, compute candidate
h-link paths in G(7op;) from vy to vj, for all h =
E(td) + 1,.., k(i€) + m.

Step 4: Foreach t£ < j £ (t+1)4, find the minimum-
weight path in G(7p;) among the candidate h-
link paths from v; to v; found in Step 3.

It is clear that the final path computed in the Step 4
is the minimum-weight path from v; to v; in G{7op¢)-
We now describe each of the steps in detail.

Step 1: By Lemma 12 each of the minimum-weight

- paths in G(7p) from vy to v anchored in [1,¢(] has

either A'(#{) or K (t{) 4+ 1 links. For each t{ < j <
(t+ 1)1, we first find a minimum-weight path from v;
to vj anchored in 1, ¢ with A (¢{) links. Then, we find
such a path with A7(t¢) + 1 links. This computation
is independent of 7 since we compare between paths
with the same number of links. Finally, we compare
the two paths applying parametric search.

We show how to find the minimum-weight paths
with K (¢€) links. Recall that we already computed
the minimum-weight paths in G(7) from v; to all ver-
tices in [1,%£]. Since we are interested in minimum-
weight paths anchored in [1,t€] with LA'(¢f) links, we
may consider only the vertices v; in [1,#¢}, such that
the minimum-weight path from v; to v; has K(¢£) — 1
links. Suppose that there are n’ such vertices. Con-
sider the { x n’ matrix in which the (j,¢)-th entry is
the length of the minimum-weight path from v; to the
i-th such vertex plus the weight of the edge connect-
ing' this vertex to v;. It is not difficult to see that:
(i) this matrix has the Monge Property; and (ii) the
minimum entry in row j corresponds to the minimum-
weight path from v; to v; with A*(¢f) links. Hence,
all the minimum-weight paths can be found in O(n)
time applying the matrix search algorithm of [1]. The
minimum-weight paths with K'(¢€) + 1 links are found
similarly.

Now, for each t£ < j < (¢t + 1){ we have the
minimum-weight paths with K'(#¢) links and A (¢£)+1
links. To compare them we apply parametric search
paradigm. When two paths are compared, we com-
pute the critical value £ of the parameter, such that
for all 7 > & the path with K(#{) links is of small-
er weight in G(7r), and for all 7 < ¢ the path with
K (t0)+1 links is of smaller weight in G(7). If this crit-
ical value is not in the interval (7, 7g), then the com-
parison is independent of 7. Otherwise, we execute the
sequential decision algorithm to find minimum-weight
diameter paths with the minimum number of links and
the maximum number of links in G(&). If G(£) has a
minimum-weight diameter path with k links, we can
report § as 7,pt and find such a path. If the minimum-
weight diameter path with the minimum number of
links has more than k links, then 7o, > £, and we
can set 7z, to . Similarly, if the minimum-weight di-
ameter path with the maximum number of links has
less than k links, then 7oy < £, and we can set 7z
to £. The parametric search paradigm uses a parallel
algorithm to reduce the number of calls to the deci-
sion algorithm. All the { comparisons can be done
with O(£) processors in O(1) time if the parameter
T is given. Hence, the associated parametric search



algorithm runs in O(nlog{) time. (Recall that the
decision algorithm is the O(n) minimum-weight path
algorithm.)

We postpone the description of Step 2. Assume that
m has already been computed. Next, we describe steps
3 and 4.

Step 3: The key fact is that the computation exe-
cuted in this substep is independent of the parameter
7. Let A be the matrix of the edge weights between
the vertices vie, Vgeq1,-..,V(it1)e- Let & be the vec-
tor of weights of the minimum-weight paths from v
tO Vie, Viga1s- - -, V(i+1)e anchored in [1,tf] in G(7), for
any 7 € (71, 7r). This vector is computed in previous
stages. Let & be the vector whose j-th entry is the
weight of the minimum-weight path from v; to v; that
contains K(tf) links, if such a path exists, and infin-
ity otherwise. Let T2 be the vector whose j-th entry
is the weight of the minimum-weight path from v, to
v; that contains K (#{) + 1 links, if such a path exist-
s, and infinity otherwise. From Lemma 11 it follows
that the noninfinity entries of Z; and &, are contigu-
ous. From Lemma 12 it follows that these paths have
either K'(t£) or K(tf) + 1 links. Thus, the vector ¥ is
the entrywise minimuny of #; and 2.

Consider the semiring defined over the reals with
the operations {min,+}. For an { x ¢ matrix A and
an { vector Z, the product @ = A% is defined as ws =
minzg 2. ¢{As; + zi}. The following proposition is
obvious from the definition:

Proposition 13 For a given h, all candidate h-link
paths from vy 10 Vi, ..., V(iq1)e are obtained by com-
puting min{AP-K@O g, AR-K(O-1z,3}

The above operation is done independently of the
key parameter 7, since we compare paths with the
same number of links. Hence, for any given m, we can
find all candidate h-link paths for h = K (¢0), K (¢f) +
1,..., K(t¢) +m in 2m multiplications of an £ x £ ma-
trix by £ vectors. (Note that the computation can be
done as a sequence of matrix-vector multiplications
so that no multiplication between matrices is done.)
Since the matrices in all these products have the con-
cave Monge property, each product can be computed
in O({) time using the matrix search algorithm of [1].

Step 4: In this step we have to compare the can-
didate h-link paths from vy to vj, for K(#) < h <
K((i + 1)f) and ¢ < j < (i + 1)¢, and find the
minimum-weight path among them at 7 = 75;. These
comparisons-depend on the parameter 7. Here, we ap-
ply the parametric search paradigm. To do the compu-
tation efficiently we use the unimodality of the weights

of the candidate paths as given in the following Lem-
ma.

Lemma 14 For 1 < h < n.
(& + 1)L, let W,

and for t < j <
(7) be the weight of the candi-

date h-link path from vy to vj. Then, Wy(j) <
max{Wry1(5), Wh-1(5)}-
Proof: Omitted in this version. ]

Fix some t{ < j < (t+ 1){. Lemma 14 implies that
the weights of the candidate h-link paths from v, to v;
have no local maxima with respect to the link number.
This implies that any local minimum must be also a
global minimum. Consequently, given 7,,; we can find
the minimum-weight candidate path to v; sequential-
Iy using binary search in O(logm) time. Kruskal [10]
showed that this search can be done in constant time
using m processors. Thus, to find the minimum for all
t£ < j < (t+ 1){ in constant time we need m{ proces-
sors. It follows that without the knowledge of 7, this
can be done using the parametric search paradigm in
O(mL + nlog(mt)) time. (Recall that the decision al-
gorithm is the O(n) minimum-weight path algorithm:)

We conclude with the description of Step 2.

Step 2: We find an m in the range [(K((i + 1)¢) —
K (t0)), 2(K((i + 1)¢) — K(¢£))] by a variant of binary
search. Lemma 14 implies that the minimum-weight
path from vy to vgq1ye in G{Topt) is given by the s-
mallest h that locally minimizes the weight of the can-
didate A-link path to v(,41ye. Thus, it is easy to verify
whether the path to w41y, is indeed the right one.
Based on this observation we “guess” m, and try to
verify our guess. Initially, we set m = 3 and execute
the steps 3 and 4. If the minimum-weight candidate
path found by the algorithm is a local minimum, then
the path is the true minimum-weight path. Other-
wise, we roble m and repeat the process. The time
complexity of the whole process is dominated by the
time complexity of the last iteration.

Theorem 15 The minimum k-link diameter path of
a concave Monge DAG is found in O(n\/I*Iogn +
nlogn) time.

Proof: We concentrate at last iteration of Step 2.
The total amount of time required for Step 1'in the
n/L stages is O(n?/{ - log £). Summing over all sta.ges

Step 3 requires o) (E"/e (K((t+ 1) — K(t)) - )
O(ke). Step 4 ,
quires O (E"M (K ((t +1)¢) — K(t8)) - ¢ + nlog n) =

re-




O (kL +n?/t-log n). We conclude that the algo-

rithm requires O(n?/f - logn + k€). Setting { =
min{n+/logn/k,n) implies the theorem. u}

4 Applications

The minimum k-link pathin a concave Monge DAG
has several applications. Given below are five such
applications to geometric path finding (App. I and II),
interval graphs (App. III), data optimization (App.
IV), and data compression (App. V):

Application I. Computing the maximum area k-
gon and the maximum perimeter k-gon that are con-
tained in a given convex n-gon. (See Figure 2.) For
this problem Boyce, Dobkin, Drysdale and Guibas [6]
provided an O(nklogn) time algorithm that was lat-
er improved by Aggarwal et al. [1] to O(nk + nlogn)
time. Boyce et al. [6] showed that if the maximal area
k-gon containing a fixed vertex is given, then the max-
imal area k-gon is found in O(nlogn) time using the
interleaving property. Aggarwal et al. [1] showed that
the distance matrix involved in computing the max-
imum area inscribed polygon has the convex Monge
property. Since finding the maximum path in convex
DAGs is equivalent to finding the minimuin path in
concave DAGs, we can apply our algorithm to achieve
an O(n+/klogn+nlogn) time algorithm for the prob-
lem. )

Application II. Computing the minimum area k-
gon that is the intersection of k¥ half-planes out of n
half-planes defining a given convex n-gon. In other
words, computing the minimum area circumscribing
polygon touching edge-to-edge. (See Figure 2.) This
problem is the dual of the previous problem, and is
thus solved in the same time complexity.

O®

Figure 2: Méx—area inscribing polygon and Min-area in-
scribed polygon

Aplﬁlication IIL. Let H be an interval graph gen-
erated by m weighted intervals on n terminals. Given
k, find k cliques of H so that the sum of the weights of

intervals in the union of the cliques is maximized. (See
Figure 3.) Let S be a set of m intervals whose end-
points are integers in the closed interval [1,n]. This
problem can be reduced to the problem of finding a
minimum (k + 1)-link path in a DAG with n + 2 n-
odes as follows. Define a complete weighted DAG on
the vertices {0,...,n + 1}, where the weight of edge
(4,4), for i < j, is the total weight of the intervals
in S contained in the (open) interval (i,;). Consid-
er a (k + 1)-link path ip = 0,i1,..., 0, ike1 = n + 1.
Note that the total weight of this path is the sum of
the weights of all intervals that do not contain any of
the points in {i,...,#}. Thus, finding such a path of
minimum-weight is equivalent to finding k points such
that the total weight of the intervals containing these
points is maximized. It is easy to see that the de-
fined DAG satisfies the concave Monge property, and
that each edge weight can be computed in O(logn)
time after O(mlogn) time preprocessing. Thus, we
can obtain an O(mlogn + n/klognlogn) time algo-
rithm for this problem. See [3] for a way to reduce the
complexity to O(m + n(/klogn + logn)loglogn) by
using a somewhat sophisticated data structure.
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Figure 3: k maximum weight cliques of interval graph

Application IV. Given a weighted alphabet of size
n, we want to find an optimal prefix-free binary code
(length-limited Huffman Code) for the alphabet with
the restriction that no code string be longer than
length k. Larmiore and Hirs¢hberg [12] gave an O(nk)
time algorithm for this problem. A length-limited
Huffman code can be represented by a height-limited
Huffman tree, defined as follows. Consider a bina-
ry tree storing n data {zl, 22,...,%n} at leaves. The
probability p; that the data z; is queried is known for
each i. The Huffman tree is the tree with best aver-
age query time. The height-limited Huffman tree is
the tree with best average query time under the con-
dition that the height is no more than a given param-
eter k. Larmore and Przytycka [13] showed that the
Huffman tree problem is reduced to the Least Weight
Subsequence problem in a concave Monge array. It is
not difficult to see that the lengt;h-limited problem is
reduced to a minimum k-link path in a graph whose
weights are given by the matrix defined in [13]. Thus,
our algorithm can be applied to solve the problem in



O(n/kTog n 4 nlogn) time.

Application V. Let f : {z;,22,...,2,} — R be
a real valued function, where R is the set of the real
numbers and z; < 29 < --- < &, are real numbers.
Fix k and consider a sorted set of real numbers Z =
{z1,22,...,2,} and a mapping ¥ : {1,2,...,n} —
{1,2,...,k}. The pair (Z,¢) is called a quantiza-
tion, and the sum Y., f(#:)(zi — zy(;))? the error
of the quantization. Optimal quantization is the one
which minimizes the error. It is easy to see that
¥~1(7) becomes an interval for each j = 1,2,...,k.
Quantization can be regarded as a data compres-
sion of n data items into k items, as illustrated in
Figure 4. Wu [16] showed that computing optimal
quantization can be reduced to finding a minimum-
weight k-link path as follows: For an interval I, define
the weighted mean u(I) = 3, o; f(#s)2s/ 2 er F(25)-
Wu [16] showed that the mapping ¢ in the opti-
mal quantization is a non-decreasing function, and
that z; = p(y¥=1(j)), for j = k. Let w(l) =
Yser f(@s)(ms — u(I))?. Then, the error function co-
incides with Z§=1 w(¥~1(j)). Hence, the function ¢
represents the minimum k-link path in a DAG with
nodes {0,1,...,n}, where the edge weight of (i,7) is
w({i;j]). It is easy to see that this graph satisfies
the concave Monge property, and that the values u(I)
and w(I) can be computed in constant time after pre-
computing the prefix sums of z;, f(=;), f(@i)z;, and
f(z:)z?. Hence, we obtain O(n/klogn+nlogn) time
algonthm This improves the result of Wu [16] by an

O(y/k/logn) factor.
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Figure 4: Quantization (k=4)
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