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The mazimum independent set problem is one of the fundamental problems of combinatorial optimization.
The most important case for which the problem remains NP-complete is when the maximum vertex degree is bounded by
a constant. We analyze the simple and natural minimum-degree Greedy algorithm and obtain several improved bounds:
(A + 2)/3 performance ratio on graphs with maximum degree A, (2d + 3)/5 ratio on graphs with average degree d,
and a Oflog® n) parallel algorithm attaining these bounds on constant degree graphs. Finally, we introduce a generally
applicable technique for improving the approximation ratios of independent set algorithms. We use this technique to
obtain a O(A/loglog A) ratio for large values of A, for the first o(A) ratio.
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1 Introduction

An independent set in a graph is a collection of ver-
tices that are mutually non-adjacent. The problem of
finding an independent set of maximum cardinality is
one of the fundamental combinatorial problems. Un-
fortunately, it is known to be N'P-complete, even for
bounded-degree graphs, and therefore no efficient algo-
rithms are in sight.

Given the hardness of exact computation, we are in-
terested in approximation algorithms for the indepen-
dent set problem in bounded-degree graphs. In par-
ticular, we seek an algorithm with a good performance
ratio, which is a bound on the maximum ratio between
the optimal solution size (i.e. the independence num-
ber) and the size of the solution found by the heuristic.
The study of such algorithm has become increasingly
more prevalent.

One of the most ubiquitous heuristic methods for this
problem is the greedy algorithm. It iteratively selects
a vertex of minimum degree and deletes that vertex
and all of its neighbors from the graph, until the graph
becomes empty. As a delightfully simple and efficient
algorithm, the Greedy method deserves a particularly
detailed analysis. It is already known to possess several
important properties: attaining the Turdn bound, and
its generalization in terms of degree sequences [8]; al-
most always obtaining a solution at least half the size
of an optimal solution in a general random graph [3];
yielding a non-trivial graph coloring approximation [14]
when applied iteratively; and finding optimal indepen-
dent sets in forests, series-parallel graphs, and cographs.
While Greedy has been frequently studied before, the
true extent of its performance ratio has apparently not
been determined previously. The best ratio previously
claimed was A — 1 on graphs with maximum degree A
[22] and d + 1 on graphs of average degree d.

Our main result is that Greedy is surprisingly much
better than previously expected. We obtain a tight per-
formance ratio of (A + 2)/3 in terms of maximum de-
gree, and an asymptotically optimal bound of (d+2)/2
in terms of average degree. It comes as a considerable
surprise that this simple, linear time method performs
as well as it does. In the process, we give a natural ex-
tension of Turdn's bound that incorporates the actual
independence number of the graph, and give a general,
tight expression of the size of the solution found as a
function of the independence number and the number
of vertices. Section 2 contains the detailed analysis of
Greedy.

We further analyze Greedy in combination with a
fractional relaxation technique of Nemhauser and Trot-
ter [17, 13], in subsections 2.5 and 2.6. We use it to
improve the best performance ratio known in terms of
average degree to (2d+3)/5, but show it to be of limited
use in terms of maximum degree.

We introduce in section 3 a new technique that in-
volves removing small dense subgraphs. This technique
is a general schema that can potentially be applied to
any approximation algorithm for this and related prob-
lems. By removing all cliques of fixed size from the

graph, we can either find a larger solution or obtain a
better upper bound on the size of the optimal solution.
By implementing a graph theorem of Ajtai et al [1],
we can obtain by this scheme a performance ratio of
O(A/[loglog A), which is the first o(A) ratio. Using
different component algorithms, we can also obtain a
practical method that improves the best performance
ratio for graphs of intermediate maximum degree.

Finally, in section 4 we show that the performance
ratios proved for Greedy in bounded-degree graphs can
also be obtained by a simple parallel algorithm. Our
analysis of Greedy suggests that globally minimum de-
gree is not required, in fact, any vertex satisfying the
locally evaluated property “degree of vertex is at most
the average of its neighbors’ degrees” can be selected.
This is a simple local rule that can be implemented ef-
ficiently both in parallel and distributed.

1.1 Related results

Until very recently, the best ratio claimed for any ap-
proximation algorithm for independent sets in bounded
degree graphs was A/2 [13]. Suddenly, several develop-
ments took place.

Berman and Fiirer [4] obtained significantly improved
performance ratios of (A+3)/5+¢ and (A+3.25)/5+¢
for even and odd degrees respectively. Their method
is a type of a local improvement method. It’s draw-
back is the astoundingly huge complexity of n325%"
which for typical solution quality means on the order
of n2'". While some improvements in the complexity
are possible [12}], even a n% complexity appears out of
reach. Khanna et al. {15] considered a very simple (and
fast) local improvement method. Using their analysis,
it is easy to show that the performance of that algo-
rithm when complemented with Nemhauser-Trotter is
(A +2)/3, same as Greedy.

The results covered here are combined from [11] and
[12]. Also reported in [12] is further analysis of local
improvement methods. We can obtain a (A+3)/4 using
time that is linear in n if A is a constant. It can be
improved to (A +2)/4 + ¢ using O(A%/*n) time.

In spite of these related results, we believe the results
on Greedy reported here hold their own, given the al-
gorithm’s simplicity, superior complexity, and general
applicability.

In sparse graphs, the only result we are aware of is a
(d+1)/2 performance ratio of Greedy with Nemhauser
and Trotter’s method [13]. No previous parallel ap-
proximation algorithms were known to us, except the
A and § + 1 ratios that can be obtained from parallel
implementations of Brooks’ (see [18] for references) and
Turan’s theorems [10], respectively. )

1.2 Notation

‘We use fairly standard graph notation and terminology.
For the graph in question, usually denoted by G, n de-

‘notes the number of vertices, A the maximum degree,

d the average degree, o the independence number (the
size of the largest independent set), and 7 the indepen-



dence fraction (i.e. a/n). For a vertex v, d(v) denotes
the degree of v, and N(v) the set of neighbors of v.
For an independent set algorithm A, the performance
ratio of A is defined by
_ a(G)
4= ™8 4G)
where A(G) is the size of the solution obtained by algo-
rithm A on graph G. We particularly consider two al-
gorithms: Greedy, for short G, and the combination of
Greedy and Nemhauser-Trotter, denoted by Gr + NT.
Gr is also a shorthand for Greedy(G).

2 Analysis of Greedy

The Minimum-Degree Greedy algorithm, or Greedy for
short, operates as follows. It executes a sequence of
reductions, each of which corresponds to an iteration,
where a vertex is selected and added to the solution,
and then it and its neighborhood are removed from the
graph. It stops when the graph has been exhausted and
outputs the set of selected vertices.

Greedy(G)
I—9
while G # 0 do
Choose v such that d(v) = min d(w)
weV(G)
I—TuU{v}
G — G~ {v}UN(@)
od
Output T
end

The algorithm can be implemented in time linear in
the number of edges and vertices, independent of de-
gree. This involves maintaining a multiset of small non-
negative integers (the degrees of the vertices), along
with the associated vertex number, under the opera-
tions of unit decrease, deletion, and finding the mini-
mum. This could be implemented by an array of linked
lists, one for each degree value, along with an appropri-
ate array structure to provide for direct referencing.

We use the following notation for the operation of
Greedy. Let ¢ be the number of reductions performed
by Greedy and let di,ds,...,d, be the degrees of the
vertices selected. The number of vertices removed in
the i-th reduction is thus d; + 1. The main property
of the algorithm that we use in our analysis is that the
sum of the degrees of the vertices removed in the i-th
reduction must be at least d;(d; + 1). This allows us to
lower bound the number of edges removed in each step.

2.1 Relative size of Greedy solutions

We start by generalizing the constructive version of
Turén’s theorem by pushing the independence ratio into
the expression.

1472

" Theorem 1 Gr > ———~ _p.
d+1+71

Proof.  Counting the number of vertices and edges
deleted in each reduction gives us the necessary inequal-
ities to prove the claim.. The removal of vertices in each
reduction partitions the vertex set, yielding

i
S(di+1) = n (1)
i=1
Fix a maximum independent set and let k; be the
number of vertices among the d; -+ 1 vertices deleted in
reduction 7 that are also contained in that independent
set. Then,

;tlk,- =a (2)

Since Greedy always picks a vertex of minimum de-
gree, the sum of the degrees of the vertices deleted in
step 7 is at least di(d; 4+ 1). Note that no edge can have
both its end points in the maximum independent set.
Then, it can be shown that the number of edges deleted
in step 7 is at least (d‘; 1) + (’;‘) Hence,

d ¢ d;+1 ki

Zn = > .

= (4745 o
We now add (1), (2) and twice (3), and apply the Cauchy-
Schwarz inequality to obtain

i
(d+14+7)n > Sdi+ 124k > (L4722t
i=]

Rearranging the inequality, we obtain the desired bound
on t. . ]

We now turn our attention to bounded-degree graphs,
using techniques similar to the preceding proof to obtain
bounds parametrized by the maximum degree A.

1-7(1-1)

Proof.  The proof follows the proof of the preceding
theorem with some extensions. In the i-th step d; + 1
vertices and all edges incident on them are deleted. Of
these edges, let z; have only one end in these d; + 1
vertices; the remaining edges have both ends among
the d; + 1 vertices: of these, let y; of these have one
end in the independent set and one outside, and z; have
both ends outside. Then we have

T+ 2y +2z) > di(di+ 1), (4)
% < kldi +1-k), (5)

Multiply (5) by —1 (reversing the inequality) and add
it to (4) to obtain

Z; +yi+2zi 2 dl’(di + 1) - kg(di-f-l - k,)

(d‘;1)+(d‘;'1) — ki(di +1~ k)

() (1)

Since the number of edges deleted in the i-th step is
precisely @; +y; + 2;, we have the following extension of

(3):
e B (e

Theorem 2 Gr >

v

I

=1



We also count the total degree of vertices outside the
maximum independent set, which entails counting edges
incident on the independent set vertices once but those
fully outside the independent set twice.

¢
(n—a)A > > z+|E| (7)
=1
Now add twice (6) and twice (7) to obtain

t

2(77.-0!)A > Z d,(d.+l)+k,(k,—1)+(d,+1—k,)(d‘—k,)
i=1

To simplify the right hand side, we add YL, d;i + k: +

(d; — k;) and compensate for this by adding 2n to the
left hand side (invoking (1)). Then,

i
20(n—a)+2n > 3 (di+ 17+ K7+ (di+1—k)% (8)
i=1
Using (1), (2) and the Cauchy-Schwarz inequality, we
obtain '

(A(L-7)+27)n > L4724+ (1 - 7)Yn?/t.

The claim follows from this. |

2.2 Performance guarantee

The following bound on the performance of Greedy on
sparse graphs follows immediately since the ratio of the
independence number 77 to the bound in thm. 1 is max-
imized when 7 = 1.

d+2
Corollary 3 pgr < -—;—-—

For bounded-degree graphs, the general expression
obtained in thm. 2 almost — but not quite ~ yields our
main claim about the performance ratio of Greedy. We
omit the proof.

Theorem 4 pe- < (A+2)/3.

2.3 - Limitations

The performance ratios proved above cannot be im-
proved.

Theorem 5 pgr > —A—;—z- — O(A%/n), for A > 3.

Proof. We give a detailed construction for A = 1 (mod 3).

We construct a graph, parametrized by integer | > 2,
that consists of a chain of repetitions of a pair of sub-
graphs: a clique on [ vertices followed by an indepen-
dent set on1 vertices. The two subgraphs are completely
connected, while the connections between the indepen-
dent set and the clique of the following pair miss only
a single matching (i.e. each vertex is of degree [ — 1).
The chain ends with one additional clique.

The essential property of the graph is that the degree
of the independent set vertices equals the degree of the
vertices of the first clique of the chain. We can therefore

assume that Greedy will pick one of the vertices from
the first clique and remove the remaining vertices from
the pair, reducing the graph to an identical chain with
one fewer pairs. Thus, Greedy selects one vertex from
each pair, plus one from the final clique, for a total of
(n —1)/2l + 1. The optimal solution contains all the
independent set vertices for a total of (n — 1)/2. This
yields a ratio of

PGr > {— 212/17,

To relate that to the degree measures, we have that

A =3l-2 and
d < 2 ((;) +P+1(1 - 1)) /21
_ 5l-
T T2
Thus, A2
+

Por 2 —5—= o(A*/n), 9)
and

per > 2—‘%‘“—3 — 0@ /n), (10)

even when 7 < 1/2.
The construction for A = 0,2 (mod 3) is similar, but
less regular, and is omitted. |
We can also show that the bound on the performance
ratio in terms of average degree (Corollary 3) approaches
optimality as d gets larger. The proof is omitted.

d+2
Theorem 6 pg, > ~j-—— ~0(1/4d).

The graph for which this ratio is attained consists of
a chain of pairs of subgraphs as in the previous example,
with each clique reduced to a single vertex adjacent to
several of the following single-vertex cliques. We omit
the detailed proof.

Variations of the above constructions show that the
bounds of thms. 1 and 2 are tight for a range of val-
ues of 7. This involves varying the size of the cliques
relative to the size of the independent sets, possibly by
connecting each independent set to several subsequent
cliques. We omit the details.

2.4 Nemhauser-Trotter

A method of Nemhauser and Trotter [17] for the frac-
tional vertex cover problem has been used successfully
to obtain better approximations for both the vertex
cover and the independent set problems on bounded-
degree graphs. The time complexity of this method is
O(n®? +|E|).

Their method yields an optimal solution to the linear
relaxation of the integer problem where each variable,
representing whether a node is in the independent set
or the vertex cover, has value from {0,1,1/2}. This
corresponds to partitioning the vertices into three sets
R, P, and Q with the following important properties:

1. Some maximum independent set of G contains all
the vertices of R and none of the vertices in P.



2. The independence fraction of the subgraph H in-
duced by @ is at most 1/2.

This in effect means that the method can be used as
a preprocessor for approximation algorithms; since the
portions R and P are solved optimally, it suffices to
focus our attention on the graph H where the indepen-
dence number is guaranteed to be small.
This immediately implies, for instance, that the n/(A+

1) lower bound on the size of the Greedy solution along
with the above upper bound on the independence num-
ber yields a (A +1)/2 performance ratio for the combi-
nation of Greedy and Nemhauser-Trotter methods. A
stronger bound follows immediately from thm. 2.

Corollary 7 pgronr < A;—_Z

It follows from (9) that this ratio is essentially tight
for A =1 (mod 3). That is, if the only property used
about the Nemhauser-Trotter method is that it allows
us to assume that the independence fraction is at most
half, then we can do no better than we have shown. As
we have not analyzed the method in detail, it is possible
however that it will have other properties that inhibit
examples where Greedy has poor performance.

We can improve on this bound slightly to (A+2)/3~
1/(3A 4 2) when A = 0,2 (mod 3). For instance, we
have a tight ratio of 3/2 when A = 3. Also, for A =5
we get a ratio of 16/7 a~ 2.286, down from 2.33, while
there is a graph that forces a ratio of 2.27. We omit the
details.

2.5 Average degree

Once Nemhauser-Trotter has been applied, the average
degree may have changed for the worse and we can-
not immediately apply the bounds proved on Greedy.
Nevertheless, a closer look shows that the bounds will
complement each other as hoped for. Hochbaum [13],
showed that the Turdn bound on Greedy can be comple-
mented with the 7 < 1/2 promise of Nemhauser-Trotter
to yield a performance ratio of (d ++1)/2.
Our bound on Greedy, when complemented by Nemhauser-

Trotter, yields a considerably performance ratio. The
proof is similar to that of Hochbaum and is omitted.

2d+3
5
This again is tight for A = 1 (mod 3), from (10).

Theorem 8 pgrynr <

3 Subgraph Removal

We present a generally applicable method for improving
the performance ratio of independent set approxima-
tion algorithms. Any algorithm whose performance ra-
tio decreases as the independence fraction of the graph
decreases, can be enhanced using this approach, with
greater improvements as the maximum degree gets larger.
The idea comes from the observation that graphs
without dense subgraphs, particularly cliques, contain

\ —69—

provably larger independent sets than graphs do in gen-
eral, and moreover these larger solutions can be found
effectively. We remove all cliques of certain size from

the input graph and apply the improved algorithms on

the remaining graph. This will be advantageous as long
as the input graph contains few disjoint cliques; if it
contains many disjoint cliques, the independence num-
ber must be low and our performance ratio will improve
in either case. This idea was previously used to approxi-
mate the Independent Set problem in general graphs [5].

This schema uses as subroutine two types of algo-
rithms: an approximation algorithm for general graphs,
and algorithms that find large independent sets in k-
clique free graphs with possibly different algorithms for
different values of k. Except for the case of triangle-
free graphs, we consider here only the case of Greedy.
Better algorithms of either type translate immediately
to better performance ratios. In fact, we have recently
improved the best performance ratios known for mod-
erate to large values of A [12] using better algorithms
for clique-free graphs.

We first illustrate this technique in its simplest form,
when removing disjoint 2-cliques (i.e. 2 matching). The
next step is to consider removing triangles, where we
can use an effective algorithm of Shearer. We then
present the general schema, and prove improved ratios
for Greedy in the context of this scheme.

Removing edges The following simple idea has also
been considered in [19] and [4]. We use it to get a linear
time algorithm with a good performance ratio in terms
of average degree.

Find an independent in two ways, and retain the
larger one.. Ome way is to find a maximal matching
with m edges, and use the complement - the vertices
not appearing in the matching — as an independent set
approximation. The size of this set is n — 2m which is
at least 2a — 7, since the independence number « is at
most n — m. Hence, the performance ratio is at most
37—~ The other way is to use the Greedy algorithm,

with a performance guarantee of (Zﬁ“:: I (see thm. 3).

Observe that the former ratio is monotone decreasing
with 7 (7 > 1/2), while the latter one is monotone
increasing. A close study shows that the value of 7 for
which the ratios agree is at most %+'2%%' If we plug that
into the higher ratio, that of the_maximal matching,
this yields a performance ratio of —2—43\;&5-. Hence, in fully
linear time we come within an additive 0.3 of the (2d +

3)/5 bound in sec. 2.5 that requires Q(n?) time.

3.1 AEKS

Ajtai, Erd8s, Komlés and Szemerédi [2] proved the fol-
lowing result about K, free graphs.

Theorem 9 (AEKS) There exists an absolute constant
c; such that for any K,-free graph G,

log((log d)/¢)
a(G) > o ——n.



‘We have obtained an algorithm AEKS that constructs
such an independent set in polynomial time, by deran-
domizing the parts of the proof where probabilistic ex-
istence arguments are used. For lack of space, we omit
its description.

We then use the following simple algorithm to ap-
proximate independent sets. An independent set is maz-
imal (MIS) if adding any further vertices to the set vio-
lates independence. An MIS is easy to find and provides
a sufficient general upper bound of n/(A + 1).

AEKS-SR(G)
G' — @ — CliqueCollection(G, ¢; loglog A)
return max(AEKS(G'), MIS(G))

end

Theorem 10 The performance ratio of AEKS-SR is
O(A/loglog A).

Proof. Let k denote c;loglog A, and let n' denote the
size of V(G'). The independence number collects at
most one from each k-clique, for at most

a £ nlk+n < 2max(n/k,7')
while the size of the solution found by AEKS-SR is at
least

k

AEKS-SR(G) 2 max(z—m, ) 2 ZkTi

The ratio between the two clearly satisfies the claim. N

Observe that the combined method runs in polyno-
mial time for A as large as n'/108'8",

3.2 Generic Clique Removal Schema

We now give the general algorithm, indexed by k. The
algorithm is really a schema that depends on what sub-

ordinate methods are being used. One is algorithm

General-BDIS-Algorithm used to find independent sets in
general (bounded-degree) graphs. Also we need meth-
ods to find independent sets in £-clique free graphs, pos-
sibly one for each value of £ > 3. Finally, observe that
S defined below consists of a collection of vertex subsets
that are mutually disjoint and each induce a clique of
size £.

CliqueRemoval,(G)
Ap « General-BDIS-Algorithm(G)
for £ = k downto 2 do
S « CliqueCollection(G,£)
G~ G- S8
At — K, -free-BDIS-Algorithm(G)
od
Output A; of maximum cardinality
end

max(n/k,n').

3.3 Effective method for moderately
large maximum degree

While the clique removal method in combination with
AEKS yields good asymptotic performance ratios, A
must be quite high for the gained loglog A factor to
overcome the large constants involved.

‘We now turn our attention to practical methods that
can benefit from the clique removal schema. This in-
volves an algorithm of Shearer [20] for 3-clique-free graphs,
and a simple local search algorithm for other k-clique-
free graphs as well as for use as the general BDIS algo-
rithm.

2-opt Khanna et al. {15] studied a simple local search
algorithm that we have named 2-opt. Starting with
an initial maximal independent sets, it tries all possi-
ble ways of adding two vertices and removing only one
while retaining the independence property. We say that
a triple (v1, vy, u) is a 2-improvement of an independent
set [ iff vertices vy, v, are outside of I, u is in I, and
adding the former two to I while removing the latter
retains the independence property. Since [ can be as-
sumed to be a maximal independent set, it suffices to
look at pairs adjacent to a common vertex in I.

2-0pt(G)
1 — MIS(G)
while (3 2-improvement (v, vg, u) of I)
I TU{v, v} - {u}
return [
end

Using proper data structures, the algorithm can be im-
plemented in time O(poly(A)n) time.
The following was shown by Khanna et al [15].

1
Lemma 11 2-opt > +Tn

T A+2

We can get improved bounds for k-clique free graphs.

Lemma 12 On a k-clique free graph G,

2
3 > 2 _n
2-opt(G) > A"

Shearer Shearer [20] proved the following theorem,
improving a previous result of Ajtai, Komlés and Sze-
merédi [2].

Theorem 13 (Shearer {20]) Let f,(d) = (dlog,d —
d+1)/(d—1)?, f,(0) = 1, fu(1) = 4. For a triangle-
free graph G, a(G) > f,(d)n.

Moreover, he gave the following algorithm that attains

the claimed bound.

Shearer(G)
A—0.
while G # @ do
Pick a vertex v of degree d, such that
(do+1)fo(d) < 14+(Ady+d—2 ey dw)) £1(3)
A« AU {v}



G — G —(N(v) U {v}).
od
return A.
end

We shall only need the obvious corollary that Shearer(G) >

f(A)n = n(log A)/A.

Using an appropriate data structure to maintain the
f-values of the vertices, the algorithm can be imple-
mented in time O(poly(A)n). In fact, the claim is also
obtained in fully linear time by a simple randomized
greedy algorithm, that chooses a random non-adjacent
vertex in each step.

To improve the approximation further, we apply the
method of Nemhauser and Trotter on each incarnation
of G. That will allow us to assume that nothing will be
left after the edges (2-clique) are removed.

We obtain the following explicit, if less than com-
pact, bound on the performance ratio. Hy is the k-th
Harmonic number.

Theorem 14 CliqueRemovaly, using 2-opt and Shearer
attains a performance ratio of at most

[A k 1 3

T2t e = 2+ D) (k4 D)

2 2 35,(8) 2

for graphs of mazimum degree A > 5.

4 Parallel and Distributed Al-
gorithm

The Greedy algorithm stipulates that in each step a ver-
tex of globally minimum degree be selected, added to
the solution, and removed from the graph along with its
neighbors. As such, it looks impossible to parallelize,
as well as offering little freedom for heuristic improve-
ments. Fortunately, this is one of the delightful cases
when the analysis guides us towards the design of better
and/or more general algorithms.

We observe that the selection of a vertex is prescribed
by a simple local rule and that a constant fraction of
the vertices in a bounded-degree graph satisfies this
rule. This has some interesting implications. For one,
it opens up the possibility of the design of heuristics
using secondary selection rules that retain the perfor-
mance ratios of thms. 1 and 2." Another is a straight-
forward derivation of a parallel as well as a distributed
approximation algorithm attaining these performance
ratios.

From the proofs of thms. 1 and 2, we find that a
sufficient criteria for the selected vertex v is that its
degree be less than the average of its neigbors’ degrees.
That is,
< Luwen(y) d(w)

d(v) < ) . (11)

A heuristic may choose any ordering that obeys the
above property. Vertices can be selected in parallel as
long as the selection of one doesn’t affect the above cri-
teria for the other. In particular, vertices with disjoint

and non-adjacent neighborhoods (i.e. of distance three
or greater) can be selected and processed concurrently.

This suggests a natural approach to a parallel algo-
rithm:

1. Find a set W of vertices satisfying (11).

2. Form a graph H on vertex set W, with edge be-
tween vertices that may interact with respect to the
Greedy reduction (i.e. of distance three or less).

3. Find a maximal independent set M IS in H.

4. Perform the Greedy reduction on these vertices in
parallel. Namely, add the vertices M IS to the so-
lution, and delete them and their neighbors from
the graph.

5. Repeat from step 1 until the graph is empty.

The following lemma due to Alon and Szegedy (pri-
vate communication) shows that a significant fraction
of the vertices must have the above property simulta-
neously.

Lemma 15 In a graph on n vertices with mazimum
degree A, at least K;ﬁn vertices satisfy property (11).

Proof. Let D, denote d(v)? — T yep(y) d(w). We shall
show that

4
> > —
Iir[D,, >0 > EWL
which implies the lemma. As observed by Shearer [20],
E,[D,} = 0. The value of D, is bounded above by
d(v)(A — d(v)) < A%/4, and since it is integral, it must
differ from zero by at least one when negative. Thus,

=1(1 - Pr[D, > 0]) + A%/4-P1[D, > (] > 0.
The claim now follows. | ]

Theorem 16 There is an EREW parallel algorithm that
finds an independent set of size and performance satis-

fuing theorems 2 and 4 in time log* n min(poly(A)logn, A%)

USINg N Processors.

Proof. Each vertex added 1o the solution will satisfy
property (11) regardless of the order of removal of the
simultaneously chosen vertices. Hence, the results of
the theorems apply to this algorithm.
" Let us now estimate the time complexity, starting
with the number of iterations. The first step reduces
the number of vertices by a factor of at most O(A2), as
per the lemma above. The number of vertices deleted in
the fourth step, which are the selected vertices and their
neighbors, is at most another A? factor smaller. Thus at
least n/A* vertices are removed from the graph in each
step, so the number of rounds is bounded by A* logn.
Also notice that for any vertex in the graph, some vertex
of distance at most A gets eliminated in each round.
Hence the number of rounds is also bounded by Al
The only non-trivial step in each round is the compu-
tation of a maximal independent set (MIS) of the graph
H. An algorithm of Goldberg et al. [9] finds an MIS



in time O(A(H)log A(H)(A(H) +1og” n)) using linear
number of processors. The combined time complexity
is therefore bounded by O(A7log A(A® +log* n) logn).
The processor count is linear in n, and considering the
total amount of work can probably be made some poly-
nomial of A smaller. |

The algorithm given above also satisfies the criteria
of a distributed algorithm.

5 Comparison

‘We compare the ratios obtained by the practical version
of the clique removal method of sec. 3, the expensive lo-
cal improvement method of Berman and Furer [4], the
more efficient version of [12], and the Greedy algorithm
of sec. 2. The methods offer a wide range of perfor-
mance/complexity tradeoffs, with strengths in different
regions

A Clique rem. {4} (12] Greedy

10 3.54 2.60 2.75 4.00
33 8.92 7.25 8.50 11.66
100 23.01 20.60  25.25  34.00
1024 201.57 205.40 256.25 342.00

8192 1535.20 1639.00 2048.25 2731.33
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