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We are given a finite set of disjoint regions in the plane. We wish to cover all the regions by unit squares, and
compute a path that visits the centers of all the unit squares in the cover. Our objective is to minimize the length
of this path. The problem arises in the automatic optical inspection of printed circuit boards and other assemblies.

We show that a natural heuristic yields a path of length at most a constant times optimal, whenever the
problem of covering the regions by the minimum number of unit squares can be approximated to within a constant.
We consider a generalization in which the regions may be covered by squares of different sizes, and for each input
region we are given an upper bound on the size of the permissible square. This corresponds to a board inspection
problem in which the camera may “2zoom”, and some parts are to be inspected with greater resolution than others.

We show that a simple extension of our heuristic is provably good in this case as well.



1 Introduction

In the automatic optical inspection of printed circuit boards [5, 6, 7], a camera is positioned over the
board, and is free to move in a plane parallel to the board. As it moves, it can take photographs of the
board at various positions, and compares each photograph to a corresponding “master photograph”. By
taking a number of such photographs and comparing them to the masters, the board can be inspected for
defects, violations of design rules [11}, and mounting and soldering condition of components on the board
[5, 7]. An important consideration in this automated process is the time taken to perform the entire
inspection sequence. This time is proportional to the total distance moved by the camera, as well as the
number of photographs taken (since each photograph takes a positive amount of time). In this paper we
consider this problem, together with a generalization in which some parts may have to be photographed
with greater resolution than others (i.e., covered by smaller squares). Due to lack of the space, we omit
almost of all proofs in this paper and desribe them in the full version of this paper [9].

1.1 The Model

The input to the traveling cameraman problem (TCP) is a set of n disjoint regions in the plane, each
of which we call a feature. The output is a set of axis-parallel unit squarés whose union contains every
feature, and a path through the centers of these squares. Our objective will be to minimize the length
of this path; in Section 4 we discuss the more general objective function that takes into account the
number of squares used in the solution. We use the Lo.metric to measure the length of the path. This
corresponds to the fact that the camera is usually moved by two orthogonal drives and thus the greater
of the z— and y-distances determines the time required for the move. Although some of our analyses
are specialized to Lo.distance measure, our results also hold (with different constants) for other distance
metrics.

The traveling cameraman problem with zoom (TCPZ) also has n disjoint regions (the features) in the
input; in addition, there is a positive real s; associated with the ith region, for all . The output is a set
of squares, such that the ith region is covered by the union of squares of side at most s;. In addition, we
are to construct a path through these squares, and we again wish to minimize its length.

1.2 Our Results
A trivial modification of the NP-completeness of the Lo, TSP [12] yields:
Theorem 1 The T'CP is NP-complete.

In Section 2, we consider the following natural heuristic for the TCP: we first find a minimum cover of
all the features by unit squares, and then find a traveling salesman path through the centers of the squares
in the cover. Although both the covering problem and the traveling salesman problem are themselves
hard to solve exactly, we rely on the fact that both have very good approximation algorithms (especially
in the cases of practical interest, where the features are axis-parallel rectangles).

We first show that our heuristic is not necessarily optimal (even if we could solve the covering and
TSP problems exactly); in fact, the heuristic may produce a solution whose cost is three times that
of the optimal solution, even if all the features are points in the plane. We then show that it always




produces a solution that is at most 6 times optimal plus a small constant {Theorem T), provided that
the associated covering and TSP problems can be solved exactly. The crux of our proof is to establish
Lemma 5, a geometric lemma with a simple statement whose proof turns out to be surprisingly difficult;
this proof is given in the full paper. By adapting an algorithm due to Hochbaum and Maass [8], we
show that the covering problem can be approximated to within a factor of 1 + ¢ provided all the features
are axis-parallel rectilinear regions. When combined with the fact that the TSP in the plane can be
approximated to within a constant factor [3], we have a constant-factor approximation for the TCP for
axis-parallel rectilinear features.

In Section 3 we turn to the TCPZ. Let S and s be the largest and the smallest values among the
3; in the input. We show that a simple modification of our heuristic always produces a solution within
O(log(S5/s)) of the optimal. Extensions are discussed in Section 4.

1.3 Related Previous Work

Arkin and Hassin (1} study the geometric covering salesman problem: a variant of the TSP in which
each city is a region in the plane, and the tour is required to touch at least one point of every region.
They give approximation algorithms for several cases of this problem, most notably the case when every
region is a line segment parallel to one of k fixed directions. The geometric covering salesman problem
and the TCP are generalizations of a common problem in two different directions. If we assume that each
city in the geometric covering problem is an axis-parallel unit square then this problem is equivalent to
the special case of the TCP in which every feature is a point. We note, however, that the cases arising in
practice require the study of more general features. Arkin, Fekete, Mitchell and Piatko [2] study related
covering tour problems; their focus is on the following covering problem. Given a region in the plane,
they wish to compute a tour such that every point in the region is within unit distance of the tour. The
TCP may be viewed as a generalization of their lawnmower problem, one in which there are several lawns.
Current and Schilling [4] consider a graph-theoretic version of this problem: given a directed graph with
lengths on the edges, they wish to compute a short path such that every vertex of the graph is within
some given distance S from the path. Like us, they solve their problem by first solving a suitable covering
problem, and then computing a short tour through the vertices in the cover.

Although these previous works touch upon our problem indirectly, none of them directly deals with
our problem. To our knowledge, there has been no previous algorithmic work related to the TCPZ.

2 The Basic Algorithm and Analysis

We assume a fixed z,y coordinate system according to which the Lo,distance is measured. For a
point p on the plane and for a positive real z, let square,(p) denote the axis-parailel square region of
side length z centered at p. For brevity, we write square(p) for squarey(p). Let F be the set of given
features and let n = |F|. Each feature in F' is a simply-connected region on the plane and we assume
that these regions are mutually disjoint. We denote by F the region that is the union of all features in F.
A covering algorithm takes F as input and outputs a set of points P such that # C Upe p square(p). We
call such a set P a square covering of F. A square covering P of F is minimal if square(p) for each p € P
is non-empty, i.e. it intersects with some feature in F. We assume, quite reasonably, that the covering



algorithms we consider output a minimal covering. We denote by S5 C(F) the cardinality of the optimal
(smallest) square covering of F'.

By a path we mean a curve on the plane. Let dist(p, g) denote the Loodistance between two points
p and ¢, i.e. the greater of |z, — z,4| and |y, — y,| Where {z,,y,) and (z4,y,) are the coordinates of p
and ¢ respectively. The length of a path C, denoted by length(C), is defined as the integral of the local
distance over the entire path. A more formal definition is given in the full paper.

A TSP algorithm inputs a set of points P and returns a path that visits all points of P, which we
call a TSP path for P. We denote by T'SP(P) the length of the optimal (shortest) TSP path for P. A
TCP path for a set of features F is a path such that the set of points on the path is a square covering of
F. Given a set of features F, let TCP(F) denote the length of the shortest TCP path for F.

Qur algorithm for TCP depends on a covering algorithm and a TSP algorithm as subroutines.

Algorithm : Apply a covering algorithm to F and let the result be P. Then apply a TSP algorithm
and obtain a TSP path for P. Qutput this path together with P.

It is clear that the result of this algorithm is a TCP path for F, provided that the covering algorithm
and the TSP algorithm we use are correct. We want to show that if the covering and TSP algorithms
give good approximations to. the optimal solutions of their respective subproblems then our algorithm
gives a good approximation to the optimal solution of the entire problem. We first give a lower bound
on such a performance guarantee of our algorithm and then give an upper bound.

2.1 A lower bound on the approximation ratio

In this subsection, we show that there is an instance of TCP such that our algorithm gives a path
whose length is three times that of the optimal solution, even if the covering and the TSP subroutines
give exact optimal solutions.

Theorem 2 For every integer L > 2, there is a set of features F' such that

1. TCP(F)=1L,
2. there is a unique optimal square covering P of F', and

3. TSP(P) = 3L.

Even if we restrict the features to be points, it is easy to see that the above lower bound still holds
to arbitrary precision:

Corollary 3 For every positive integer L and positive €, there is a set of points F with n = |F| =
O(L) such that

1. TCP(F)=1L and

2. for any optimal square covering P of F, TSP(P) > 3L —e.




2.2  An upper bound

Now we turn to an upper bound on the approximation ratio of our algorithm. We begin by bounding
the size of the optimal covering in terms of the length of the optimal TCP path.

Lemma 4 For any sel F' of features, we have

SC(F) < 3[TCP(F)] +1.

Note that this lemma is tight in view of the lower bound example in the proof of Theorem 2.

Once we have Lemma 4, it is not difficult to obtain some constant upper bound on the approximation
ratio of our algorithm. The following geometric lemma arises in our effort to get a smaller constant. Given
a path C and positive d, let locusz{(C) denote the region defined by locusy(C) = {p| Jg € C : dist(p,q) <
d}. Note that locusg(C) may contain holes, regions enclosed by but not belonging to locusy(C).

Lemma 5 Let C be a path. Then there erists a closed path C' with length at most 2length(C) + 84
such that C' contains all the boundaries of locusy(C), including those around holes.

The proof of this lemma is given in the full paper. The proof would be considerably easier if we
could assume there were no holes. With holes, the proof would still be easy if we only had to bound the
total length of the boundaries. The complexity of the proof arises from the necessity to thread all these
boundaries with a path of the allowed length.

Lemma 6 Let F' be an arbitrary set of features and let P be an arbitrery minimal square covering of
F. Then, TSP(P) < 3TCP(F)+|P|+4.5.

Theorem 7 Suppose our covering subroutine gives a solution whose cardinality is at most c; times
that of the optimal and our TSP subroutine gives a path with length ca times that of the optimal. Then,
our algorithm gives a TCP path with length less than c3(3¢1 + 3)L + co{dey + 4.5), where L is the length
of an optimal TCP path.

The following corollary follows from the (1 + €)—-approximate covering algorithm given in the next
subsection, and the 3/2-approximate TSP algorithm of Christofides [3].

Corollary 8 Suppose either each feature in F is a point or each feature in F is an azis-parallel
rectilinear polygon. Then, for each fized positive €, there is a TCP algorithm that produces a path of
length at most (9 + €) times the optimal and runs in time polynomial in n = |F)|.

2.3 Approximate covering of axis-parallel rectilinear polygons

The goal of this section is to extend the polynomial time approximate covering algorithm due to
Hochbaum and Maass [8] to the case where the features are rectilinear polygons (rather than points).



Theorem 9 [8] Let F be a set of points on the plane, with |F| = n. For any fired positive ¢, there
ezists an algorithm that runs in time polynomial in n and gives a square covering P of F' such that

|P] <(1+€)SC(F).

Their algorithm is based on the following elegant lemma. Let F* be the given set of points. Fix a
positive integer [ and, for each 1 < k < and each integer i, let F}; denote the subset of F' consisting of
those points between two lines z = il + k and z = (i + 1)l + k. Let SC(F) denote 35, SC(Fk;). Note
that SCk(F) corresponds to the square covering obtained by taking the optimal covering of Fy ; for each
i independently.

Lemma 10 (Shifting lemma, [8]) For some k, 1 < k <1, SCi(F) < (14 1/1)SC(F).

Applying this lemma twice, horizontally and then vertically, Theorem 9 reduces to the following
lemma; we choose [ so that (1 +1/)?<1+e.

Lemma 11 [8] Let I be a fized positive integer and let F' be an arbitrary set of n points in an azis-
parallel square of side length . Then an ezact optimal square covering of F can be obtained in time
polynomial in n. :

The shifting lemma does not depend on the number of points to be covered, or even the finiteness of
the number of points. Therefore, we can use this lemma when F is a set of general features instead of
points, simply by replacing F by F'

Thus, we only have to provide an extension to Lemma 11, namely:

Lemma 12 Let | be a fized positive integer and let F' be an arbitrary set of azis-parallel rectilinear
polygonal regions contained in an azis-parallel square of side length . Let m be the total number of line
segments forming the boundaries of the features in F. Then an ezact optimal square covering of F' can
be obtained in time polynomial in m.

Now we have the desired extension of Theorem 9.

Theorem 13 Let F be a set of features, where each feature is an axis-parallel rectilinear region, such
that the number of line segments defining the features of F is m and such that all the features of F are
contained in a region with area M. For any fized positive ¢, there exists an algorithm that runs in time
polynomial in m + M and gives a square covering P of F such that |P| < (1 + €)SC(F).

3 The Zoom Case

"As before, let F be the set of given features and let n = |F|. In addition, for the TCPZ, we are given
a positive real s; associated with the ith feature f; € F. We refer to s; as the frame size of f;. We are
required to cover f; by a square of side at most s;.

Algorithm : 1. First, we round each s; down to the nearest power of 2: thus s; is rounded down to
9lloga si) et ry < --- < 7y be the distinct values (powers of 2) that result.




2. For i = 1,...,%, we use a covering algorithm to cover all features f; whose frame size was rounded
to r;, using squares of side r;. (while covering with squares of side r;, we omit from consideration those
features covered by squares of size r; for j < i),

3. We then use a TSP algorithm to connect the centers of the squares that result.

Informally, our algorithm first covers the features that are to be covered by the smallest squares,
and then proceeds to larger and larger squares. Some features may be covered by a square smaller than
necessary, and this is acceptable. Moreover, in the application of automatic optical inspection, it is
preferable to use a smaller square. As before, we apply a TSP routine to join the centers of the resultant
squares. We bound the quality of this approximation. Let R = ry/ry. Let TCPZ(F) denote the length
of the optimal TCPZ path through the features F.

Theorem 14 There is a posilive constant ¢ such that the length of the TCPZ path produced by the
above algorithm is at most (clog R)(TCPZ(F) + 1).

For i = 1,...,k, let F; be the set of features covered in the ith iteration of step 2 of the algorithm.
Let P; be the set of centers of squares of side r; in a minimum cover of F;. By essentially repeating the
argument used to prove Theorem 7, we have: '

Lemma 15 For 1 <i <k, TSP(P,) < 6TCPZ(F) +8.5.

Proof of Theorem 14: If we had a TSP algorithm that would find the optimal TSP path, our
algorithm would find a solution of length TSP(UX,P;). By the triangle inequality, TSP(UEP) <
% | TSP(P). By Lemma 15, Yk TSP(P;) < k(6TCPZ(F)+8.5). Noting that k < log R = log r/r1
now yields the result. O

4 Discussion

We begin by considering the case where we are interested in minimizing not only the path length but
also the number of photographs taken. Thus a TCP algorithm in this case output, in addition to the
path, a set of points on the path that forms a square cover of the given features. Our objective function
here is the sum of the path length and the size of the square cover. Let us call this latter component of
the cost the photo cost. We note that if we were to use an optimal cover in our algorithm of Section 2, our
photo cost is no more than that of the optimal solution to the TCP. If we used an approximate covering
algorithm that delivered a cover of size at most ¢; times the optimal, it follows that our photo cost is
no more than c; times that of the optimal. Therefore, Theorem 7 and all its corollaries apply for any
non-negative photo cost.

In some inspection problems, it may be required that each feature is completely contained in some
single photograph. Out results apply to this variant too; in fact, the extension of Hochbaim-Maass
theorem (Theorem 9) is rather trivial in this case.

In practice, we suspect that the covering heuristic of Section 2.3 would be too computationally
intensive, and a variant of the greedy heuristic [10] might be preferable. In this case, we would lose
the constant bound on the approximation ratio but the performance may turn out to be fairly good in
practice.
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