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Abstract: New approximation algorithms for the weighted k-edge-connectivity augmentation problem
(W-KECA) are considered. We have already proposed four approximation algorithms for W-kECA, and
have shown experimentally that the approximation algorithm FSM using maximum-cost matching
algorithm gives the best approximatioﬁ among them. In this paper, two results are given. First, a new
approximation algorithm MW is proposed, and it is proved theoretically that MW produces
approximation whose total cost can be bounded by twice the optimum for the case where the edge
connectivity is increased by one. Secondly a simple postprocessing for improvement of a solution is
incorporated into any one of the previous four algorithms as well as MW, and it is experimentally shown
that total cost of each solution is greatly reduced. It is also presented that, even after such improvement,
FSM remains giving the best approximation among these five algorithms.



1. Introduction

The k-edge-connectivity augmentation problem (KECA
for short) is defined by "Given a graph G'=(V,E"), a cost
function c:VxV—Z* and a positive integer k, find a
minimum-cost set E" of edges, each connecting distinct
vertices of V, such that the edge-connectivity of
G"=(V,E'UE") is k, where VxV={{u,v}lu,ve V,u=v}, Z* is
the sct of nonnegative integers and the edge-connectivity of
a graph G, ec(G), is the minimum number of edges whose
deletion disconnect it. "

The probiem is called the weighted version, denoted by
W-KECA, if there may exist some distinct costs and the
unweighted one, denoted by UW-KECA, otherwise. Costs
c({u,v)) for {u,v}e VXV is denoted as c(u,v) for simplicity,
and we assume c(u,v)=1 for any {u,v}e VXV in UW-KECA.
Let KECA(* **) denote KECA with the following restriction
(i) and (ii) on G' and E", respectively: (i) * is set to S if G’
is required to be simple, and * means that G' may be a
multiple graph; (ii) ** is set to SA if increase in edge-
multiplicity in constructing G" is prohibited, and is set to
MA otherwise. Let A=ec(G") and k=A+3 with §>0.

Results related to W-KECA are very briefly mentioned.
For the NP-completeness of W-KECA, see {1,4] for k=2,
[20] for E'=@ and k=A+3 with 821, [21] for k=3, and [12]
for k=A+8 with 8=1. For UW-KECA, see [3,6,15,20,22].
Concerning approximation algorithms for W-KECA, see [4]
for k=2, [21] for k=3, and [11,12,13,18,19] for general k.
[11] showed that, for W-kECA, there is an algorithm that
produces worst approximation bounded by twice the
optimum, Tts time complexity is OKIVIIEH8IVIS)logiVi).
Their algorithm is based on an algorithm for finding k edge-
disjoint arborescences of minimum total cost [5], and it does
not seem that its implementation is easy. In [12,13,18,19],
four approximation algorithms FSA, FSM, SMC and HBD
for W-KECA were proposed, and they were evaluated
theoretically and experimentally. Among them, FSM based
on minimum-cost matchings experimentally gives the best
approximation, even though it produces unbounded
approximation for some inputs.

The paper has two subjects. First, a new approximation
algorithm MW for W-KECA is proposed, and it is proved
theoretically that MW produces approximation whose total
cost can be bounded by twice the optimum for the case
where the edge connectivity is increased by one. Secondly a
simple postprocessing for replacing edges of a solution is
incorporated into any one of the previous four algorithms as
well as MW, and it is experimentally shown that total cost
of each solution is greatly reduced. It is also presented that,
even after such modification, FSM remains giving the best
approximation among these five algorithms.

Approximation algorithms considered in this paper can
be applied to both W-KECA(* MA) and W-KkECA(*,SA),
and they are also useful to obtain approximate solutions for
UW-KECA(*,SA) which is an open problem (see [16]).

W(UW)-KkECA(*,SA) can be handled if we modify a cost
function ¢ such that c(u,v)=ce for any {u,v}e VxV with
(u,v)eE".

2. Preliminaries
2.1. Basic definitions
Technical terms not given here can be identified in
[2,8,17]. An und_i.recreg graﬂh G=(X(G),E(G)) or G=(V.E)
(directed graph G=(V(G),A(G) or G=(V,A)), respectively)
consists of a finite nonempty set V(G) (V(G)) of vertices and

a finite set E(G) (A(G)) of undirected (directed) edges. An
undirected edge e incident upon two vertices u, v in G is
denoted by (u,v). A directed edge é emanating from u and
entering v is denoted by <u,v>. In this paper, the term "a
graph" means an undirected or a directed multigraph without
self-loops unless otherwise stated.

A path P between u and v, or a (u,v)-path, in G is
denoted as Pg(u,v) or P(u,v). A pair of multiple edges are
considered as a cycle of length two. For two vertices u, v of
G, let M(u,v;G), or simply M(u,v), denote the maximum
number of pairwise edge-disjoint paths between u and v. For

a directed graph G=(V(G),A(G)), we use similar notations.

For a nonempty vertex set ScV(G), we denote
C(S8,8)={(u,v)€ E(G)lue S and ve S}, where §=V(G)—S, it is
called a cut in G. A cut whose cardinality is k is often
called a k-cut. A cut C(S,g) is called a minimum cut if its
cardinality is minimum among all cuts of G. The edge-
connectivity (denoted by ec(G)) of G is the number of edges
in a minimum cut of G. G is said to be k-edge-connected if
ec(G)2k. A k-edge-connected component (k-ecc for short) of
G is a subset ScV(G) satisfying (a) and (b): (a) M(u,v;G)2k
for any pair u,ve S; (b) S is a maximal set that satisfies (a).
Note that distinct k-eccs are disjoint. It is known that
ec(G)2k if and only if V(G) is a k-ecc. A 1-ecc is simply
called a component. A degree of a vertex v in G is the
number of edges incident upon v in G, and it is denoted by
dg(v) or simply d(v). v is often called a degree-d(v) vertex.

For a set RCV(G)UE(G), let G[R] denote the subgraph
having RNV(G) as its vertex set and {(u,v)e E(G)I
u,ve RNV(G) and (u,v)e RNE(G)} as its edge set. G[R] is
called the subgraph of G induced by R (or the induced
subgraph of G by R). Deletion of R&V(GYUE(G) from G
is to construct G[V(GY)UE(G)-R], which is often denoted as
G-R. For a set E' of edges such that ENE(G)=0, let G+E'
denote the graph (V(G),E(G)UE'). Throughout the paper, we
often write a singleton set {x) simply as x.

A cactus is an undirected connected graph in which any
pair of cycles share at most one vertex: each shared vertex is
a cutpoint. An edge in a cactus is called a cycle edge if it is
contained in a cycle; otherwise it is called a tree edge. A
leaf of a cactus is either a vertex v with d(v)=1 or v'
included in a cycle with d(v)=2. An arborescence is a
directed acyclic graph with one specified vertex, called the



root, having no entering edges, and all other vertices having
exactly one entering edge. For a vertex v in a rooted tree T,
let Ty denote the subgraph of T induced by all descendants of
v (including v itself), where we virtually direct all edges
from the root towards leaves, and vertices reachable from a
vertex v are called descendants of v; ancestors of v are
those vertices from which v is reachable. For any pair {u, v}
of vertices in a rooted tree T, let LCAT(u,v) or LCA(u,v)
denote the least (or nearest) common ancestor of u and v.

Given a set T and a mapping c:T—Z*, we use a notation
c¢(T)= Y cx) for T<T.

xeT
2.2. Structural graphs

A structural graph F(G) [10] of a undirected multigraph
G=(V.E) with edge-connectivity ec(G)=A is a representation
for all minimum cuts of G. F(G) is an edge-weighted cactus
of O(IVi) nodes and edges such that each tree edge has
weight A and each cycle edge has weight A/2. Particularly if
A is odd then F(G) is a edge-weighted tree. Each vertex in G
maps to exactly one vertex in F(G), and F(G) may have
some other vertices, called empty vertices, to which no
vertices of G are mapped. Let e(G)SV(F(G)) denote the set
of all empty vertices of F(G). Note that any minimum cut
of G is represented as either a tree edge or a pair of two cycle
edges in the same cycle in F(G), and vice versa. Let
p:V(G)— V(F(G))-e(G) denote this mapping. We use the
following notations p(X)={p(v)lve X} for XSV, and
p I (Y)={ue Vip(u)e Y} for YSV(F(G)).

It is shown that F(G) can be constructed in Q(IVIIE!)
time [10] or O(IE1+XZIVIlog(|Vl)) time [6]. Note that if A
is even then replacing each tree edge by a pair of multiple
edges preserves the properties of structural graphs and makes
their handling easy because the resulting graphs have no
bridges. This graph and a tree in the case wheré A is odd are
called modified cactuses. In this paper, F(G) denotes a
modified cactus unless otherwise stated. Let Z be a set of
edges connecting vertices of F(G) and such that
ZNE(F(G))=9. Suppose that ec(F(G)+2)=>2 if A is odd or
ec(F(G)+Z)=3 if A is even. Then we call Z a solution to
F(G).

3. Approximation Algorithms

We first describe a general scheme, as an algorithm
REC, for finding an approximate solution E" to W-kECA.
REC repeatedly finds approximate solution for W-
(A+1)ECA. REC first constructs a structural graph F(G"),
also denoted by Gg'=(V,,E") (see Fig.1(1),(2)), and
computes a cost function c:V XV, —»Z*U (]} and a
backpointer bs:V XV~ VxV defined as follows:

cs(uv)=min{{es}U{c(x,y)lxe p"i(u) and ye pl(v)} };

’{(x,y) if cs(u,v)=c(x,y) with xe p''(u) and ye p'1(v)
XS e
@ if ce(u,v)=c0

where pl(w) is a (A+1)-ecc of G' and is represented as

we Vq-¢(G") in F(G).
The following lemma shows that it suffices to consider
W-(A+1)ECA for a cactus Gs'=(V.E) (instead of G).

Lemma 1. If ec(G'+E")2X+1 for some E" then there is
E" with cg(E;")<c(E") such that E¢" is a solution to G
For a set E{", let b(Es")={b(u,v)I(u,v)e E¢"} with
multiplicity deleted. If E " is a solution to Gy' then
ec(G'+by(E;"))2A+1 and cy(E,")2c(b(EM). ¢

The algorithm REC for W-kECA is described as follows.

Algorithm REC;
/* Input: a graph G'=(V,E"), a cost function ¢:VxV—Z* and
a positive integer k */
/* Output: An approximate solution E" to W-KECA */
begin
1. He«G, E"«O;
2. Construct a structural graph G'=(V.E)(=F(H") of Hj
Beec(HY);
. if 62k then goto Step 9;
- Compute a cost function ¢ and a backpointer b;
. Find an edge set Fy of small total cost cy(F,) such that
Fy is a solution to Gg’;
6. Construct another solution Fg' from F, by a
postprocessing;
7. Te{b(u,v)e VxVi(u,v)e F,'} (with multiplicity of edges
deleted);
. H'eH'+T; E"«~E"UT; goto Step 2;
. end.

W W
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Constructing Gy, ¢ and by can be done in O(A+IVI?)
time, where A is the time complexity of finding a structural
graph of G' at Step 2 in the algorithm REC and
A=min(IVIE', [E'+ AVIlog(IV1)) [6,10}. If Step 5 and Step
6 can be done in O(&) time then REC for W-(A+1)ECA
runs in O(A+IVI%E) time.

Thus the remaining task is to devisc an efficient
algorithm producing a good approximate solution Fg to G’
in Step 5 of REC for the case where ec(H")<k. In
[12,13,18,19], four procedures FSA*, FSM*, SMC* and
HBD* were proposed for Step 5 of REC. (In these papers,
the algorithm EC, which is REC without Step 6, was
considered, and EC with FSA*, for example, was denoted as
FSA, and similarly for others.) In this paper, we propose
another procedure MW* for Step 5 of REC, as well as a
postprocessing for improving a solution Fy at Step 6 of
REC. They will be explained in 3.1 and 3.2, respectively.
REC with MW* is denoted as RMW, and similarly for other
procedures.

3.1. Mw*

We describe the procedure MW* based on a minimum-
cost arborescence algorithm [7]. MW* use the following
procedure REMAKE that changes a modified cactus Gy'
(=F(G") into a spanning trec G4’ by adding some dummy
vertices (see Fig.1(2),(3)). Notice that if ec(G") is odd then
Gy'is a tree.



procedure REMAKE;
/* Input: A structural graph G'=(V.E") of H', ¢ and bg */
/* Output: A wee Gg'=(V4,Eq), ¢q and by */
begin
1. VgV Ef'«ES WeD;
for every pair (u, vj€e VoxVg do
begin
cglu, vye—cgu, v);
bg(u, v)&bg(u, v)
end;
. if ec(H) is odd then goto 7;
. Delete multiplicity of edges in Ey’;
. Find all cycles in G4' by a depth-first-search;
. for each cycle C do
begin
Vg Vguwe /* we isa dummy vertex for C. */
WeWu{wel;
Eg—Eg'u{(u,we) luis a vertex on CJ;
Eg'«E4-{eleisan edge on C}
end;
6. for each dummy vertex wce W do
for each vertex u in V4 do
begin cg(we,u)e—eo; by(we,u)—<J end;

oA W N

7. end;

In the procedure MW*, we choose a leaf r of a cactus
G'=(V,,E) and we call it the root of G’ (or of Gy'). After
a tree Gg'=(V 4,E4) is constructed from Gg' by REMAKE,
we execute the breadth first search (BFS) starting from r and
define son-parent and descendant-ancestor relations on Gy if

v is visited from u and (u,v)e Ey' then v is a son of u and u
is the parent of v, and if v' is reached by BFS starting from
u’ then V' is a descendant of u' and u' is an ancestor of v'.
Suppose G has at least one cycle whose length is more
than 2. For each cycle C of G/, let s(C)e V(C) denote the
vertex which is nearest to the root r, and s(C) is called the
starting vertex of C. (Note that s(C) is the first visited
vertex in C when Gy’ is searched by the breadth-first search
starting from r.) We number the vertices of C as voc(=s(C)),

v}:, v%, veey vé(:c)'lclockwise, where [(C) denotes the length

of C. Let L(j.k) denote the set of vertices vjc through v‘é
clockwise on C for j<k. For any vertex ug V(C), let
Ac(ku)=(<v,u>lve Lc(.k)}. Note that if 0<j<k<I(C)
then v?:z Lc(.X). Let u, v be vertices of Vg such that u is
neither an ancestor nor a descendant of v. Consider the
situation that t=LCAg (u,v)e W=Vg4-V, thatis, tis a
dummy vertex and t=w for a cycle C of G'. Let u(C) and
v(C) denote the vertices of C such that the (u,t)-path and the
(v,0)-path of G4' pass though, respectively. For notational

simplicity, we assume that u(C) appears before v(C) if we
start from (C) and go around C clockwise. If u(C)=v}, and
v(C)=v'é with j<k then Lc(j.k) is sometimes denoted as
Lc(u(C), v(C)), and we denote

Ac(uv)=AcGku)UAC( k;v) (see Fig.2).

procedure MW*;

* Input: G¢'=(V,EJ), ¢g and by ¥/

/* Output: A set F of edges, each connecting distinct
vertices of Vy, such that Fy is a solution to Gy’ */
begin

1. Choose any leaf r of G' as the root;

2. Construct a tree T=Gy'=(V4,E4), ¢4, bg from Gy, ¢, by
by REMAKE; .

3. Construct a directed tree T=Gy4'=(V4,A4") from T by
directing each edge of Ey' toward r (see Fig.1(4));

/* Construction of a directed graph ad=(Vd,Ad), acost
function Cg:Ag—Z*U(=}uU(0} and backpionters
bg:Aq—>CAND. ¥/

4. Age—A4S .
for each 8e Ay do begin Sy©)«0; by©)@ end;
Construct a complete graph Gg=(V,Eg) with
E,NE =Q;

CAND«{(u,v)e Egl{u,v}e VXV, ci(u,v)#o};
5. for each edge e (u,v)e CAND do
begin /* constructing the set CD(e) of directed edges */
5.1. if one of {u,v}, say u, is an ancestor of the other,
v, in T then CD(e)e{<u,v>}
5.2. else if u is neither an ancestor nor a
descendant of v in T then
begin
t~LCAp(u,v);
5.2.1. if t¢ W then CD(e)¢ {<t,u>, <t,v>}
/* W is the set of dummy vertices in T */
5.2.2. else if t=wce W then CD{e)¢~Ac(u,v);
end;
5.3.  AgeAgUCD(e);
for each fe Cp(e) do _
begin Sy(fecy(e); byD)ee end
end; .

6. Find a minimum-cost arborescence Tm=(V4,Ap),
AmCAy, rooted at r, with respect to the cost function Ed.
in Gy (Fig3);

7. Fye-@; .
for each 8e A with $4©)>0 do FyeFu{bsE));
Delete multiplicity of edges in F (Fig.4);
end;

Next, we will prove the correctness of the procedure
MW*. From now on, we set =2 if A is odd, and 6=3 if A is
even,

Construction of —1:(=_G.d‘) and Ed implies the following
proposition.

Proposition 1. (1) If u is an ancestor of v on T(=Gy')

-
then u is a reachable from vin T.




(2) No two dummy vertices in i‘. are adjacent to each other.
(3) If there is a directed edge <x,y>€ A4 in G4 and

(x',y‘)=-l;d(<x,y>) then x'=y or y'=y. ¢

From Proposition 1(3), we can assume _!;d(<x,y>)=(x',y)
without loss of generality.

We define two vertex sets ScV and D(S)cV 4 for any
minimum cut K in G'. Note that K is a bridge or a 2-cut.
Definition 1. For any minimum cut K in Gg', let S¢V
be defined by the following (i) or (ii).

(i) If X is a bridge ¢; or a 2-cut {e;,ep} consisting of
multiple edges in Gg' then S« {u}, where
e=(u,up)e E4' and up denotes the parent of u on T.

(it) If K is a 2-cut (eq,e7) included in the same cycle in
C of G{' then S¢-L=(vy,up), where we assume that
e;=(u;,v;) (i=1,2), and uy,vq,u9,v9 appear clockwise
on C.

Let D(S)cV4 be the union of V(T,) of all vertices aeSin T. ¢
Proposition 2. If G4 has a directed edge <x,y>€ Ag with
xe D(S) and ye IX(S), and e'=(x",y)=b4(<x,y>) then x'¢ D(S). +
Lemma 2. If ec(G'+Z)>6 for a set ZcE then T+CD(Z)
is strongly connected, where CD(Z)=\_,c 7 CD(e).

(Proof) Suppose that _T‘+CD(Z) is not strongly connected,
while ec(G4'+Z)20 holds. Clearly, r is reachable from any

vertex ve Vg-{r} through edges in :I: Suppose u is the
nearest vertex from rin ? such that u is not reachable from r
in "f+CD(Z). Note that up denotes the vertex with
<u,up>€ A(’T’) and that Ty denotes the subtree induced by the
set of all descendants of v in T. We select the vertex set
UgV4 containing u, as in the following (al) or (a2).

(al) If upe W then U={u).

(a2) up=wce W. We define a vertex set UcV(C)cVy by
U=Le(p),p'(u)) with O<p(u)<p'(u)</(C), where U
is a maximal vertex set such that ue U, vOCesU and
any vertex in U is not reachable from r. From the
maximality of U, vR=vg(“)'1 and VL=V};(“)+1 are
reachable from r in -’f+CD(Z). where superindices are
mod KC).

Clearly ue D(U), upe D(U), and any vertex in D(U) is not
reachable from r in ?+CD(Z) (by Proposition 1(1)). Note
that D(U) denotes the union of V(T,) of all ac U. Any cut K
separating D(U)-W from V-(D(U)UW) is a minimum cut in
Gy (If ue W and upe W then K is a bridge or a 2-cut
consisting of multiple edges; if ue W or upe W then K is a
2-cut consisting of two edges in C.) Because K is not a cut
in G¢'+Z, there is an edge e=(s,v)e Z such that sg D(U)-W
and ve D(U)-W. Suppose that ve V(Ty) for a vertex xe U.

Let t=LCAT(v,s), where t may be equal to s. Then t& D(U)

and t is reachable from r in :I:+CD(Z). We select a vertex
ze V; as in the following (b1) or (b2). Let u' denote the son
of t on the path from u to t in :I:
(b1) The case with upe W. If t¢ W then z=l; otherwise
z=u'.
(b2) The case with upe W. If t¢ W then z=t; if te W and
t2up then z=u"; if t=upe W then we set z Lo vR or vy,
by the following rule. (See Fig.5.) Let t=w and v';:
be on the <s,(t>-path in :l‘. Then set z=vgR if
0<j<p(u), or z=v_ if p'(u)<j</(C).
For such a vertex z, we have z¢ W and z¢ D(U), and z is
reachable from r. From the construction of CD(e), there is
an edge <z,v>e CD(e)cCD(Z). This means that ve D(U) is
reachable from r by using <z,v>, a contradiction. Q.E.D.
Lemma 3. ec(G;'+F)20.
(Proof) Suppose a minimum cut K exists in G4'+Fg. Then
K is a minimum cut of G'. Define two vertex sets SCV
and D(S)cVy for K by Definition 1. Clearly
ec{Gy'+CAND)>26 holds. From Lemma 2, ad(=¥+
CD(CAND)) is strongly connected. Therefore we can find a
minimum-cost arborescence ¥m=(Vd,Am) in Step 6 of
procedure MW*, ?m has an edge <w,v>e A, such that
we D(S) and ve D(S). Suppose e'=(s,v)=gd(<w,v>). By
Proposition 2, s¢ D(S) and ve D(S). Because e'e Fy, this
Q.E.D.
Lemma 4. Let E" be an approximate solution for W-
(A+1)ECA by MW and E* be an optimum solution for W-
(A+1)ECA. Then c(F)<2c(E").
(Proof) Let E;* denote the set of cdges obtained from E*
by transforming G' and ¢ to Gy, ¢, and by as described at the
beginning of this section. By Lemma 1, Es* is an optimum

contradicts that K is a cut in G¢'+F,.

solution such that ec(Gs'+Es*)28, We will show that
ca(F)<2c4(E,"). From Lemma 2, T+CD(E;") is strongly
connected and, therefore, it contains an arborescence ™
rooted at r. Since :X"m is a minimum-cost arborescence,
ATYCAT+CD(E,*))cAy and A, cAy, we have
Ed(Am)sEd(A('-l: *}). Because each edge of the set CD(e)
generated by e=(u,v)e ES' has u or v as an endvertex, _.T*

contains at most two edges of CD(e) (one edge entering u or
another one entering v). All edges of CD(e) have the same

cost cy(e). Hence SyAT")<2e(Es). Since cy(F)<eq(An),
we have cd(FS)S?.cd(Es*). Because c(E")=c4(F;) also holds,
we get ¢(E")=c4(Fo)<2c4(E,)=2c(E"). Q.E.D.
We can show examples for which MW produces worst
approximation such that 2c(E*)2c(E")>(2-£)c(E™) for any



e>0.

Since Step 5.2.2 spending O(IVI) time is not executed if
A is odd, we obtain the following theorem.
Theorem 1. MW correctly generates E"
ec(G+E™2A+1 in O(A+IVI®) time, +

with

3.2. A postprocessing for improving solutions

We describe a postprocessing EXCHANGE for
improvement of approximations. EXCHANGE tries to find
a set of at most two edges whose replacement with an edge
reduces the total cost of a solution. A solution Fg for G' is
called to be minimal if, for any e€ F, F-{e} is not a
solution to Gg'. The procedure REDUCE finds a minimal
solution to Gy

procedure REDUCE(F);

/* Input: a solution Fg to G' */

/* Output: an improved solution Fg to G' */
begin

1. EVe-Fg

2. while(E" =) do
begin
Choose an edge ee ED of largest cost c4(e);
E(l)(—E(l)-[cl;
E(2)<——Fs~ {e);
if E® is a solution to G, then Fe-
end

end;

By using REDUCE as a preprocessing, EXCHANGE is
stated as follows.

prodedure EXCHANGE(Fy);
/* Input: a solution F t0 Gy’ */
/* Output: an improved solution F' to G' */
begin
1. REDUCE(F,);
2. Fy'«-Fg; E(”(—-Fs';
3. while(E®2Q) do
begin
4. Choose an edge e=(u,v)e E® of largest cost c4(€);
5. E®%«EO.¢
6. if there is an edge set X having at most two edges
such that (Fg-{e})UX is a solution to G;' and

ausw

E®

cg(e)>cy(X) then
begin
7. find an edge set Xpin of minimum total cost
among all such X;
8. Fs'«(Fs-{€])UXmin:
9. EP«EPUXmin
end;
end;

end;

Since the number of elements in E® is shown to be
O(IVIZ) and Step 7 takes O(IVlz) time for each ee E® , the
time complexity of EXCHANGE is ouvrh.

[12,13,14] show several classes of input problems for
which FSM generates unbounded approximate solutions.
Fig.6 shows such an example. It has been observed that

RFSM finds optimum solutions to all such problems. In
Fig.6, we have OPT=5. FSM generates a solution
((a,g).(b,f),(c.,e),(d,h)} with total cost APP=2M+2, and
APP/OPT=2M/5 +2/5. On the other hand, EXCHANGE
replaces (c.e) and (a,g) with {(a,c), (e,f)} and ((g,h)},
respectively. Hence, RFSM finds an optimum solution
consisting of only edges of cost 1 in Fig.6.

We have alrcady found examples for which RFSM
produces approximation slightly less than twice the
optimum. However we do not know if this is always the
case with RFSM. Effect of incorporating EXCHANGE will
be shown by experimental results: this will be given in the
next section.

4. Experimental Evaluation

4.1. Input data.

First we explain how input data, G' and ¢, are constructed
for W-KECA.

1. Two types of data are provided: type C and type T,
IVie {10,15,20,40,60, 80,100,120,140,160,180,200} and
A€ (1,2,3,4,5) (C means cactus-like and T means tree-
like: the details are omitted for shortage of space: see [13]
for the details).

2. Costs on edges are chosen randomly from (1, 2, ..., 99).

4.2. Experimental results.

We have tried 3000 test data of W-(A+1)ECA so far. A
workstation SUN SPARC station is used. We evaluate our
algorithms with respect to the ratio APP/OPT if
Ve {10,15,20} (see Table 1) where the optimum solutions
are found by exhaustive search, or with respect to APP/FSM
otherwise (see Table 2). APP/OPT is the ratio of
approximation of any one of our algorithms to the
optimum, and APP/FSM is the ratio of approximation of
any our algorithm to that of FSM.

Experimental results show the following (1)-(3).

(1) Incorporating EXCHANGE greatly improves
approximate solutions. (For example, 2548 data for
RMW show improvement. ) As can been seen from
Tables 1 through 3, capability of every algorithm is
improved, and, the worse approximate solutions are, the
greater the total cost reductions are.

(2) RFSM shows the best performance: that is, even after
incorporating EXCHANGE, FSM remains giving the
best approximation. We have 750 data to each of which -
an optimum solution is obtained by exhaustive search.
For 715 data (95.3%) of them, RFSM generates
approximate solutions with errors APP/OPT-1<0.05.

(3) RMW finds the worst approximate solutions in longest
computation time among the five algorithms. Although
it is theoretically guaranteed that its approximation is
bounded by twice the optimum, it shows the worst
capability in our experimentation even if EXCHANGE
is incorporated.



5. Concluding Remarks

In this paper, a new approximation algorithm MW and a
postprocessing EXCHANGE to improve approximate
solutions are proposed.

The following (1) through (2) are left for future research:
(1) Analysing worst case behavior of RFSM;
(2) Comparing experimental results for W-kKECA by the

approximation algorithm of {11] with RFSM;
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Fig.1. An example of our graph transformation: (1) G'=(V,E'); (2) Gg'=(V,EsW=(F(G"); (3) T=(V4,Eq); @) _T.;(Vd, Ag).

Fig.2. The set A (u,v) of directed edges in case
LCAG(uv)eW. G4’ may be replaced by G4': in that
case, edges of G are directed towards r.

Fig.3. An example of a
minimum-cost arborescence
Tr=VasAm):

Fig.4. An example of an edge
set F; obtained from the
arborescence in Fig.3.



Fig.6. An example for which FSM
generates an approximate solution
whose total cost cannot be bounded
by constant times the optimum.

Table 1. Comparison of errors (APP/OPT-1). Total number of data (left) and its ratio (right) such that
each algorithm produces solutions with errors falling into the corresponding intervals. 8=1 and the
total number of data is 750 (type C and type T), to each of which an optimum solution is found by
exhaustive search. The average and the maximum of errors APP/OPT-1 is also shown in the rightmost

two columns.

Table 2. Comparison of APP/FSM.
The average (left) and the maximum
(right) of the ratio APP/FSM over
3000 data of type C and type T for
each A€ (1,2,3,4,5) concerning W-
(A+1)-ECA of large size, where no
optimum can be found.

ave. | max
FSA 1.185] 1.808
RFSA} 1.037] 1.524
FSM 1.000] 1.000
RFSM} 0.998] 1.000
sSMC | 1.059{ 1.808
RSMC| 1.042] 1.524
HBD 1.025) 1.409
RHBD| 1.011] 1.250
Mw 1.202] 1.808
RMW | 1.052] 1.524

CIT. err.=0 O<err.<0.05 0.05<err.<0.10 0.10<err.<0.15 0.15<err. ave. erT. | max err.
FSA | 292 38.9%| 64 85%| 75 10.0%] 84 11.2%| 235 31.3%|{ 0.115] 0.816
RFSA| 564 75.2%] 67 8.9%| 55 7.3%| 30 4.0%| 34 4.5%|| 0.022] 0.524
FsM | 604 80.5%| 66 8.8%| 49 65%| 15 2.0%| 16 2.1%}| 0.015] 0.565
RFSM| 682 90.9%] 33 4.4%] 25 3.3% 5 0.7% 5 0.7%}] 0.006} 0.265
sMc | 457 60.9%] 80 10.7%| 74 9.9%| 62 83%| 77 10.3%]| 0.047] 0.808
rsmc| 502 66.9%| 86 11.5%] 73 97% 49 6.5%] 40 5.3%|| 0.030] 0.524
HBD | 386 51.5%| 114 152%| 103 13.7%| 83 11.1%| 64 8.5%]| 0.046] 0.565
RHBD | 592 78.9%| 70 9.3%] 48 6.4%| 31 4.1% 9 1.2%|] 0.015} 0.250
Mw | 289 38.5%| 65 8.7%| 83 11.1%| 87 11.6%| 226 30.1%}| 0.108| 0.808
RMW | 533 71.1%| 75 10.0%] 64 85%| 30 4.0%| 48 6.4%|| 0.029] 0.524
Table 3. Comparison of improvement ratios r=cost(R*)/cost(*). Total number of data (left) and its ratio
(right) such that each algorithm * produces solutions with improvement ratios r falling into the
corresponding intervals. Other situations are the same as Table 1.

T r<0.85 0.855r<0.90 0.90<r<0.95 0.95<r<1 r=1 ave.r | minr
RFSA | 961 32.0%| 757 25.2%| 573 19.1%| 272  9.1%| 437 14.6%]| 0.882] 0.551
RFSM 5 0.2% 8 03% 34 1.1%| 156 5.2%|2797 93.2%|| 0.998| 0.639
RSMC 24 0.8%| 22 0.7%| 108 3.6%| 1083 36.1%}1763 58.8%| 0.985} 0.553
RHBD 27 0.9%| 51 1.7%| 138 4.6%| 926 30.9%| 1858 61.9%}| 0.986] 0.639
RMW | 997 33.2%1 796 26.5%| 526 17.5%| 229  7.6%| 452 15.1%}| 0.881} 0.553




