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A graph G = (V,E) with N nodes is called an N-hyper-ring if V' = {0,---,N —
1} and E = {(u,v) | (u« — v) modulo N is a power of 2}. We study embedding of the
2"-hyper-ring into the n-dimensional hypercube. Firstly, we show a greedy embedding
whose dilation and congestion are 2 and O(n), respectively. Then we modify the greedy
embedding to achieve an embedding with dilation 4 and congestion 7.



1 Introduction

Embedding of one graph into another has been studied extensively[1-7]. Embedding
is an important subject for many problems in computer science such as simulating one
parallel processing architecture by another, assigning processors in a distributed system,
and simulating one data structure by another. The efficiency of such a simulation can be
measured by the load, expansion, dilation, and congestion of an embedding.

A hyper-ring was discussed in [2], where constructions, properties, containments, and
spanners of hyper-rings are described. In particular, the 2"-hyper-ring contains the n-
dimensional hypercube, any dimensional 2"-node mesh, and the (2* — 1)-node complete
binary tree as subgraphs.

A hypercube is one of the most popular networks due to its recursive structure, low
diameter, high bisection width, and existence of simple algorithms for message routing
on it. There exists, however, some problems which have not yet been solved on the
hypercube[3,6]. In this report, we show the embedding of the 2"-hyper-ring into the
n-dimensional hypercube with small constant dilation and congestion. It turns out to
show that the hypercibe and the hyper-ring are computationally equivalent. If we can
solve a problem on the hyper-ring, then it can be also solved on the hypercube by the
same algorithm with a minor modification and a small constant factor of slowdown in
computing time.

This report is organized as follows. We give some definitions in Section 2. In Section
3, we describe a greedy embedding of the 2"-hyper-ring into the n-dimensional hypercube,
whose dilation and congestion are 2 and O(n), respectively. In Section 4, we modify the
greedy embedding described in Section 3 to achieve an embedding with dilation 4 and
congestion 7.

2 Preliminaries and Definitions

A graph G = (V,E) with N nodes is called an N-hyper-ring (N-HR for short) if
V = {0,1,---,N — 1} and E = {(v,v) | (v — v) modulo N is a power of 2}. The n-
dimensional hypercube (2"-HC for short) is a graph with 2" nodes labeled by all n-bit
binary numbers, where there exists an edge between two nodes if and only if their binary
representations differ in an exactly one bit.

Let G = (V,E) and H = (W, F) be graphs. Let P be the set of paths between any
two nodes in H. An embedding of G(a guest-graph) into H (a host-graph) is a pair of two
mappings 0 : V — W and p : E — P such that for all egdes (u,v) in E, p({u,v)) connects
o(u) and o(v). Efficiency of an embedding is measured by its load, expansion, dilation,
and congestion. The load of an embedding is the largest number of nodes mapped to a



single node. The expansion is the ratio of the cardinarity of the node set of the host-graph
to the one of the guest-graph. The dilation of an edge e in G under an embedding is the
length of the path p(e). The dilation of an embedding is the maximum dilation of any
edge in G. The congestion of an edge f in H under an embedding is the number of
edges e in G such that p(e) contains f. The congestion of an embedding is the maximum
congestion of any edge in H.

Next we define a Gray code which is used to correspond nodes between the 2"-HR, and
the 2*-HC. An n-bit Gray code is an ordering of all n-bit binary numbers so that a pair
of consecutive numbers differ in exactly one bit position. We denote the ith codeword of
the Gray code by z(7). Formally, z(i) is defined as follows.

={ Sorn 1y 10
28 x(2 -1 —19) if >0,
where t = [logi| and @ denotes the bitwise ezclusive-or operation. We prove that a pair
of consecutive numbers differ in exactly one bit position in Lemma 1. We denote the least
significant bit of the binary representation of ¢ by by(i), and the second least significant
bit by b,(7), and so on. Throughout this report, n denotes a positive integer. For integers,
a and b, [a], denotes a modulo b. For a nonnegative integer 7, we define
n—1 ifk>n
re(t) =< k ifk<nandbe(i) =0
Te+1(7) otherwise.

3 Greedy Embedding

In this section, we describe a greedy embedding which is determined by a bijection o
from the node set of the 2"-HR to the one of the 2"-HC, together with an injection p
from the edge set of the 2"-HR to the set of shortest paths that connect any two nodes
in the 2"-HC. We select x, which defines a Gray code, as o and let p map any edge (i, j)
in the 2"-HR to one of the shortest paths (if more than one exists) that connect z(z) and
x(7) in the 2"-HC. Firstly, we describe properties of the n-bit Gray code to show that the
dilation of the greedy embedding is 2.

Lemma 1 Leti be an arbitrary integer such that 0 <1 < 2". Then, z(i) @ x([i + 1]n) =
oro(i)

Proof: This lemma is proved by induction on ¢t with 0 < i < 2.

(Base case) Fort =0 (0 < i < 2%), we have 2(¢) @ z([i + 1]2n) = 2(0) @ 2(1) = 2° and
79(0) = 0 by the definitions of x(¢) and r (7).

(Induction step) Let ¢ be a nonnegative integer with ¢ < n. Assume that the assertion
holds for all « with 0 < 7 < 2!. We consider the following 3 cases: 2¢ < i < 21 — 1
(=21 -1 (t<n—1),and i =2" — 1.



case 1 (28 <4 < 2! —1): From the definition of a and the induction hypothesis the

following equality is derived.

() @z(f+1») = 2@ 2 —1-)) o (2 e (2 — 1= (i +1)))
= 22 —1-d@z2@M -1-(i+1))
21‘0(2“*‘1——1——(i+1)).

We show 7(21+1 — 1 — (i+1)) = ro(i). Since b;(i) = 1 for all j with 0 < j < ro(¢), we have
bi(i41) # b;(2) for all j with 0 < j < ro(i). It follows that b; (2! —1— (i+1)) = b;(é) for
all § with 0 < j < ro(3) because b;(2'71 —1—(i+1)) # b;(i+1) for all j with 0 < j < ro(3).
Thus we have ro(2¢1 — 1 — (i + 1)) = 7ro(3).

case 2 (1 = 201 — 1, ¢ < n—1): From the definition of z, we have x(¢) @ x([i + 1]n) =
(2 —1) @2 = (2 — 1) @ 2 @ (2 — 1)) = 2'FL. Since (2! —1) =t +1,
the assertion holds.

case 3 (i = 2" — 1): From the definitions of z and ri(¢), we have (i) ® z([i + 1]on) =
(2" —1)@x(0) =2""1and rp(2" - 1) =n—1. O

Lemma 2 Let ¢ and k be.arbitrary integers such that 0 < i < 2" and 1 < k < n,
respectively. Then, z([i + 2¥]gn) = x(i) @ 251 @ 271D,

Proof: We prove this lemma by induction on k (k > 1).
(Base case) We show z([i + 2]o=) = 2(4) ® 2° @ 2", From Lemma 1, we have

]

o(li+2») = z(([i+ e + o)

= z(i) @ 20 g 2rolli+lln),

If bo(7) = O (bo([i + 1]on) = 1), then ro(7) = 0 and 7o([¢ + 1]on) = 1(7) from the definition
of 7¢(7). Otherwise, ro(i) = 7((2) and 7o([i + 1]o») = 0.
(Induction step) Assume that the assertion holds for & < n — 1. Then, we have

p(li+22) = z([[i + 2o +2%a0)
= z(i)® (i) gy o ([i+2¥]am )

If be(s) = 0 (bo([i + 2¥]an) = 1), then ri(¢) = k and r([¢ + 2%3n) = 7441(2), otherwise
Tr(i) = i1 (2) and ri([i + 2F]2n) = k. |

If we let p map any edge (i,7) in the 2"-HR to one of the shortest paths (if more than
one exists) that connect z(¢) and z(j) in the 2"-HC, the dilation of the greedy embedding
is 2. And we have known that for any node i in the 2"-HR and k > 1, z(i) and =( [i+2%]20)
are bitwise equal except for the (k—1)-st bit and the r4(¢)-th bit. So there are two shortest



paths that connect (i) and x([i 4 2*]5») for k£ > 1 in the 2"-HC, which are the path from
(i) to z([i+2¥]3.) using the (k—1)-dimensional edge first and then the r¢(i)-dimensional
edge and the path using these two dimensions in reverse order. Let us call the former
path a (k — 1)-path and the latter one an 7. (7)-path. If we let p map any edge in the
2"-HR to the corresponding (k — 1)-path, we can show that the congestion becomes O(n)
using Lemma 3 described in the next section. It is trivial that the congestion becomes
O(n) if we let p map any edge in the 2"-HR to the corresponding ri(i)-path. It seems
hard to determine the mapping p such that it maps each edge in the 2"-HR to the either
shortest path according to the value of 7 and k and that the embedding with constant
congestion can be achieved.

From Lemma 1, Lemma 2, and the description above, we have the following theorem.

Theorem 1 The dilation and the congestion of the greedy embedding of the 2"-HR into
the 2"-HC are 2 and O(n), respectively. O

4 Embedding with Constant Dilation and Conges-
tion

In this section, we modify the embedding described in the previous section and show
that the dilation and the congestion of the modified one are 4 and 7, respectively. Here,
we adopt z, which defines a Gray code, as ¢ again. To describe a mapping p in brief, we
introduce the following notation. In the 2"-HC, (v;d;,ds,- - -, d) denotes the path from
a node v to the node which is exactly different from v in the d;-th, the dy-th, ---, the
dn-th bits, using the d;-dimensional edge first and then using the ds-dimensional edge
from the current node, and so on.

We define p as follows. Let e = (4, [¢ + 2¥]s+) be an arbitrary edge in the 2"-HR.

(@();70(2)) if k=0
ple) =< (z(i);k—1,k) if k#0,r:(i) =
( (L)?I" 17 ’Tk( )7k> if k#0a7k()>

Next lemma says intuitively that for any two adjacent nodes =(i) and (z(:) ® 2¥) in
the 2*-HC, z7!(x(z) @ 2*) = i @ (2! — 1), where ¢ denotes a node in the 2"-HR.

Lemma 3 Leti and k be arbitrary integers such that 0 < i < 2" and 0 < k < n. Then,
z(i) ® z(z @ (28! — 1)) = 2~.

Proof: We prove this lemma by induction on k (k > 0).
(Base case) If bg(i) = 0,76 (2! —1) =i @29 = i + 1. From Lemma 1, we have

() @a(i@(2' ~1) = z()@a(i+1) =270 =2°



Next, we consider the case by(i) = 1. Let ¢/ = i @& 2°. Then by(#') = 0. According to
the argument above, we have z(#') @ =(¢/ ® 2°) = 2°. Since ¢/ = 1@ 2° and ¥ @ 2° = 4,
(i ®2%) @ z(2) = 2°.

(Induction step) Assume that the assertion holds for & < n — 1. By the induction
hypothesis, we have

I

z(i) @ x(i @ 2 @ (24 - 1))
= z(i) @x(i® 2 @2k

x(i) @ (i ® (2" 1))

If bpyq (1) = 0, then ¢ @ 25+! = i + 28+1. From Lemma 2, we have

(i) @23 ® (2¥% - 1)) z(i) @ x(i + 25+ @ 2

= 2 @onl) g 2F = o),

Since bpy1(i) = 0, ri41(d) = k + 1. In the case byy1(i) = 1, let ¢ = 7 @ 2*+'. Then,
in a similar way above, we derive 2(i) @ z(i @ (2°*2 = 1)) = z(i) @ z(i @ 2¢*1) @ 2F =
(¢ @ 2%) @ x() @ 28 = 2ren () = 2k H1L ]

Lemma 4 Lete = (z(i), z()®2%) be an arbitrary edge in the 2"-HC. Then, the congestion
of e under the embedding (z, p) is at most 7.

Proof: From the definition of p, there is a possibility of 7 types of paths containing e.
We refer to each of them as type 1, - - -, type 7 according to Figure 1, where the bold edge
stands for e. Firstly, we show that the number of edges in the 2"-HR mapped to each

type 1 type 4
[© e @ C O O Oo—~O0
x(i) x(i)
type 2 type 5
Om—O—0 O— O O——O0
x(1) x(i)
type 3 type 6
O—O=—0 O O Qe O———O
x(i) x(i)
type 7
O O O OO
x(i)

Figure 1: 7 types of paths

path of 7 types which emanates from () in the 2"-HC is exactly 1. Note that each edge



(i,[i + 2¥]o») in the 2"-HR is specified by its endpoints i and [i + 2¥]sn, in turn by i and
k. In analyzing each path of 7 types, we can characterize the value of 74(¢) or 741 (4).

type 1: If e is contained in the path p; of type 1, then p=!(p;) = (7,[t + 1]2»). Note
that ro(7) = d.

type 2: If e is contained in the path py of type 2, then p7(ps) = (4,[i + 24+1]an).
Note that r4.1(i) =d+ 1.

type 3: If e is contained in the path ps of type 3, then by Lemma 3, p~!(p3) =
G (24 —1),[(i ® (2¢ — 1)) + 29)5.). Note that r4(i) = d since r4(i ® (2¢ — 1)) = d.

type 4: If e is contained in the path ps of type 4, then p~'(ps) = (i,[i + 2% ]an).
Note that 7441(¢) > d + 1.

type 5: If e is contained in the path ps of type 5, then by Lemma 3, p~!(ps) =
(Gt (29 —1),[(i ® (2¢ — 1)) + 29]5n). Note that rq(i) > d since r4(i & (2¢ — 1)) > d.

type 6: Let e be contained in the path pg of type 6. In this case, by Lemma 3, it is
obtained that for some k > 0, p™!(ps) = (: ® 2%, [(i ® 2F) + 2¥]on) and 1 (i ®@ 2%) = d > k.
However, it is not trivial that there is exactly one edge which satisfies these conditions.
To derive a contradiction, we assume that there are two edges (i @ 2%,[(i @ 2%) + 2¥]n)
and (i ® 2¥,[(i ® 2F') 4+ 2']3n) such that 7 (i ® 2%) = d > k and rp (i @ 2¥) = d > K.
Without loss of generality, we assume k < k'. Here (i ®2*) and (i @ 2*') are bitwise equal
except for the k-th bit and the k’-th bit. So we have by (i @ 2F) # b (i @ 2¥'). However,
b(i®2F) =1and bp(i@®25) = 1since (1 ®25) =d >k >kand rp(i ®2%) =d > k.
This is a contradiction. Note that r4(i) = d since r(i @ 2%) = d > k.

type 7: Let e be contained in the path p; of type 7. From the definition of p and
Lemma 3, we know that for some u, p™!(p7) = (u,[u + 2%n), u =i @ 2¢ @ (2W+ — 1),
and r4(u) > d. If we assume that there exists another node v/ # win the 2"-HR such that
o =1@2¢@ (274 — 1) and ry(v) > d, we can derive a contradiction in a similar way
described for type 6. Note that 74(¢) > d since 74(i @ 2¢ @ (27 — 1) > d and r4(u) > d.

Now we count the number of paths which contain an edge e = (2(i), (i) ® d) in the
2"-HC. Let ¢/ = i @ (2%*! — 1), then z(i) and z(¢') are the endpoints of e.

If n = 1, it is trivial that both the dilation and the congestion of the embedding
described are 1.

Assume that n > 1. There is at most 1 path of type 1 containing e since 74(z) = d if
and only if 74(') # d.

For the other types, we consider the following 2 cases: d <n —1and d=n —1.

case 1 (d <n —1): In this case, note that r4(¢) = d if and only if 74(i') > d and that
ra41(1) = rap1(i). Without loss of generality, we assume r4(i) = d (r4(¢") > d). Then,
there are at most 2 paths emanating from z(z), one of which is type 3 and the other is
type 6. There are also at most 2 paths emanating from ('), one of which is type 5 and
the other is type 7.



If rgp1(f) = rap1(') = d + 1, there are at most 2 paths of type 2, one of which
is emanating from z(i) and the other is from x(¢'), and there are no paths of type 4.
Otherwise, there are at most 2 paths of type 4 in a similar way.

To sum up for d < n — 1, at most 7 paths are embedded using e.

case 2 (d = n — 1): In this case, note that ry(i) = r4(i’) = d and that we need not
consider the paths of type 2, type 4, type 5, and type 7 from the conditions of r4(i), 74(?')
or 7441(1),Tar1(¢'). There are at most 2 paths of type 3, one of which is emanating from
z(i) and the other is from x(¢'). There are also at most 2 paths of type 6 in a similar way.

To sum up for d = n — 1, at most 5 paths are embedded using e. O

From the definition of p and Lemma 4, we have the following theorem.

Theorem 2 The 2"-HR is embedded into the 2"-HC with dilation 4 and congestion 7. O
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