7 A =Z ¥y X & 41—6
(1994. 9. 21)

Geometric range searching !
(Survey — Extended Abstract)
Jifi Matousek
Department of Applied Mathematics
Charles University, Praha, Czech Republic

Abstract

In geometric range searching, algorithmic problems of the following type are
considered: Given an n-point set P in the plane, build a data structure so that,
given a ci;lerg triangle R, the number of points of P lying in R can be determined,
quickly. Problems of this type are of crucial importance in computational geometry,
as they can be used as subroutines in many seemingly unrelated algorithms. We
survey some results and techniques in this area.

Geometric range searching
Jifi Matousek
Department of Applied Mathematics
Charles University, Praha, Czech Republic

Abstract

A
P
N T eI

1This is a shortened version of a survey paper [Mat93a]. Part of the work on this paper was done while the author
was visiting the Computer Science Institute, Free University Berlin. The work has been supported by the German-Israeli
Foundation of Scientific Research and Development (G.I.F.).

1 Introduction

A basic example of a geometric range searching
problem was mentioned in the abstract; let us de-
scribe a more general setting. Let R be a sys-
tem of subsets of the d-dimensional Euclidean space
R®% The sets of R are called ranges. Typically
considered basic cases are Rorthog (the axis-parallel
boxes, i.e. cartesian products of intervals), Rhal fsp
(the (closed) halfspaces), Ryimples (the (closed) sim-
plices) and Ryau (the (close) balls). Further let P
be a given n—pomt set in IR®. One of the geomet-
ric range searching problems is to design an efficient
algorithm which, for a given range R € R, finds
the number of points of P lying in R. The point
set P is given in advance, and we can prepare some
auxiliary information about it and store it in a suit-
able data structure (this phase is called the prepro-
cessing). Then we will be repeatedly given various
ranges of R as queries. Fach such query is to be
answered as soon as it appears (on-line), and as ef-
ficiently as possible.

A range searching problem of this type is usually
considered with some limitations on the amount of
storage for the data structure and on the time for
the preprocessing. As we will see, the more space
and preprocessing time we have, the faster can the
queries be answered (at least in a suitable range of
the parameters).

Counting points in a given range (a range count-
ing query) is only one of possible range searching
problems. Another natural problem is to compute
a list of all points of P lying in a query range (we
speak of a range reporting query), or we can only
ask if the query range contains any point of P at all
(range emptiness query). Also, each points of P can
be assigned some weight (e.g., a real number), and
we can be interested in the sum of weights of points
in a given range, or in the maximum weight.

All these problems are quite convincingly moti-
vated by direct practical applications, most often in
various database systems. However, it seems that
even more important than such direct applications
are applications of geometric range searching as sub-
routines in the design of algorithms for more com-
plicated geometric problems.

In more recent papers, one usually investigates
a unifying generalization of various range searching
problems. We assume that every point p € P is as-
signed a weight w(p) € S, where (S, +) is some semi-
group (common to all the points). The objective of
a query is to find the sum of weights of all points
of P lying in a given range,) c pnp w{p). For ex-
ample, for range counting queries, (S,+) will be the
natural numbers with addition, and all weights will
be equal to 1. For queries on maximum weight, the
appropriate semigroup will be the real numbers with
the operation of taking a maximum of two numbers,

ctc. In the sequel we assume that the weights can be
stored in a single computer word and that the semi-
group operation can be executed in constant time.

The range reporting queries have a somewhat spe-
cial position. Their query complexity is usually ex-
pressed in the form O(f(n) + k), where k is the
number of points in the answer, and f(n) is some
function of the total number of points in P.

Let us remark that reporting queries and queries
with weights which can be subtracted often allow a
simpler and/or more efficient solution than the gen-
eral case, whose prototype are the queries asking
for maximum weight. For the case of subtraction,
we can usually express the answers for more com-
plicated ranges using the answers for several simpler
ranges. As a simplest one-dimensional example, we
note that a query interval in R' (which has 2 de-
grees of freedom) can be expressed as the difference
of two semiinfinite intervals (which have only 1 de-
gree of freedom).

In this paper we mainly consider the simplex and
halfspace range searching problems. These problems
turned out to be crucial in computational geometry,
they are even universal in some sense, since many
other problems with more general ranges can be re-
duced to them, see below (for the equally impor-
tant orthogonal range searching problems, with axis-
parallel boxes as ranges, which are not a subject of
this survey, we refer to [Cha88], [Cha90a, Cha90b]
for a more recent work and references).

2 Intuition and lower bounds

Results about the computational complexity of sim-
plex range searching can be summarized as follows:

Let us consider a simplex range searching prob-
lem for an n-point set P C IR?, with weights from
a semigroup (S,+), and with storage and prepro-
cessing time at most m, where m lies in the range
from n to approximately n®. Then the query time

is approximately
—r (1)
mli/d’

The word “approximately” in the previous sentence
means “up to a multiplicative factor bounded by
O(log®n), ¢ a constant.”
In particular, for an approximately linear storage
the query time is approximately n!~ /4 and in or-
der to achieve a polylogarithmic query time, one
needs space and preprocessing approximately n¢.
The complexity of halfspace range queries is belicved
to be very similar, except for few special cases, as
e.g., halfspace emptiness queries, which can be han-
dled more efficiently.

First we will try to give the reader some intuitive
explanation where the formula (1) comes from. The
explanation is quite far from a proof, and in reality

the lower and upper bounds work in a more compli-
cated manner. We consider the two extreme cases,
polylogarithmic query time and roughly linear space.

Logarithmic query time. First we consider half-
space queries. It is not difficult to see that for an
n-point set P in a general position there are ©(n?)
different subsets of the form P N R, where R is a
halfspace (this is best seen in the dual setting, where
distinct subsets correspond to distinct cells in an ar-
rangement of hyperplanes). Storage of the order n¢
thus means that we can store the answers for all es-
sentially different halfspaces that can ever appear.
Actual algorithms are indeed based on this princi-
ple. A naive attempt on extending this idea to sim-
plex range searching results in a much larger space
than nd. A suitable method preserving storage close
to n? is more complicated and was discovered only
recently [CSW92].

] . .
o
°
.
° /.
.
. |] °
/ o
“T ° °
e e ° °
o

Figure 1: A simple halfspace range searching
method, for uniformly distributed point sets

Approximately linear storage. Here we will
assume that the set P is chosen randomly, by n in-
dependent random draws from the uniform distri-
bution in the unit square (we consider the planar
case first). We put ¢t = [/n] and we cover the unit
square by a ¢t x t square grid, each grid square having
side 1/t, see Fig. 1. With high probability, almost
every grid square then contains only a small number
of points of P (bounded by a constant).

Let R be a given halfplane. We note that the
boundary line h of R intersects at most 2¢ squares
of the grid (if its slope is at most 1, the it intersects
at most 2 squares in every column, and for slope > 1
we apply a similar argument with rows).

For the squares intersected by h we go through
all the points of P lying in them, and for each such
point we test its membership in R. The uniform
distribution implies that the number of points pro-
cessed in this phase is O(t) = O(+/n) (such points
are marked as full circles in Fig. 1) .

In remains to account for the weight of points in
grid squares which are completely contained in R.
This can be done row by row, using the fact that
such squares form a contiguous interval in every row.

The total weights of points in each such segment of
each row are computed in advance, thus we only
need a constant time per row for the query answer-
ing. The total memory requirement is O(n).

For a higher dimension d we can proceed quite
similarly, dividing the unit cube into a grid of cubes
with sides n~1/4, The bounding hyperplane of a
given halfspace I always intersects only O(n!~3/4)
grid cubes. The cubes completely contained in the
query halfspace can be processed by columns par-
allel to one (arbitrarily chosen) coordinate axis. In
this way we get a data structure with O(n) storage
and O(n'~1/9) query time for uniformly distributed
point sets in the unit cube, as required by formula
(1). This time also the generalization to simplex
range searching is straightforward (we omit the de-
tails). For point sets which are not uniformly dis-
tributed this simple approach fails, and all known
methods with query time close to n!~*/¢ are consid-
erably more complicated.

Lower bounds. Chazelle [Cha89] proved lower
bounds for the query time for a simplex range
searching algorithm with a given amount of space.
These bounds are formulated in the so-called arith-
metic model which puts certain limitations on the
type of algorithm used (the exact definitions are
complicated so we omit them in this extended ab-
stract). In principle, a better algorithm might ex-
ist- which does not respecct these restrictions (for
instance, the lower bounds do not apply for algo-
rithms using weight subtraction, that is, if (S, +) is
a group), although this doesn’t seem very likely at
present.

Chazelle proved that for any semigroup (S,+)
(satisfying a certain very mild assumption), for any
fixed dimension d and parameters n,m there exists
an n-point set P C R? such that the simplex range
searching problem with point set P, weights from S
and storage at most m has query complexity at least

n
@ (logn ml/d) @
(for d > 3), resp. at least
n
2(7) R

for d = 2 in the arithmetic model.

It is quite likely that the bound (2) holds without
the logarithmic factor in the denominator as well (as
is the case in dimension 2). Such an improvement
has an interesting relation to a generalization of a fa-
mous problem of combinatorial geometry (so-called
Heilbronn problem), see [Cha89].

There are interesting particular cases where the
above mentioned lower bound doesn’t apply. Two
such interesting cases are simplex emptiness queries
and general halfspace range searching, which, how-
ever, seem to be approximately equally difficult as

the general simplex range searching problem. This
was partially substantiated in [BCP93] and [CR92].
A substantial improvement over the above general
bound is only known for halfspace emptiness queries
and for halfspace range reporting queries (see section
4).

The papers of Chazelle et al. onlower bounds may
please the reader as a nice piece of mathematics, but
the conclusions for the simplex range searching prob-
lem are quite pessimistic. For instance, if we want
to improve the query complexity K-times compared
to the trivial algorithm (consisting of inspection of
every point of P) in dimension 10, it costs storage
of the order K'°. This indicates that nontrivial al-
gorithms can thus be practically useful for a really
small dimension only.

3 Simplex range searching al-
gorithms

In this extended abstract we will consider only al-
gorithms using linear or nearly linear storage, which
are usually more complicated and more interesting.
The opposite extreme are algorithms with a polylog-
arithmic query time which, as we have seen, require
about n? storage. These are usually based on point
location in hyperplane arrangments, and we refer to
the literature ([Cha93], [CSW92], [Mat93c]) for more
information. Algorithms with memory requirements
in between these two extremes can often be obtained
by a more or less straightforward combination of al-
gorithms of the two mentioned types.

Most of nontrivial algorithms with linear space are
based on the idea of partition trees due to Willard
[Wil82]. Willard’s original algorithm uses the fact
that an n-point set in the plane can be partitioned
into 4 parts of approximately equal size by two lines
41, £3. Given a query halfplane, its boundary only
intersects 3 of the 4 regions defined by £; and £;. If
we precompute the total weight of points in each re-
gion, we can process all points of the region missed
by the boundary in a single step, thus saving 25%
of the work on the query answering compared to the
trivial method. This alone is not significant for the
asymptotic complexity, but a similar saving can be
repeated recursively in each of the remaining 3 re-
gions. By continuing in a similar manner also in
a larger depth, the complexity is decreased signifi-
cantly. The resulting data structure storing such a
recursive partition is called a partition trce.

This simplest scheme gives query time roughly
O(n®7™?%) using a linear space. The history of im-
provements and generalizations to higher dimensions
resembles athletic records somewhat. Here we only
list references to steps in this progress with few re-
marks: [EW86] (improvement in the plane), [Yao083]
(a first algorithm in dimension 3), [DE84], [EH84],

[YDEP89], [Col85], [YY85] (a first nontrivial algo-
rithm in any fixed dimension), [HW87} (introduc-
ing probabilistic methods; partition schemes with a
large number of regions), [Wel88] (a first almost op-
timal algorithm in dimensions 2 and 3, introduces a
new, nonrecursive partition scheme known as span-
ning tree with low crossing number with many appli-
cations also outside range searching; a final version
of this paper is [CW89]), [MW92], [CSW92] (a first
nearly optimal algorithm for every fixed dimension),
[Mat92b], [Mat93c| (current asymptotically best al-
gorithms, technically somewhat complicated).

Let us outline a nearly optimal algorithm from
[Mat92b]. It is based on a suitable partition scheme.
Let P be an n-point set in IR%; for simplicity we as-
sume it is in general position. A simplicial partition
for P is a collection Il = {(P1,A1),. .., (Pm,Am)},
where the P; are disjoint subsets of P (called the
classes) forming a partition of P, and each A; is
a d-dimensional simplex containing the set P;; see
fig. 2.

Figure 2: A simplicial partition (points of different
classes are marked by different symbols).

The key geometric result is the following: Let P
be an m-point set in R¢ (d > 2), 7 a parameter,
1 < r < n/2. Then there exists a simplicial partition
for P satisfying n/r < |P;| < 2n/r for every class P;
(thus with O(r) classes), such that any hyperplane
only intersects at most K = O(rl’l/‘l) simplices of
1.

The value of x in this result is asymptotically
optimal. The paper [Mat92b] also gives an algo-
rithm for constructing such a simplicial partition,
with O(nlogr) running time for sufficiently small 7
(r < n for a certain small constant 8 = 5(d) > 0).

By a recursive application of such a simplicial par-
tition, a partition tree is created in a standard way.
For a given set P we find a simplicial partition II
(with a suitable choice of the parameter r) and we

—44-

store its simplices as well as the total weights of
points in the classes of II in the root of the par-
tition tree. Each class of the simplicial partition
corresponds to one subtree of the root, where the
construction is used recursively for the points in the
corresponding classes. When answering a query with
a halfspace R, we process the simplices lying com-
pletely inside R or completely outside R directly in
. the current node, and for the simplices crossing the
boundary of R we recursively descend into the ap-
propriate subtrees.

The actual performance of the algorithm depends
on the choice of the parameter 7. If we choose
r = mP, where m is the number of points in the cur-
rent node and # < 1 is a suitable small positive con-
stant, we get a simple algorithm with a linear stor-
age, O(nlogn) preprocessing and O(n!~Y/%log®n)
query time, where ¢ is some constant. A further
small improvement of the query time, up to the
probably optimal O(n'~1/4), was given in [Mat93c]
using similar ideas.

4 Extensions and examples of
applications

Halfspace range reporting and other special
situations. It seems that the query complexity
for halfspace range reporting with space at most m
might be approximately

n

it th

)
where k& denotes the number of points in the query
halfspace (this is much better than the complexity
of simplex range searching). In particular, in dimen-
sions 2 and 3 algorithms exist with almost linear
storage and O(logn + k) query time, see [CGL85],
[CP86], [AHL90]. For a higher dimension, an algo-
rithm achieving roughly the performance given by
(4), up to a factor of n®, is obtained by combining
the results of [Cla88] (in some situations one can get
even closer to (4), up to logarithmic factors, see also
[Sch92]). No lower bounds are known.

In the dual version of halfspace range reporting,
we essentially restrict our attention to a single cell
of the arrangement of the given hyperplanes. An-
other such special situation is when our point set
lies on a fixed lower dimensional algebraic variety
of bounded degree, or if all hyperplanes bounding
the query ranges are tangent to such a variety; then
the range searching results can sometimes be also
improved, see e.g., [AM94] for a discussion. The
situations with points on a surface is by no means
rare — it arises e.g., when dealing with lines in 3-
dimensional space, see e.g., [CEGS89].

Dynamization. Until now we have considered

static range searching problems, where the point sct

is given once and for all. In many applications we
need to insert new points or delete old ones from
time to time. For a dynamic data structure stor-
ing n points we probably cannot expect a better
time for one modification than a 1/n fraction of the
time necded for building the whole (static) struc-
ture anew. For the simplex and halfspace range
searching problems dynamic structures with this ef-
ficiency (up to small factors, typically of the order
n€) are known, sce [SO90], [AS93], [Mat92b]. Sev-
eral authors investigated dynamic halfspace range
reporting data structures under the assumption that
the update sequence is random in a suitably defined
sense and obtained very good update times for this
case, see [Mul91b], [Mul91la], [Sch91]. In [AMOI1]
a dynamic algorithm was found, which is efficient
also in the worst case, for an arbitrary update se-
quence. This algorithm can be viewed as giving an
implicit dynamic representation of the convex hull of
the current point set (it allows to decide if a query
point lies inside or outside the current convex hull,
to compute a tangent hyperplane to the convex hull
and containing a given line etc.).

Multilevel data structures. We explain the
idea on an example. Let S = {s1,...,s,} be a set
of segments in the plane. We want to construct a
data structure which quickly computes the number
of segments of S intersected by a query line h. We
permit roughly linear space for the data structure.
Let a;,b; be the endpoints of the segment s;. A
denotes the set of all a; and B the set of all b;. We
consider computing the number of s; such that a;
is above h and b; is below h (the opposite case is
solved symmetrically).

Let us consider some partition tree for the set A;
for definiteness, let it be the partition tree based on
simplicial partitions described in the previous sec-
tion, with r being a large constant. Using such a
partition tree we can determine, in roughly /= time,
the number of points of A in the halfplane R above
h. This does not solve our problem yet, but we look
more closely how the answer is obtained from the
partition tree. The weight of every point from ANR
is accounted for in some of the visited nodes of the
tree. In each such node, we find the simplices of the
corresponding simplicial partition lying completely
inside IR, and the weights of their respective classes
are accounted for as wholes.

For each node of the partition tree, let us call
the classes of the simplicial partition stored there
the canonical sets. We see that the partition tree
provides a partition of the set AN R into roughly v/n
canonical sets of various sizes. The total number of
canonical sets in the partition tree is O(n), and the
sum of their sizes is easily estimated to O{nlogn).

For our problem with segments, we augment the
partition tree for the set A as follows: For every
canonical set M C A we create a partition tree for

the set M' = {b;; a; € M}, and we store it with
the corresponding node of the partition tree for A.
Given a query line h in our problem, first express the
set of points of A lying above h as a disjoint union
of certain canonical subsets My,..., My, and then
for each such M; we use the appropriate secondary
partition tree to count the points of M] lying below
the line h. Adding these counts together over all
canonical sets M;, we obtain the desired number of
segments s; with a; above h and b; below h.

A simple calculation we shows that the required
space is O(nlogn) only (this is because of the total
size of the canonical subsets) and the query time re-
mains still close to /n. Intuitively, this is because
there are only few large canonical sets in the de-
composition of AN R, and the computation on the
second level is fast for small canonical sets.

The principle used in the above example is quite
universal. Usually it is applicable whenever the
query is a conjunction of several conditions (or, ge-
ometrically, an intersection of several regions) and
for each condition (region) we already have a suit-
able efficient data structure. In this way e.g., an effi-
cient simplex range searching algorithm with a poly-
logarithmic query time and about n® space can be
derived from a halfspace range searching algorithm
with similar parameters, see [CSW92]. [Ben80j,
[DE87] are papers introducing data strures of this
type, and from numerous recent application we men-
tion e.g., [0SS890], [AS93].

Searching with more general ranges. So
far we have considered range searching with ranges
bounded by hyperplanes. Many applications nat-
urally lead to searching in ranges with nonlinear,
curved boundaries. The most important case are
subsets of IR¢ defined by a conjunction of at most
k polynomial inequalities of maximum degree D,
where d,k and D are constants.

Perhaps the simplest among nonlinear ranges are
circular disks in the plane and balls in higher dimen-
sions. The corresponding range searching problem
arises when we are interested in points lying in at
most a given distance from a given point?; prob-
lems of this type are often referred to as prozimity
problems, see e.g., [CCPY86}, [AHL90], [CW89] and
others. Other group are problems dealing with lines
in 3-space, which typically lead to nonlinear range
searching as well (related works are e.g., [CEGS89],
[Pel92], [PS92], [Aga93]).

An important early work considering very general
geometric range searching problems is [YY85]. A
recent paper on the subject is [AM94], which shows
how techniques developed for simplex and halfspace

2Notice that balls do not appear in this second, “applica-
tion oriented” formulation directly. This is quite typical, as
range searching problems with nonlinear ranges are usually
obtained by a suitable re-formulation of the original specifi-
cation of the problem.

range searching can also be applied in this more gen-
eral setting. For a lack of space, we do not formulate
the specific results here; we only remark that for
such techniques, combinatorial complexity bounds
for arrangements of algebraic surfaces and for their
decompositions into constant complexity cells be-
come important; such problems are treated e.g., in
[CEGS91}, [HS93], [Sha93].

Ray shooting and linear optimization. This
is another type of generalization of geometric range
searching problems. In a ray shooting problem we
are given some set I' of geometric objects (planes,
triangles, balls, ...) and the goal is to construct a
data structure such that for a given point o and di-
rection @ we can quickly determine the object of I’
Lit by a ray p sent from the point o in the direction 8.
This problem is very popular in computer graphics,
where it arises as an auxiliary problem in determin-
ing visibility of objects, hidden surface elimination,
ray tracing and in other situations.

It turns out that the ray shooting problem can
be solved cfficiently using data structures for suit-
able derived range searching problems. This idea
appears in several papers, e.g., [Berg]. A system-
atic approach using the so-called paremetric search
(which is an important algorithmic technicque due
to Megiddo [Meg83]) was suggested in [AM93] and
demonstrated on several examples; see also [MS93]
for related results.

Another related problem is to maximize a query
linear function ¢ over a convex polytope (which is
fixed and can be preprocessed for this purpose).
This is in fact a linear programming problem, but in
a special situation, wherc the constraints are given
in advance, while the optimized function comes as a
query. In [Mat93b] it is shown, using a multidimen-
sional version of parametric search, that algorithms
for halfspace emptiness queries can be transformed
to solve also this linear programming problem, with
query complexity increased by a polylogarithimic fac-
tor only (and with the same data structure). With a
dynamic halfspace emptiness data structure as a ba-
sis, one may also insert and delete constraints. This
can be applied in a classical computational geome-
try problem, that of finding extremal points. The
input is an n-point set P C RY, and we want to de-
tect which points of P are vertices of the convex hull
of P. This problem can be solved by computing a
combinatorial representation of the convex hull of P,
but for dimensions d > 4 this method is fairly ineffi-
cient, as the convex hull of an n-point set in IR? can
have combinatorial complexity of the order nl#2J.
Testing whether a point is extremal can be formu-
lated as a linear programming problem in dimension
d with n constraints. For different points these lincar
programs only differ by two constraints, so we can
use linear programming in the preprocessing/query
mode. We build a data structure for the appropriate

constraints, and with its help we answer n queries,
thereby determining the extremal points. In this
way we obtain, for example, a total time O(n*/3+¢)
in dimension 4, which is the most efficient known
method. This nicely illustrates a remark made in
the introduction, namely that a large part of appli-
cations of geometric range searching is in problems
which are not of the preprocessing/query type. Fur-
ther examples are hidden surface removal problems
(see e.g. [Berg]), counting circular arc intersections
[APS93], problems concerning lines in space (e.g.
[Pel92]) to quote only few.

Conclusion. In this extended abstract we only
touched some of the main issues in geometric range
searching. We have largely neglected applications,
various generalized types of queries which do not fall
into our framework directly, and many other impor-
tant topics. Some more details can be found in the
full version [Mat93a], and for other material we can-
not but refer to the literature.

Acknowledgment. I would like to thank Pankaj
K. Agarwal and Raimund Seidel for reading pre-
liminary versions of this paper and numerous useful
commients.

References

Aga93] P. K. Agarwal. On stabbing lines for polyhedra
14 g g
in 3d. Tech. Rept. CS-1993-09, Department Com-
puter Science, Duke University, 1993.

[AHL90] A. Aggarwal, M. Hansen, and T. Leighton.
Solving query-retrieval problems by compacting
Voronoi diagrams. In Proc. 22nd Annu. ACM Sym-
pos. Theory Comput., pages 331-340, 1990.

[AM91] P. K. Agarwal and J. Matousek. Dynamic half-
space range reporting and its applications. Tech.
Report CS5-1991-43, Duke University, 1991. Ex-
tended abstract, including also results of D. Epp-
stein: Proc. 33. IEEE Symposium on Foundations
of Computer Science (1992), pages 51-60.

AM94] P. K. Agarwal and J. Matousek. On range

8 8

searching with semialgebraic sets. Discrete Com-
put. Geom. 11:1994, 393-418.

[AM93] P. K. Agarwal and J. Matousek. Ray shoot-
ing and parametric search. SIAM J. Comput.,
22(4):794-806, 1993.

[APS93] P. K. Agarwal, M. Pellegrini, and M. Sharir.
Counting circular arc intersections. SIAM Journal
on Computing, 22:778-793, 1993.

[AS93] P. K. Agarwal and M. Sharir. Applications of a
new partitioning scheme. Discr. & Comput. Geom.
9:1993, 11-38.

[BCP93] H. Brénnimann, B. Chazelle, and J. Pach. How
hard is halfspace range searching. Discrete Comput.
Geom., 10:143-155, 1993. ’

[Ben80] J. L. Bentley. Multidimensional divide-and-
conquer. Commun. ACM, 23(4):214-229, 1980.

[CCPY86] B. Chazelle, R. Cole, F. P. Preparata, and
C. K. Yap. New upper bounds for neighbor search-
ing. Inform. Control, 68:105-124, 1986.

[CEGS89] B. Chazelle, H. Edelsbrunner, L. J. Guibas,
and M. Sharir. Lines in space: combinatorics, algo-
rithms, and applications. In Proc. 21st Annu. ACM
Sympos. Theory Comput., pages 382-393, 1989.

[CEGS91] B. Chazelle, H. Edelsbrunner, L. Guibas,
and M. Sharir. A singly-exponential stratification
scheme for real semi-algebraic varicties and its ap-
plications. Theoret. Comput. Sci., 84:77-105, 1991.

[CGL85] B. Chazelle, L. J. Guibas, and D. T. Lee. The
power of geometric duality. BIT, 25:76-90, 1985.

[Cha88] B. Chazelle. A functional approach to data
structures and its use in multidimensional search-
ing. STAM J. Comput., 17:427-462, 1988.

[Cha89] B. Chazclle. Lower bounds on the complexity
of polytope range scarching. J. Awmer. Math. Soc.,
2:637-666, 1989.

[Cha90a] B. Chazclle.
range searching, I: the reporting case.
37:200-212, 1990.

[Cha90b] B. Chazelle. Lower bounds for orthogonal

range searching, II: the arithmetic model. J. ACM,
37:439-463, 1990.

[Cha93] B. Chazelle. Cutting hyperplanes for divide-
and-conquer. Discrete Comput. Geom., 9(2):145~
158, 1993.

Lower bounds for orthogonal

J. ACM,

[Cla88] K. L. Clarkson. Applications of random sam-
pling in computational geometry, II. In Proc. {th
Annu. ACM Sympos. Compul. Geom., pages 1-11,
1988.

[Col85] R. Cole. Partitioning point scts in 4 dimen-
In Proc. 12th Internaf. Collogq. Automata
Lang. Program., volume 194 of Lecture Noies in

sions.

Computer Science, pages 111-119. Springer-Verlag,
1985.

[CP86] B. Chazelle and F. P. Preparata. Halfspace range
search: an algorithmic application of k-sets. Dis-
crete Comput. Geom., 1:83-93, 1986.

[CR92] B. Chazelle and B. Rosenberg.. Lower bounds
on the complexity of simplex range reporting on
a pointer machine. In International Colloguium. on
Automata, Languages and Prograinmning, 1992, Also
to appear in Computational Geometry: Theory and
Applications.

[CSW92] B. Chazelle, M. Sharir, and E. Welzl. Quasi-
optimal upper bounds for simplex range searching
and new zone theorems. Algorithmica, 8:407-429,
1992.

[CW89] B. Chazelle and E. Welzl. Quasi-optimal range
scarching in spaces of finite VC-dimension. Discrete
Comput. Geom., 4:467-489, 1989.

[Berg] M. de Berg, D. Halperin,
J. Snoeyink, and M. van Kreveld.

M. Overmars,
Efficient ray
shooting and hidden surface removal. Algorithmica.

To appear. Extended abstract: Proc. 7. ACM Symn-
posium on Computational Geometry, pages 21-30,
1991.

[DE84] D. Dobkin and H. Edelsbrunner. Organizing
point sets in two and three dimensions. Tech. Re-
port F130, Technische Universitit Graz, 1984.

[DE87] D. Dobkin and H. Edelsbrunner. Space search-
ing for intersecting objects. Journal of Algorithms,
8:348-361, 1987.

[EH84] H. Edelsbrunner and F. Huber. Dissecting scts
of points in two and three dimensions. Report F138,
Inst. Informationsverarb., Tech. Univ. Graz, Graz,
Austria, 1984.

[EWS86] H. Edelsbrunner and E. Welzl. Halfplanar range
search in linear space and O(n°%%®) query time. In-
form. Process. Leit., 23:289-293, 1986.

[HS93] D. Halperin and M. Sharir. New bounds for lower
envelopes in three dimensions, with applications to
visibility in terrains. In Proc. 9th Annu. ACM Sym-
pos. Comput. Geom., pages 11-18, 1993.

[HW87] D. Haussler and E. Welzl. Epsilon-nets and sim-
plex range queries. Discrete Comput. Geom., 2:127-
151, 1987. J. Matousek. Reporting points in halfs-
paces. Comput. Geom. Theory Appl., 2(3):169-186,
1992.

[Mat92b] J. Matousek. Efficient partition trees. Discrete
Comput. Geom., 8:315-334, 1992.

[Mat93a] J. Matousek. Geometric range searching.
Tech. Report B-93-09, Fachbereich Mathematik
und Informatik, Free Univ. Berlin, 1993.

[Mat93b] J. Matousek. Linear optimization queries. J.
Algorithms, 14:432-448, 1993. The results combined
with results of O. Schwarzkopf also appear in Proc.
8th ACM Sympos. Comput. Geom., 1992, pages 16—

25,

[Mat93c] J. Matousek. Range searching with efficient hi-
erarchical cuttings. Discrete & Computational Ge-
ometry, 10(2):157-182, 1993.

[Meg83] N. Megiddo. Applying parallel computation al-
gorithms in the design of serial algorithms. Journal
of the ACM, 30:852-865, 1983.

[MS93]} J. Matousek and O. Schwarzkopf. On ray shoot-
ing in convex polytopes. Discrete & Computational
Geometry, 10(2):215-232, 1993.

[Mul91a} K. Mulmuley. Randomized multidimensional
search trees: further results in dynamic sampling.
In Proc. 32nd Annu. IEEE Sympos. Found. Com-
put. Sci., pages 216-227, 1991.

[Mul91b] K. Mulmuley. Randomized multidimensional
search trees: lazy balancing and dynamic shuffling.
In Proc. $2nd Annu. IEEE Sympos. Found. Com-
put. Sci., pages 180-196, 1991.

[MW92] J. Matousek and E. Welzl. Good splitters for
counting points in triangles. J. Algorithms, 13:307-
319, 1992.

[0SS90] M. Overmars, H. Schipper, and M. Sharir. Stor-
ing line scgments in partition trees. BIT, 30:385-
403, 1990.

[Pcl92] M. Pellegrini. Incidence and necarest-neighbor
problems for lines in 3-space. In Proc. 8th Annu.
ACM Sympos. Comput. Geom., pages 130-137,
1992,

[PS92] M. Pellegrini and P. Shor. Finding stabbing lines
in 3-spacc. Discrete Comput. Geom., 8:191-208,
1992.

[Sch91] O. Schwarzkopf. Dynamic maintenance of geo-
metric structures made easy. In Proc. $2nd Annu.
IEEE Sympos. Found. Comput. Sci., pages 197-206,
1991.

[Sch92] O. Schwarzkopf. Ray shooting in convex poly-
topes. In Proc. 8th Annu. ACM Sympos. Comput.
Geom., pages 286-295, 1992,

[Sha93] M. Sharir. Almost tight upper bounds for lower
envelopes in higher dimensions. In Proc. 34th Annu.
IEEE Sympos. Found. Comput. Sci. (FOCS 93),
pages 498-507, 1993.

[SO90] H. Schipper and M. H. Overmars. Dynamic par-
tition trees. In Scandawian Workshop on Algo-
rithms Theory, volume 2, pages 404—417. Springer-
Verlag, 1990. LNCS 447; also to appear in BIT.

[Wel88] E. Welzl. Partition trees for triangle counting
and other range searching problems. In Proc. 4th
Annu. ACM Sympos. Comput. Geom., pages 23-33,
1988.

[Wil82] D. E. Willard. Polygon retrieval. STAM J. Com-
put., 11:149-165, 1982.

[Yao83] F. F. Yao. A 3-space partition and its applica-
tions. In Proc. 15th Annu. ACM Sympos. Theory
Comput., pages 258-263, 1983.

|[YDEP89] F. F. Yao, D. P. Dobkin, H. Edelsbrunner,

and M. S. Paterson. Partitioning space for range
queries. SIAM J. Comput., 18:371-384, 1989.

[YY85] A. C. Yao and F. F. Yao. A general approach
to D-dimensional geometric queries. In Proc. 17th
Annu. ACM Sympos. Theory Comput., pages 163~
168, 1985.

