7 o =Y X A 41—3
(1994. 9. 21)

MEEDLEERD LRRDO BWIEF| T)L T XA

BE mmsE— NOE=5
AR LERFERIER TR

ERTHALEOMIE RO LEDORVEFI T VT X AZRET L. nHOHDE
BSPERZLNIEE, COTNTYXLDPLRD 2 DODERVBLNE. (1) SOMEH
O(n/log‘n) 70ty 4 & BT Olog*n) (e > 0 IMEEOEHK) BETROLND. (2)
SOMEL O(nlogn) 7 Wt v F%HWT O(lognloglogn) BETROLNE. 2D, (1)
BIZAMRETH L. (1) LERTEL DT Oy FOFHING (2) I FLVEHTH B, K
T, SHEETFVE LT OREWPRAMET VMR &SNS,

An efficient parallel algorithm for finding the convex hull of discs

Wei Chen Koichi Wada Kimio Kawaguchi

Department of Electrical and Computer Engineering, Nagoya Institute of Technology
Showa, Nagoya 466, Japan

In this paper, we present an efficient parallel algorithm for finding the convex hull of a set
of discs. Two results are yielded from the algorithm. One is that the convex hull of n discs
can be computed in O(log'*“n) (¢ > 0 is an arbitrary constant) time using O(n/log* n)
processors, and another is that the convex hull can be computed in O(lognloglogn) time
using O(nlogn) processors. The first one achieves cost optimal and the second one runs
faster. The computational model used is the CREW PRAM model.

1 Introduction

Given a set § of geometric objects in the plane, the convex hull of S is the smallest convex region containing
the all objects of S. Much work has been done in computing the convex hull efficiently, both in serial
computers and in parallel computers, especially for a set of points'in the plane [1]~[7][9]. In this paper we
consider the CHD problem, the problem of computing the convex hull of n discs, in which the sizes of the
discs can be different. The CHD problem is theoretically interesting and also has many applications[12].
Recently, D. Rappaport [12] gives an O(nlog n) sequential algorithm for the CHD problem. It is optimal
since the problem for finding the convex hull of n points in the plane has an Q(nlogn) sequential lower
bound. ’

Algorithms for the CHD problem have also been developed in the CREW (Concurrent Read Exclusive
Write) PRAM (Parallel Random Access Machine). The PRAM is a synchronous parallel model of compu-
tations. This model employs a number of processors which share a common memory. The CREW PRAM
is one of the PRAM models where concurrent reads are allowed but no two processors can simultaneously
write to the same memory cell. Given two parallel algorithms for the same problem one is more efficient
than the other if: (1) primarily, its time-processor product is smaller, and (2) secondarily (but important),
its parallel time is smaller. We call the time-processor product as the cost of the algorithm. A PRAM algo-
rithm is said to be cost optimal if the cost is of the same order as the time complexity of the fastest known
sequential algorithm. K.V. Wering [13] presents an algorithm which solves the CHD problem in O(log® n)
time using O(n) processors in CREW PRAM. M. Yoshimori [14] improves Wering’s result. He describes a
cost optimal algorithm in CREW PRAM which runs in O(log” n) time using O(n/ logn) processors. In this
paper, we present an efficient parallel algorithm for finding the convex hull of a set of discs. Two results are
yielded from the algorithm. One is that the convex hull of n discs can be computed in O(log't*n) (¢ >0
is an arbitrary constant) time using O(n/log® n) processors, and another is that the convex hull can be
computed in O(log nloglogn) time using O(nlogn) processors. The first one achieves cost optimal and the
second one runs faster.

The paper is organized as follows. In Section 2, we give some definitions and discuss several lemmas. In
Section 3, we explain the basic idea of our algorithm. In Section 4, we present the algorithm for finding the
convex hull of discs.

2 Preliminaries

Let S be a set of closed planar discs, in which the radiuses of discs can be different. We say u is an arc (of
circle) of disc s if u is an arc on the boundary of s. The convex hull of S, denoted as CH(S), is the smallest
convex region containing S. It is easily to see that the boundary of CH(S) is consisting of arcs (of circles)
and straight line segments connecting these arcs. We represent the convex hull of S by a sequence of arcs,
that is, CH(S) = (51,52, .. .,5m), such that the arcs appear in the boundary in clockwise. A disc u € S
is said to be the leftmost disc of S, if all the discs of .S are in the right of the vertical line L which passes
through the leftmost point of u. Similarly, a disc v € S is said to be the rightmost disc of S, if all the discs
of S are in the left of the vertical line R which passes through the rightmost point of v. Without loss of
generality, in CH(S), let arc s; be an arc of leftmost disc u and arc s, be an arc of rightmost disc v. The
straight line D passing through the centers of u and v divides each of 5; and s, into two arcs: s11,512 and
Sa1, Sa2, Tespectively. Line D divides CH(S) into two parts: an upper hull, U H(S), above D consisting
of the arcs from s1; to sq1 inclusive, and a lower hull, LH(S), below D consisting of the arcs from s42 to
s12 inclusive, in the clockwise. We discuss how to construct the upper hull only, since the lower hull can
be considered in the same way. With the upper hull and the lower hull, the convex hull can be computed
simply. To simplify the presentation, in this paper, we omit the floor and the ceiling operations to ensure
that any constant or variable takes an integer value. In the rest of this section, we discuss several lemmas.

Lemma 1 12 Let S be a set of n closed planar discs. Conver hull CH(S) contains at most 2n — 1 arcs. g

Lemma 2 14 Let S be a set of n closed planar discs. Convez hull CH(S) can be computed in O(log® n)
time using O(n/logn) processors. "

From Lemma 2, CH(S) can be computed in O(t) time using O(n logn/t) processors for any ¢ > log? n.
Therefore, the following corollary holds.

Corollary 1 Let S be a set of n closed planar discs. Convez hull CH(S) can be computed in in O(n) time
using O(logn) processors.]

Two upper hulls are said to be separated by a straight line if the line separates these two hulls into its
either side. Given a sequence A = ay,as,...,a, of arcs (of circles), A is said to be sorted in z coordinates
if for any 7 (1 < i < n — 1) there exits a vertical line such that arc a; is in the left side of the line and a;41
is in the right side of the line. For sequence A, the following lemma holds.

Lemma 3 If sequence A = ay,4as,...,an of arcs (of circles) is sorted in z coordinates, the convez hull of
A can be consiructed in O(logn) time using O(n/logn) processors.

Proof: First, consider a point set P which is sorted in « coordinates. Goodrich’s algorithm [9] uses divide-
and-conquer to compute the upper hull of P as follows. Divide P into several subsets, then construct the
upper hull of each subset, finally merge these separated upper hulls into the upper hull of P. In the merge
step, the basic operation is to find the upper common tangent of two separated upper hulls. See that when
A is sorted in z coordinates, both divide-and-conquer and the basic operation can be used for arc set A
without any problem. Therefore, by considering the points as the arcs, we can compute the upper hull of A
by Goodrich’s algorithm. The proof follows from the fact that Goodrich’s algorithm runs in O(logn) time
using O(n/logn) processors. i

The following corollary comes from Lemma 3.

Corollary 2 Given m upper hulls q1,q9,...,9m each with at most § arcs, if any two upper hulls of them
are separated by a vertical line, then the upper hull of 1,93, ..., gm can be constructed in O(log(sm)) time
using O(6m/ log(ém)) processors. B

3 The basic idea

In this section, we explain the basic idea of our algorithm. We construct the upper hull UH(S) by divide-
and-conquer. If we can partition n discs of S into several equally-sized parts such that any two parts are
separated by a straight line, then we can construct U H(S) simply by, first, finding the upper hull of each
part, then, merging these upper hulls into UH(S). But such a partition seems to be impossible. In fact,
when we partition S, say, by m — 1 vertical lines, we obtain m parts which may contain ©(mn) arcs totally
(Fig. 1). It makes the problem difficult. Therefore, in our algorithm, we avoid to partition S directly. We
first, divide .S into d subsets such that each subset contains n/d discs and construct the upper hull of each
subset. Note that these upper hulls may intersect each other. Then, instead of partitioning S, we partition
these d upper hulls into n/d separated parts by n/d — 1 vertical lines and find the upper hull of each part.
Finally, merge their upper hull into U H(S). Why our algorithm works is because all these n/d separated
parts contain only O(n) arcs. To show it, see that when we partition these upper hulls by vertical lines, one
line increases at most d arcs. We summarize the basic idea for computing the upper hull of set S of discs
as follows.

Phase | Divide S into d equall-sized subsets Sy, Ss,..., Sg. For each i (1 < i < d), recursively construct
upper hull UH(S;), in parallel (Fig. 2 (i)).

Phase 2 Let N be the number of the arcs in UH(S;) for all 4, that is, N =X& ;| H(S;)|. Partition upper
hulls UH(S1), UH(S3), ...,UH(S4) into n/d separated parts by n/d-+1 vertical lines as follows (Fig. 2(ii)).

(i) Let P = {p| the left endpoint or the right endpoint of arc s € UH(S;), 1 < i< d}. Sort P (P has
2N points) in z coordinate.

(iii) Denote the vertical lines passing through the Ist, d-th, 2d-th, ...;nth points of sorted P as
Lo,Ly,...,Lpnya, resepectively. For each i (1 < i< d), partition UH(S;) into the subhulls by vertical lines
Lg,Ly,... \Lpya. Obviously, each subhull consists of the contiguous arcs of U H(S;), except the leftmost and
the rightmost arcs of the subhull which may be the subarcs (Note that an arc of U H(S;) may be partitioned
into many subarcs by these vertical lines.) For each j (1 <j <n/d), let E; = {s | s is an arc (or subarc))
of UH(S;), 1<i<d, and s is located between line L;_; and L;}.

l,-\\\\
7 N
b‘?\\\\\

S

S\
)
o/

\$5
N\

N

N \\‘\\?‘ -
R Y
‘\&\'
NN

&.\T

Figure 1: A set of discs difficult to separate

Phase 4 For each j (1 € j € n/d), recursively construct upper hull UH(E}), in parallel.

Phase 5 Construct U H(S) by merging U H(E;) for all j (1 < j < n/d). 1

4 The convex hull algorithm for discs

In this section, we present algorithm MakeDiskUH which computes the upper hull of a set of discs. The
basic idea was explained in Section 3. To make the algorithm efficiently, we handle the problem more
delicately. In the algorithm, we uses é divide-and-conquer. What we must pay attention to is that the value
& varies with the size of the input. For example, we may use §; divide-and-conquer for the problem with
size n; < n < njp1, where 1 < i <k, n; = n and ngyy = 0. That is, when we use §; divide-and-conquer
to solve an problem with size n; < n < n;41, we divide the problem into §; equally-sized subproblems
recursively until the size of the subproblems is at most n;;1, then we use §;4; divide-and-conquer to solve
the subproblems. In addition, to save the cost, in the algorithm we reduce the points of P and number of
these vertical lines which are used for separating the upper hulls. The algorithm is as follows.

Input: S =(s(1),5(2),...,5(n)), aset of closed planar discs.
Output: UH(S) = (u,ug,...,uUnm), the upper hull of S.

In the algorithm, let d = logl/c n and let d; = 2d' (= 21°3‘/G", 1< i< c). We let ¢ be a parameter and
determine it later.

Algorithm MakeDiscsUH(S)

Phase 1 If n < dy, compute UH(S) in O(n) time using O(logn) processors by Corollary 1, or if n = dj,
compute UH(S) in O(log? n) time using O(n/ logn) processors by Lemma 2. This completes the algorithm.
Else do the following steps.

Phase 2 Determine ¢ such that dy< n <diy1. Let & = min(d;,n/d;). Divide S into é; equall-sized subsets

S1, Sa,..., Ss, such that S;= {s((— V)n/6; + 1),s((i —)n/b; +2), ... ,s(in/6,)} (1 < i < é;). For each i,
call MakeDiscsU H(S;) to construct upper hull UH(S;), in parallel.

(i) upper hulls UH(S1), UH(S2),... drawn in thick lines

(i The vertical lines partioning upper hulls UH(S1), UH(S2),...

Figure 2: Divide-and-conquer technique used in algorithm MakeDiscUH(S)

Phase 3 Let U; be the sequence of the endpoints of the arcs in U H(S;) listed from the left to the right. For
each i (1 < i < &), pick out an endpoint from every logd; endpoints, that is, pick out 1st, (logd; + 1)-th,
(2logdy +1)-th, ... ,(2]JUH(S;)])-th endpoints of U;. Include all these endpoints to a set P, that is, P ={p |
(klogdy + 1)-th endpoint of U;, 0 < k< (2JUH(S:)| — 1)/logdy, 1 <7 < 8;}. Let N be the number of the
arcs of P. Partition upper hulls UH(S1), UH(Sy), ...,UH(Ss,) into N = N/6, separate parts by N + 1
vertical lines as follows.

(i) Compute N =Xft, (2(|UH(S:)| — 1)/ logdy + 1).

(ii) Sort P in z coordinate.

(iii) Denote the vertical lines passing through the 1st, 6;th, (26;)-th,... , (N6;)-th points of sorted P
as Lg,Ly,... L5, resepectively. For each i, divide UH(S;) into the subhulls by Lg,L1,... ,L7. Gather the
arcs of the subhulls which are located between L;_; and L; into arc set Ej, i.e., for each j (1 < j < N),
E; ={s| sis an arc (or subarc) of UH(S;),1 < i < &, and located between line L;_; and L;}.

Phase 4 For each j (1< j < N), recursively construct UH(E;), in parallel.
Phase 5 Construct U H(S) by merging UH(E;) (1 <j < N).)

Let us analyse the complexity of algorithm MakeDiscsUH(S). Discuss each step of Phase 3. Step (i)
computes N, the size of P. It can be computed in O(log é;) time using O(6:/ logé:) processors by the sum
computing algorithm[8]. By Lemma 1, U H(S;) has at most 2n/§; arcs. Each arc has 2 endpoints, therefore,
N < 4n/logdy holds. Step (ii) sorts point set P in z coordinate. It can be executed in O(log(n/logd,))
time using O(n/ logd,) processors by the sorting algorithm[8]. In step (iii), it is obvious that U H(S;) can
be cut into the subhulls by vertical lines Lg,Ly,. .. L7 in O(log |[UH (S;)|) time with O(N) processors. From
N§, < 4nflogdy, all UH(S:) (1 < i < &) can be cut into the subhulls in O(logn) time using O(n/logd;)
processors. Gathering all the arcs of UH(S;) (1 < < 6;) which are located between lines L;_; and L;, we
get E;. In Phase 4, we recursively compute the upper hull of E1,E», ..., Ex, in parallel. Let us consider
the size of E;. First we see that vertical lines L;_; and L; are not the same line, i.e., L; is of a larger «
coordinate than that of L; ;. Recall that L;_; and L; pass through the j — 1 x é;th and j x é;th endpoints
of sorted point set P, respectively. Therefore, if L;_; and L; are the same line, there must be at least §; + 1
endpoints of P which have the same z coordinate as that of L;_;. This is a contradiction, since for each 4,
at most one arc of U H(S;) can have an endpoint whose z coordinate is the same as that of L;_;. Therefore,
L;j_y is really in the left of L;. Recall that Ej is defined as a set of arcs located between line L;.; and line
L;. An arc of Ej is in one of the following three cases: (1) it is cut by neither L;_; nor Lj, (2) it is cut by
either L;j_y or Lj, and (3) it is cut by both L;_; and L;. We say that an arc is not cut by L;_; or L; if its
end points are exactly on L;_; or L;. By the definition of Lg,L1, ..., Ly, the number of arcs in (1) and (2)
is at most logd; (N/N)= 6§;logd;. The number of the arcs in (3) is at most &; since for each i (1 < i < ;)
UH(S;) can have at most one arc which is cut by both lines L;_; and L;. Therefore, the size of E; is at
most 26; logd;. Finally, by Corollary 2, all UH(E;) can be merged in to UH(S) in O(logn) time using
O(n/logn) processors.

Denote the running time and number of processors of the algorithm as T(n) and P(n), respectively.
Phase 2 runs in T(n/§;) time using 8§, P(n/é;) processors, and Phase 4 runs in T(26;logd;) time using
NP(261 log d;) processors, respectively. Considering together with Phase 1, the complexity of the algorithm
can be summarized as following inequalites (A) and inequalites (B), where k; is a constant.

(A) When §; = d,, i.e., n/d; > d;, the following inequalites hold.

kilogin ifn=d;

T(n/dy) + T(2dilogdy) + kylogn if di<n<diygand (1<t <c—~1)
T(n) <
kin ifn < d;

kin/logn ifn=d;

max{kin/logdy,di P(n/d;),n/(di logdi)P(2d; logdi)} ifdi<n<diyrand1<t<c-—1
P(n) <
k1 logn 1f71 < d1

(B) When 6; = n/d,, i.e., n/d; < d;, the following inequalites hold.

kilog’n ifn=d;

T(d:) + T(2(n/dy)logd;) + ki logn ifdy<n<diygand1<t<c—1
T(n) <
kin ifn < d

kin/logn ifn=d;

max{kin/logdy,n/d,P(d;),d;/logdi P(2nlogd;/dy)} ifd, <n<dyyyandl <t<c—1
P(n) <
kyilogn ifn < d;

First, let us compute the term T'(2d; log d;) in inequalites (A). Note 2logd; < d; holds. From inequalites
(B), there exits a constant k; such that the following inequalites (C) hold.
©
T(2d; logd:) < T(d:) + T(41og® dv) + ks logd,

P(2d,logd:) < max{ksd;, 2log d; P(d;), di/ log dy P(41log? di)}

Since 4log2 dy < dy, T(4 log2 di) <4k log2 dy and P(4 log"’ d1) < 4k, loglogd; hold. There exits a constant
k3 such that the following inequalites (C’) hold.
©)
T(2d; log dy) < T(dy) + ks logd, + ks log? d;

P(2d;logdy) < max{kad;,2logd; P(d;)}

When 7 is large enough, from inequalites (A) and (C’) there exits a constant k4 such that the following
inequalites (A”) hold.
(A7)
T(n/d)+T(di) + kalogn + kslog’dy ifd; <n<dpyqand1<t<c—1
T(n) < 2 .
kilog'n ifn=d;
max{ksn/logdy, 2n/d;P(d;),ds P(n/d;)} ifdi <n<dipandl <t<c—1
P(n) < .
kan/logn ifn=d

In the following, we use (A’) to show that T(d;) < A;logdiy: and P(d;) < Byd,/logd; hold for all
1<t <, where A = 1+ 2(t — 1)ks and B, = 2"k, Recall d = log!/®n, d,= 24'. Obviously, they hold
for t = 1, where A; = k4 and By = k4. Assume that T(d;) < A;logd;,; and P(d;) < B;jd;/logd; hold.
The following inequalites hold for d; < n < diy1.

T(n) < T(n/d;) + T(d;) + kalogn + kqlog® d;
T(d,) S A,’ log d,'+1

{ P(n) < max{ksn/logdy, d; P(n/d;), 2n/d; P(d;)}
P(d;} <Bid;/logd;

To compute T'(d;+1), we iterate the recursive inequality of 7(n) from n = diy; down to n = d;.
Assuming that h is the times for iterating recurrence, diy1/(d:)* = d; hold, i.e., h = logd; — 1. Therefore,
T(d,'.H) <A; log di+1+(10g dy— 1)((14,-{-1{:4) IOg di+1 +ky lOg2 d1)§ (A,+2k+4) log dz‘+2. Let A,'+1= A;+2k,=
1+ 2ik4. We obtain the inequality T'(diy1)<Aiy1logdits. In the similar way, we can prove P(diy1) <
Biy1diy1/logdy, where Biyy = 2B; = 2'k4. Therefore, T(n) = T(d.) = 1+ 2(c—- l)k4)log1+1/°n and
P(n) = P(d.) = 2°"kyn/ log"/¢n hold. If let ¢ = loglogn, T(n) = O(lognloglogn) and P(n) = nlogn
hold. If let ¢ be a constant, T(n) = O(log'**/°n) and P(n) =0(n/log!° n) hold. Therefore, we have the
following theorems.

Theorem 1 The convez hull of a set of n discs can be computed in O(logH‘n) (¢ > 0 can be an arbitrary
constant) time using O(n/log® n) processors in CREW PRAM.

Theorem 2 The conves hull of a set of n discs can be computed in O(lognloglogn) time using O(nlogn)
processors in CREW PRAM.

5 Conclusion

We have shown an efficient algorithm which solves the convex hull problem for a set of n discs in the plane.
The algorithm yields two results: one is that the convex hull of n discs can be computed in O(log”‘ n)
(e > 0 is an arbitrary constant) time using O(n/log* n) processors, and another is that the convex hull
can be computed in O(lognloglogn) time using O(n logn) processors. The first one achieves cost optimal
and the second one runs faster. The computational model used is the CREW PRAM model. Whether the
probelm can be solved in O(logn) time using O(n) processors in CREW PRAM still remains to be an open
problem.

References

(1) A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap: Parallel computational geometry.
Algorithmica, vol.3, pp.293-327, 1988.

(2) M. J. Atallah and M. T. Goodrich: Efficient parallel solutions to some geometric problems. Journal
of Parallel and Distributed Computing, vol.3, pp.492-507, 1986.

(3) M. J. Atallah and M. T. Goodrich: Parallel algorithms for some functions of two convex polygons.
Algorithmica, vol.3, pp.535-548, 1988.

(4) W. Chen, K. Nakano, T. Masuzawa and N. Tokura: Optimal Parallel Algorithms for Finding the
Convex Hull of a Sorted Point Set, Trans.IEICE, vol.J74-D-I, no.12, pp.814-825, 1991.

(5) W. Chen,K. Nakano, T. Masuzawa and N. Tokura: Optimal Parallel Algorithm for Computing the
Prefix Convex Hulls of A Sorted Points Set, Tech.Rep. IPSJ, vol. AL28-10, pp.77-84, 1992.

(6) R. Cole and M. T. Goodrich: Optimal parallel algorithms for polygon and point set problems. In
Proc. of the 4th Annual ACM Symposium on Computational Geometry,1988.

(7) P-O. Fjallstrém, J. Katajainen, C. Levcopoulos and O. Petersson: A sublogarithmic convex hull
algorithm. Bit, vol.30, pp.378-384,1990.

(8) A. Gibbons and W. Rytter: Efficient parallel algorithms. Cambridge University Press, 1988.

(9) M. T. Goodrich: Finding the convex hull of a sorted point set in parallel. Information Processing
Letters, vol.26, pp.173-179, 1987. '

(10) M. H. Overmars and J. V. Leeuwen: Maintenance of configurations in the plane. J. Comput. System
Sci. vol.23, pp.166-204,1981.

(11) F.P.Preparata and M.L.Shamos; Computational geometry: an introduction. Springer-Verlag,1985.

(12) D. Rappaport: A convex hull algorithm for discs, and applications. Computational Geometry: Theory
and Applications no.1, pp.171-187, 1992.

(13) K. V. Weringh: Algorithms for the Voronoi diagram of a set of disks. M.Sc.thesis, Department of
Computing and Information Science, Queen’s University, Kingston, Ontario (1990).

(14) M. Yoshimori: An Efficient Convex Hull Parallel Algorithm for discs. M.Sc.thesis, Department of
Computing and Information Sciences, Faculty of Engineering Science, Osaka University, (1994).

