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Ordered binary decision diagrams (OBDDs in short) have been shown as a powerful paradigm in
handling Boolean functions and have been applied to many fields such as VLSI CAD, AI, combinatorics,
etc. In this paper, we consider OBDDs of Boolean functions representing some concepts in graph theory
such as spanning trees, matchings, cliques, etc., as well as concepts in computational geometry such as
planar triangulations. We demonstrate that the problem of finding good variable orderings that make
the sizes of these OBDDs smaller is strongly related to Gaussian elimination of graphs.

Our results have many implications. From the viewpoint of OBDD research, the results give much
more insight to the variable ordering problem to minimize the size of OBDDs. From the viewpoint
of graphs as well as computational geometry, we provide a new way of solving graph problems by
the existing OBDD packages and improve the efficiency of this approach greatly. In fact, we also
demonstrate by computational experiments that many can be done by the existing OBDD packages
using bipartite matchings and planar triangulations as examples.
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1 Introduction

Efficient Boolean function manipulation is needed
to solve many problems in various areas such as
digital logic design, artificial intelligence and com-
binatorics. For that purpose, binary decision di-
agrams (BDD), or ordered binary decision dia-
grams (OBDD) [1, 6], have been shown to be a
powerful tool (e.g., see [7]). There have been de-
veloped several BDD packages [5, 13], and further
enhancements in its time and space/size complex-
ity are required.

A main issue in handling OBDDs for Boolean
functions is to find a good ordering of variables
to make the size of OBDDs small, since the size
varies very much, from polynomial to exponen-
tial in some cases, by the orderings. However, the
intrinsic intractability of finding a best ordering
of variables that minimizes the size of OBDDs
for general functions has been shown recently. In
[17], it was shown that the problem for the shared
binary decision diagram is NP-complete. The
NP-hardness of the problem for OBDDs when the
function is given in terms of CNF, DNF, logical
circuits, etc., in [12]. The NP-completeness of the
problem for OBDDs was shown in [4]. Thus, the
problem of finding a not best but better ordering
of variables to make OBDDs smaller has been a
challenging problem. There have been proposed
many heuristics (e.g., [13, 8]), while there is a
theoretical framework which connects the OBDD
minimization problem with the register allocation
problem [3].

In this paper, we consider Boolean functions
representing many concepts in graph theory such
as spanning trees, matchings, cliques and sta-
ble sets, and demonstrate that the problem of
finding a good variable ordering for these func-
tions is strongly related to Gaussian elimination
of graphs. Triangulations of a planar point set
in computational geometry are also investigated.
This generalizes a framework of applying OBDDs
to combinatorics of graphs first done in [16] and
further extended in [18]. Using many fertile graph
properties underlying the Boolean functions, we
show that many graph-theoretic techniques, es-
pecially those for Gaussian elimination, can be
applied to find a good ordering, which may be
regarded as an extension of the above-mentioned
work by Berman.

Specifically, this paper shows the following.

e The existing theorems on extremal problems
of graphs can be used to obtain a better non-

trivial bound on the size of OBDDs. For ex-
ample, the size of any OBDD representing a
Boolean function whose support is a set of
characteristic vectors of spanning trees of a
graph with n vertices and m edges is shown
to be O(min{mn™~2, m(™)}).

e We relate Gaussian elimination of graphs to
OBDDs. In this framework, we obtain many
useful results using separator theorems, etc.,
for graphs. For example, for a planar graph
with n vertices, there is a variable ordering
such that the size of the corresponding OBDD,
whose support is a set of characteristic vectors
of spanning trees, is O(n2V™).

e We also give bounds on OBDDs related to
matchings, perfect graphs and triangulations
of a planar point set, together with some com-
putational experiments. Through the experi-
ments, we demonstrate how the existing BDD
packages can be applied to bipartite match-
ings and planar triangulations as examples to
illustrate and elucidate the power of this ap-
proach.

All the computational experiments shown in this
paper were made by using the BDD package uti-
lizing edge attributes developed in [13].

2 Preliminaries on OBDDs

An ordered binary decision diagram (OBDD in
short) is a directed acyclic graph which repre-
sents a Boolean function [6]. An OBDD which
represents a Boolean function f(z1,z2,...,27) is
defined as a 5-tuple (X, N,root, label, edge):
X = {z1,%2,...,21} is a totally ordered set of
variables,
N = Ny UN¢g (Nv N Ng = ¢) is a set of
nodes, where Ny is a set of variable nodes,
N¢e = {co,c1} is a set of constant terminal
nodes,
root € N is an root node,
label : N — (X U{0,1}),
edge : Ny x {0,1} — (Nyv U N¢) is a set
of edges, such that, for all v € Ny with
label(v) € X, label(edge(v,b)) € {0,1} or
label(v) < label(edge(v,b)) (b € {0,1}).
In OBDDs, nodes on any path from the rootn-
ode to a terminal node are labeled differently, and
that the ordering of variables on each path is con-
sistent with one another. We denote the ¢th vari-
able over X by «[i], and call 7 = (x[1],7[2],...,
w[n]) variable ordering. An OBDD with a root
node v represents a Boolean function F(v) such




that if v is a constant node, then F(v) = label(v)
and that if v is a variable node, then F(v) =
label(v) F(edge(v, 0)) + label(v) F(edge(v, 1)).

The size of an OBDD is defined to be |Ny|.
The size of an OBDD can be reduced by apply-
ing repeatedly the following reduction rules: If
there exists a variable node v where edge(v,0) =
edge(v,1) (such a node v is called a redundant
node), then eliminate v and redirect all incoming
edges to edge(v,0). If there exist equivalent nodes
u,v, then eliminate v and redirect all edges into
u to v. Two nodes u,v are equivalent if one of
the following holds:
(1) If both u and v are constant nodes, label{u) =
label(v).
(2) If both u and v are variable nodes, label(u) =
label(v), edge(u,0) = edge(v,0) and edge(u,1) =
edge(v, 1).

Maximally reduced OBDD is called a reduced
OBDD (ROBDD). For a fixed variable ordering,

an ROBDD is canonical, i.e., uniquely determined.

For an ROBDD the width of level i is defined as
the number of nodes v in that level plus the num-
ber of edges which pass the level. The width of
an ROBDD is defined as the maximum value of
the width of level ¢z for 2 = 1,2,...,|X|. In the
following, an ROBDD will be called an OBDD
simply.

3 Bounding the size of OBDDs by com-
binatorics

Let f be a Boolean function of ! logical variables.
We call a set of all truth assignments to the vari-
ables which make f = 1 the support of f. Since
the size of truth assignments is 2!, the size of sup-
port is bounded by 2/. But, for some functions,
it may be much less than 2'.

Let S ={1,2,...,1} be a finite set with |S] =
l, and S be a collection of subsets of S that sat-
isfy some specified properties. A subset S’ of
S can be represented by a characteristic vector
x = (z1,%2,...,7) with z; = 1 for 1 € S and
2; = 0 for 7 € S’. This vector can be regarded
as a truth assignment @ for [ logical variables.
With this family S, we can naturally associate a
Boolean function fs of l variablesz; ( = 1,...,1)
defined by

fs(@) = 1 @: characteristic vector of 8’ € S
o T ] 0 otherwise

In this way, for any family of subsets, there is
the uniquely determined Boolean function, and

we can apply OBDDs to the function to solve
problems concerning the family of subsets. Once
the OBDD for fs is at hand, the cardinality |S| of
& and an optimal set in § (maximum/minimum-
weight set, bottleneck optimal set, etc.) can be
found in time linear to the size of the OBDD, thus
solving many counting and optimization prob-
lems concerning S. This framework was shown
to be useful to solve many counting problems in
combinatorics [16]. The framework was extended
in [18] algorithmically so that it can be applied
to a wider class of problems mainly related to
graphs.

When this framework is used for combina-
torial problems whose combinatorial structure is
partly known, we may have nontrivial bounds on
the size of OBDD of relevant functions as follows.

Theorem 3.1 The size of any OBDD represent-
g a Boolean function f of | variables is bounded
by the size of support of f times the number | of
variables.

The proof of this theorem is omitted in this
version due to the space limitation. In the follow-
ing, we describe a few applications of this theo-
rem.

Let G be a simple graph with n vertices and
m edges. Let fiee be a Boolean function of m
logical variables corresponding to the edges such
that firee = 1iff its truth assignment corresponds
to a spanning tree of G. Since this Boolean func-
tion have m logical variables, its size is bounded
by O(2™/m) [9]. But, for complete graphs, m =
n(n —1)/2, and this bound becomes 0(2(;)/(;))
which is quite large.

Due to the structure of graphs, the OBDD
cannot be so large, which can be seen as follows.
First of all, the number of spanning trees is triv-
ially bounded by (,™). It is known that the num-
ber of spanning trees of a complete graph of n
vertices is n" 2, and hence that for G is bounded
by min{n™2, (™) }. We thus obtain the follow-
ing corollary.

Corollary 3.1 The size of any OBDD represent-
ing firee s O(m - min{n"2, (nﬁl)})

This is a better bound than the trivial bound
mentioned above. Thus, the OBDD representing
spanning trees is much smaller than the general
bound of 2™ /m. However, if we regard that the
vertices play a central role here, the above bound
is rather natural. In section 5.2, we show that for



n-vertex planar graph, there is a variable ordering
by which the size of OBDD is O(n2v™). This is
better than O(2"/n) bound even if n is regarded
as a parameter determining the complexity of the
problem. '

For some of the problems related to perfect
graphs, we can have nontrivial results. Here, an
example concerning cliques is mentioned. Later,
in section 5.2, we investigate the stable set prob-
lem for planar graphs. For a graph G = (V, E),
let fcique be a Boolean function whose logical
variables correspond to the vertex set V and it
becomes 1 iff its truth assignment corresponds to
a maximal clique of the graph. A chordal graph
(or, triangulated graph) with n vertices only have
at most n maximal cliques, and from this we have
the following.

Corollary 3.2 The size of any OBDD represent-
ing feique of @ chordal graph of n vertices 1s at
most n?.

The chordal graph has strong connection with
Gaussian elimination of graphs, and we will come
back to this issue in section 5.2.

Next, we consider the problem for triangula-
tions of a planar point set. This problem can
be formulated as that related to stable sets of an
intersection graph of all line segments generated
by the point set, and of course this is related to
cliques for the complement graph. For n points
in the plane, let fi;; be a Boolean function of (3)
variables corresponding to line segments connect-
ing all pairs of points such that fi; = 1 iff the
truth assignment corresponds to a triangulation
of the points. Since the number of triangulations
is known to be exponential in n, we have the fol-
lowing.

Corollary 3.3 The size of any OBDD represent-
ing fui of n points in the plane is O(n2c") for
some constant c.

We thus have another example of a Boolean func-
tion of (3) variables such that the OBDD for any
variable ordering can have nodes singly exponen-
tial in n.

Using this problem as an example, we show
some computational results indicating how the
variable ordering affects the OBDD size and also
the merit of the theorem and corollaries so far
obtained. In Table 1, the size of OBDDs of fi;
for n — 4 points uniformly distributed in the unit
square plus 4 corner points of the square is shown.
We tested three variable orderings:

Table 1: Computational results for fi;; represent-
ing triangulations of n points generating m = (g)
line segments

U1 02 U3
n | m [JOBDD] | JOBDDJ | JOBDD]
8 28 253 145 357
9| 36 415 903 1187
10| 45 1028 3035 2519
1| 55 2028 4851 8210
12| 66 6544 7021 | 46710
13| 78| 16904 — —
14| 91| 29762 — —
15| 105 | 76788 — —
16 | 120 — — —

—: not applicable
|OBDD|: the size of OBDD

Ul: Sort n points in the increasing order of their z-
coordinates from p; to p,, and order line seg-
ments P;p; by the following program: for i :=
2 to n do for j:=1to :—1 do add pip;;

U2: Order line segments in the increasing order of
their degrees (the number of other line seg-
ments intersecting it).

U3: Random ordering.

From the results in Table 1, it is observed that
for all variable orderings the size of OBDDs grows
singly exponentially. However, there is a big dif-
ference concerning the relative sizes among Ul,
U2 and U3. Ul is the best ordering among these.
This ordering has connection with a good order-
ing for the convex case mentioned in the next
paragraph. U2 is a kind of greedy heuristic, and
however the package we used could not compute
the OBDD for n = 13. This would be because of
a problem of the traditional algorithms used in
the package, i.e., constructing OBDDs from small
ones by applying Boolean operations to them,
which may cause unnecessary combinatorial ex-
plosion during the computation even if the final
OBDD itself is small (e.g., see [14]). Such a dif-
ficulty can be overcome by using the output-size
sensitive algorithm proposed in [18].

It should be noted that, once the OBDD is
constructed for fi, a minimum-length triangu-
lation can be found in time linear to the size of
that OBDD. The problem of finding a minimum-
length triangulation has been a big open problem,
and the OBDD-approach to combinatorial opti-
mization can solve this problem in polynomial
time in case there is a variable ordering by which
the OBDD size is bounded polynomially in n and
it can be found in polynomial time. Note that,
by using the result concerning Catalan number in




[16], we can show that there exists a polynomial-
size OBDD for fir; when n points are all on the
boundary of their convex hull.

4 Perfect matchings of a bipartite graph

In this section, we consider the problem of find-
ing all perfect matchings or counting the number
of perfect matchings for a given bipartite graph
G = (U,V; E) with left vertex set U, right ver-
tex set V and edge set E C U x V. We assign
a variable z; (1 = 1,2,...,|F]|) to each edge of
G. Furthermore we define a function fuaien = 1
iff the truth assignment corresponds to a perfect
matching. We are here interested in the size of
OBDDs for fmaich, and obtain the following.

Theorem 4.1 Suppose that the bandwidth of the
associated matriz of a given bipartite graph with
|U| = |V| = n vertices is k. Then, by ordering
vertices according to the row ordering of the ma-
triz attaining the bandwidth and ordering edges
naturally induced by it, the corresponding OBDD
consists of O(kn2¥) nodes.

Here, the bandwidth of a matrix A = (ay;) is de-
fined to be 2max{ |t — 7| |ai; #0} + 1.

Theorem 4.2 For a random bipartite graph, its
OBDD size is exponential for any variable order-
ing with high probability.

These theorems imply that we should inves-
tigate the structure of graphs. Instead of giving
rigorous proofs, we here give some computational
results to give nice flavor of practical aspects of
OBDDs besides results for triangulations of a pla-
nar point set.

4.1 Complete bipartite graph K, ,

Let K, » be a complete bipartite graph with U =
{u1,...,un}, V.= {v1,...,vn} and |E| = n?. For
this graph, we tested the following three variable
orderings:

V1: Arrange edges (u;, v;) in the lexicographically
increasing order of (¢,7) (1 < 4,7 < n). (For
K3,3y (ulavl)v (u17v2)’ (u17U3)7 (U2,U1)7 (u'27
v2), (u2,vs), (uz,v1), (u3,v2), (u3,v3).)

V2: Recursively arrange edges of K, 1 formed
by uy,---,un—1 and v, -+, v and then add
edges (ui,vn) (¢ =1,...,n — 1) and (un,v;)
(7 =1,...,n) in this order. (For K33, (u1,v1),
(u1,v2), (u2,v1), (u2,v2), (ui,v3), (uz,v3), (us,
v1), (u3,v2), (u3,v3).)

V3: Random order.

Table 2: Computational results for K, n

=1 Vi V2 V3
n [JOBDD] | [OBDD] | JOBDD
P 3 6 6
3 23 25 29
4 72 90 135
5 201 206 711
6 522 923 3679
7 1291 2780 14291
8 3084 8169 | 104713
9 7181 | 23579 | 440583
10| 16398 | 67145 —
11| 36879 | 189208 —
12 81936 — —
13 | 180241 — —
14| 393234 — —
15 — — —

Computational results are shown in Table 2.

As is seen from the table, the sizes of OB-
DDs are small in the order of V1<V2<V3. In all
cases, their sizes exponentially blow up like (¢;)"
for each 1 =1,2,3, and ¢; < ¢2 < ¢3. As stated
in Theorem 4.1, by the ordering of V1, the size
of OBDDs is bounded by O(n?2").
4.2 Random bipartite graph
Next, consider a random bipartite graph R, , such
that each edge of K, , exists in the graph with
probability p (0 < p < 1). Theoretically, for
p = Q(logn/n), R, is connected and has a per-
fect matching. For the variable ordering, V1 for
the complete graph was modified for this case.
For the results, see Table 3.

Table 3: Computational results for Rn,

p=0.1 p=202
n | |E] | |BDD] n | |E| | |BDD]
50 | 236 — 20 | 87 | 25351
22 | 104 | 160211
23 | 112 —

=0.5 p=0.9
n | |E] | |IBDD] n | |E| | |BDD|
14 | 101 | 71512 101 89| 13388
16 | 130 | 560788 11§ 108 | 31912
17 | 151 — 12| 128 | 70516
13 | 152 | 161844
14 | 178 | 347093
15 | 207 —

It is easy to show that the size of the OBDD
for R, is smaller than that of K, , if we use the
consistent variable ordering V1. From the com-
putational results, the size for the OBDD for R, ;



is rather large compared with that of the OBDD

for K, n consisting of roughly same number of
edges under the variable ordering V1.

4.3 Bipartite graphs with a constant band-

width

Consider a bipartite graph BBn,3 = (U,V;E)

with U,V as above and E = {(ui,v;) | |i—7] < 3}.

The associated matrix of this bipartite graph has

a bandwidth of 7. As for the variable orderings,

V1, V2 and V3 are modified for this case in an

obvious way. Computational results are shown in

Table 4.

Table 4: Computational results for BBy, 3

Vi V2 V3

n | |E| || J[OBDD] [ JOBDDJ | [OBDD]
10 | 58 870 911 75009
11| 65 1010 1051 | 259868
12 72 1150 1191 —
15| 93 1570 1611 —
20 | 128 2270 2311 —
30 | 198 3670 3711 —
40 | 268 5070 5111 —
100 | 688 13470 13511 —

It is observed that the sizes of OBDDs are lin-
ear for V1 and V2, whereas that for V3 exponen-
tially blows up. This would be rather apparent
from the structure of the bipartite graph.

Summarizing observations obtained so far, we
have the following

e Sparsity of graphs does not necessarily imply
that the size of OBDDs is small. Instead, the
structure of graphs greatly affect the size of
OBDDs.

» In fact, we have also tested a very sparse bi-
partite graph whose associate matrix is con-
structed in connection with the u-resultant
in symbolic computation. The computational
results was very poor although the graph was
really sparse and the variable ordering used
seemed to be appropriate. In this case, by re-
moving several elements taking account of the
structure of the u-resultant and treat them
separately, the size of OBDDs is greatly re-
duced. This may provide a fast way of com-
puting the u-resultant.

o It is natural to represent the structure of CNF
and DNF by bipartite graphs, and the results
so far also apply to logic functions of such
types. In this way, by representing the inter-
nal structure of Boolean functions appropri-
ately by graphs, we may obtain a good vari-

able ordering for OBDDs. This observation
has strong connection with the results in [3].

5 Elimination schemes and the order-
ing of variables in OBDDs

5.1 Decomposable cases

As observed in computational experiments, we
should shed light on the structure of graphs to
find a good variable ordering. The decomposi-
tion of original graphs may be such a structure,
and the following theorems are obtained in [18].

Theorem 5.1 For a bipartite graph such that ev-
ery DM irreducible components in its DM decom-
position are of a constant size, by using an order-
ing induced among the partial order among DM
components, the size of OBDD representing per-
fect matchings is linear in the graph size.

Theorem 5.2 The OBDD representing all the
spanning trees of a series-parallel graph is linear
when an appropriate variable ordering is used.

Theorem 5.3 For a graph the triconnected com-
ponents of which are all of a constant size, there
15 a linear-size OBDD representing all the span-
ning trees of the graph.

These theorems indicate that if there is a de-
composition of original graphs into constant size
components a variable ordering consistent with
the decomposition gives linear-size OBDDs. In
other words, the decomposition corresponds to
direct sums of OBDDs.

5.2 Separators

The example for bipartite graphs with bounded
bandwidth in section 4.3 illustrates that the band-
width has connection with good orderings for OB-
DDs. The bandwidth is a useful concept and
has been applied to many problems. One of its
most remarkable applications is Gaussian elimi-
nation of graphs. For a graph with small band-
width, there exists a good elimination ordering
in Gaussian elimination of a matrix defined by
the graph. However, the converse is not neces-
sarily the case, that is, even if the bandwidth is
not small, there is a case having a better elimi-
nation ordering than an elimination ordering for
the bandwidth. Rather, the existence of a good
elimination ordering has strong connection with
the existence of a small separators for the graph
[10].




In fact, the planar separator theorem was ap-
plied in [11] to the pebbling problem strongly re-
lated to the register allocation problem. Also,
from the viewpoint of OBDDs representing some
properties of graphs, they gave many graph appli-
cations of the theorem. For example, they showed
that a maximum stable set of a planar graph can
be obtained in O(2Y™) time.

Thus, the problem of finding a good ordering
for OBDD:s for graphs is closely related to separa-
tors of graphs. Before applying this observation
to OBDDs, we summarize some properties con-
cerning separators.

For a graph G = (V, E), an elimination scheme
is an ordering of vertices. Fori=1,...,n (n =
|[V]), the i-th elimination front is a set of ver-
tices numbered not smaller than ¢ which are in-
cident to some vertex numbered less than i. For
1 = 1, the elimination front is regarded as a set
of the first-numbered vertex. Let G, be a class of
graphs which are O(n®)-separable for 0 < o < 1.
The planar separator theorem [11] states that any
planar graph with n vertices is O(y/n)-separable,
that is in G) 5. Then, the following lemma holds.

Lemma 5.1 For an O(n®)-separable graph in G,
with 0 < a < 1, there erists an ordering of ver-
tices such that the size of elimination front at any
stageis O(n®) if0 < @ < 1 and O(logn) ifa = 0.

This lemma is used implicitly in many ways
in [11]. Based on this observation and using the
lemma, we obtain the following theorem, where
fstable = 1 iff the truth assignment corresponds
to a stable set.

Theorem 5.4 With the ordering corresponding
to the elimination scheme based on separators for
a graph in Gy with (0 < a < 1), the size of
an OBDD representing fstable for the graph is
O(n2™).

Outline of Proof  We use the ordering in
Lemma 5.1. The width of level 7 of the OBDD
is equal to the number of the subproblems gener-
ated by determining whether the jth vertex (j =
1,2,...,1) in the ordering is adopted as an ele-
ment of a stable set or not. Since the number of
such subproblems is at most the size of elimina-
tion front power of 2, the width of the OBDD is
20(n") " Since the number of variables is n, the
theorem follows. O

Corollary 5.1 For a planar graph, there is a vari-
able ordering such that the size of an OBDD rep-

resenting fstaple for the graph is O(n2ﬁ).

Once an OBDD is obtained, a max-weight
stable set and the number of stable sets can be
computed in time linear to the size of OBDD,
which generalizes the results of [11, 15).

We next consider firee for planar graphs and
a class of O(n®)-separable graphs, where firee is a
function of variables corresponding to edges such
that firee = 1 iff the truth assignment corre-
sponds to a spanning tree. For planar graphs,
we have the following theorem.

Theorem 5.5 With the ordering corresponding
to the elimination scheme based on separators,
the size of an OBDD representing firee of a planar
graph is O(4V™).

In this extended abstract, due to the space
limitation, we omit the proof of this theorem.
The proof is very similar to the following theo-
rem for a class of O(n®)-separable graphs and to
obtain the above theorem we have only to show
that the Bell number in the following proof can
be replaced with the Catalan number (2 (*'7?))
by virtue of the planarity. For a class of O(n%)-
separable graphs, we have the following.

Theorem 5.6 Based on the elimination scheme
based on separators, the size of an OBDD rep-
resenting firee 0f an O(n®)-separable graph (0 <
a < 1) is O(non"+2),

Outline of Proof We use the same ordering
with that in the proof of Theorem 5.4. Then, we
can show that the width of each level is bounded
by Bpa, where By is Bell number denoting the
number of partitions of a set of k£ objects. Since
B < kk, we obtain the theorem. O

In the above, we have also mentioned graph
properties related to perfect graphs. Among per-
fect graphs, chordal graphs admit an elimination
scheme without any fill-in. Based on this obser-
vation, we obtain the following.

Theorem 5.7 Let G be a chordal graph whose
mazimum clique size is k. With the ordering gen-
erated from a perfect elimination with using the
tree structure of mazimal cliques, the size of an
OBDD representing fiee of the graph is O(n¥+2).

Outline of Proof Maximal cliques of a chordal
graph form a tree structure. Since tree is O(1)-
separable, we can further apply the decomposi-
tion technique based on separators to this tree



structure. Then, the size of any elimination front
can be shown to be klogn, and the width is
O(2F'°e™) = O(n*). The theorem follows. o

6 Concluding Remarks

This paper has demonstrated that, for OBDDs of
Boolean functions representing some graph prop-
erties, a good variable ordering for OBDDs can
be obtained on the analogy of Gaussian elimina-
tion for the graphs. In Gaussian elimination for
graphs, separators play a key role, and besides
planar graphs there are a class of graphs having
good separators (e.g., see [2]). For such a wider
class of graphs, we can apply the paradigm pre-
sented in this paper to OBDDs concerning those
graphs.

Originally, OBDDs are applied to represent a
logic circuit compactly. The structure of a logic
circuit can be represented as a directed acyclic
graph (DAG), and the problem of finding a good
ordering for the circuit is related to the register
allocation problem for this DAG [3]. From the
viewpoint of complexity theory, OBDDs form a
restricted class of branching program, and the
size of OBDDs has connection with the space
complexity. In this respect, relating the OBDD
minimization problem to the register allocation
problem is natural. It will be required to treat
these related problems, especially Gaussian elim-
ination of graphs to solve graph problems, in a
unified fashion for further practical and new ap-
plications.
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