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This paper presents two practical algorithms for pattern matching of 3D protein structures: a
hashing technique for quick substructure search and an alignment algorithm for 3D structures.
In both algorithms, protein structures are treated as point sequences. In the hashing technique,
for each fixed-length sequence, a hash vector is computed, where the distance between two hash
vectors is small if two sequences are similar. In the alignment algorithm, a correspondence of
points between two sequences is computed. In each algorithm, a theoretical proof for the quality
of outputs is given. Moreover, experimental results show that both algorithms are effective.



1 Introduction

The comparison of three-dimensional (3D, in
short) protein structures plays a very impor-
tant role in the study of protein structures
[5]. Thus, it is important to study pattern
matching algorithms for 3D protein structures.
Recently, geometric pattern matching algo-
rithms have been studied extensively in com-
putational geometry [3, 6, 7, 8]. However, most
of them do not seem to be practical since they
are too complicated to be implemented and
the time complexities are not small. On the
other hand, a large number of practical pat-
tern matching algorithms for 3D protein struc-
tures have been proposed in molecular biology
[2, 11, 12, 14, 15, 19, 20, 21]. However, they
do not seem to be sufficient from the viewpoint
of the computation time and the robustness
against insertions or deletions of sequences.
Moreover, there are no theoretical proofs for
the qualities of the outputs of them.

This paper presents two pattern matching
algorithms for 3D protein structures, which
are practical and have theoretical proofs for
the qualities of outputs. One is developed
for the substructure search problem, and the
other is developed for the alignment problem.
In the substructure search problem, given a
small fragment (pattern) of 3D structure, all
structures which have substructures similar to
the fragment are enumerated. It is important
for searching 3D protein structure databases
since the number of proteins, for which 3D
structures are known, exceeds 1000 and it
grows year by year. In the alignment problem,
given two (or more) 3D structures, structurally
equivalent atoms are identified. It is important
to get good matchings between large protein
structures since insertions and deletions of se-
quences must be considered. The root mean
square deviation is used as a measure for the
quality of outputs, which is a common measure
for comparing two 3D structures in molecular
biology.

2 Problems

In this section, we define the substructure
search problem and the alignment problem for-
mally. First we consider representation of 3D
protein structures. As we are only interested
in representing an outline of 3D structure, we
follow the common procedure of ignoring side
chains and consider only the carbon and nitro-
gen atoms (or Ca atoms) in the main chain,
which are treated as points in 3D space. Only
the geometry of protein structures is consid-
ered and details such as the identity of spe-
cific atoms are ignored. Thus, each protein
structure is treated as a sequence of points. If
we consider Ca atoms only, a typical size of
a protein sequence is at most 600. For each
structure P = (pl,---,p"), P;; denotes the
fragment (p’,p't!, ... p’) of P.

2.1 Root Mean Square Deviation

Here, we briefly review the root mean square
deviation (rms distance or rTmsd, in short),
which is used as a common measure for com-
paring two protein structures in molecular bi-
ology. The rmsd fitting is a kind of least-
squares fitting method for two sequences of
points, and was developed by several persons
independently [9, 13, 17].

Let P = (pl,‘,_,pn) and Q = (ql,"')qn)
be two sequences of points. We assume that

1 n
P is translated so that its centroid (; E %)
k=1

is at the origin. For each point (resp. vector)
8, 8; (¢ = 1,2,3) denotes the i-th coordinate
value of s. Let

1 n
d(P,Q,R,a) = J;Z |[Rpt +a—gf?
k=1

where R is a rotation matrix and a is a
translation vector. Then, the rmsd value
d(P,Q) between P and @ is defined by
d(P,Q) = %igd(P,Q,R, a).

d(P, Q) is

obtained by com-




1 n
puting a = ;Zq" and R = (AtA)1/24-1
k=1
which minimize d(P,Q, R, a), where the ma-
trix A = (4i;) (4,5 = 1,2,3) is given by
n

Aij =" plqk [17]. Note that d(P,Q), R and
k=1

a can be computed in O(n) time. Also note
that reflections can be included without in-
creasing the order of the time complexity al-
though they are not considered in this paper.

2.2 Substructure Search Problem

Using rmsd, we define the substructure search
problem as follows.

Input: A fragment P = (p!,---,p™), a real
number § > 0 and a set of proteins QS =

{Qla" '7QN})

Output: All structures Q7 each of which con-
tains at least a fragment Qf, , ; such

that d(P, Q14 n_1) < 6.

The substructure search problem can be solved
by a naive algorithm which computes rmsd
for all Q{,Hm_l’s. However, it takes O(Nmn)
time, where we assume that the length of each
@7 is O(n). In fact, experimental results de-
scribed in Section 5 show that it takes about
a minute. It is too long time for interactive
uses of protein structure database systems. If
we use an FFT-based algorithm by Schwartz
and Sharir {17], the time complexity is reduced
to O(Nnlogm). But, the constant factor is
too large. Indeed, experimental results show
that it is faster than the naive algorithm only
if m > 200 ~ 300 [18]. If m > 60 ~ 100,
insertions and deletions of sequences can not
be ignored and the substructure search prob-
lem should be defined in another way. So, the
FFT-based algorithm is not practical.

2.3 Alignment Problem

The alignment problem for 3D protein struc-
tures is defined in a similar way as in the case
of strings.

For two point sequences P and @, M is
called an alignment between P and @ if M
is a subset of P x Q and (V(p",q) €
M)(¥(p™,¢”?) € M)(i1 = i2 ¢ j1 = j2) and
(V(p", ") € M)(¥(p™,¢7) € M)(i1 < i ¢
J1 < j2) hold. Let Mp (resp. Mg) be the sub-
sequence of P (resp. @) such that each element
appears in M. Then, the alignment problem
is defined as follows (see Fig. 1).

Input: Two sequences P = (p!,---,p™) and
Q = (g%,---,q"), a positive integer K and
a positive real §,

Output: An alignment M between P and Q)
such that {M| > L and d(Mp, Mg) < 6.

In the alignment problem, we assume without
loss of generality that m < n holds. Alignment
of protein structures is important for finding
common structural patterns of proteins, since
insertions and deletions of sequences should be
ignored to apply the rmsd fitting effectively.
In the case of Fig. 1, { (p',¢%), -+, (P*,q%),

(p7a q5)’ Ty (pl3’ qll)y (p147 q13)’ (p15, qlﬁ)v
(p', ¢'7) } is an example of a good alignment.

Figure 1: Alignment problem.



3 Hashing Technique for
Substructure Search

For quick substructure search, we use a kind of
hashing technique. Several hashing techniques
for geometric objects have been proposed, and
they are called as geometric hashing. However,
none of them has a theoretical proof for hash
function.

In our hashing technique, a vector of reals
is associated for each fragment of fixed length.
For each fragment P = (p!,---,p¥) of length
H, a hash vector hs(P) is associated. Then,
the following conditions should be satisfied by
hs(P):

(A) hs(P) is invariant with any isometric
transformation for P,

(B) ﬁs(P) is close to hs(Q) if d(P, Q) is small.

Although condition (A) may be implied by
condition (B), we describe them separately to
make the presentation clear. Note that once
such a vector is given, d(P, Q) is required to be
computed only when hs(P) is close to hs(Q).
Moreover, elaborate data structures for or-
thogonal range query [22] might be used ef-

fectively.

Here, we describe our hash vectors. All vec-
tors are very simple and computed in a similar
way. First, we describe a basic one, denoted

by HASH(A).

HASH(A):
hS(P) = (CI(P)$51(P)1 Tty CD(P)’SD(P))7

where

a(P) = o3 It (sin(2EZ1) 4 g,
k=1
H

$(P) = a3 Ipt—ell (cosZEZL) 4 ).
k=1

Note that ¢ denotes the centroid of P (i.e.,

H

c= Zpk), and ||p|| denotes the length of a
k=1

vector p. Also note that a (¢ > 0) and

(B > 0) are fixed reals and D is a fixed integer,

to be determined later. hs(P) is similar to (a
low frequency part of) the Fourier spectrum
of the distances between the points and the
centroid.

For hs(P), condition (A) is trivially satis-
fied since hs(P) is computed only from the
distances between the points and the centroid.
To show that condition (B) is satisfled, we first
prove the following theorem.

Theorem 1: Assume that P = (pl,---,p")
and Q = (¢',---,q") are translated so
that the centroids are at the origin. Then,

I Z Il ~ Z lg'll} < Hd(P,Q) holds.

Proof Let Q (@',---, ") denotes the ro-
tated sequence of Q such that d(P,Q,I,0) =
d(P,Q), where o denotes the origin and I de-
notes the identity matrix.

Then, the following inequality holds:

H H
IZHP II—ZII'J’HI IZ;IIPiII—ZIIfJiIII
1= i=1

z=1
. . H . .
SZIHP’I]—H(THI < Yollpt-all,
i=1 i=1

where the last inequality comes from the
triangular inequality. Since t; + -+ +
tn < VHy/t}+---+1t} holds for all t; >
0,-++,tg >0,

H H _
Stlipt-a'l < VH, | lIpt - &2 = Hd(P,Q)
i=1 i=1

holds and the theorem follows. 0
From Theorem 1, the following corollary
is immediately proved, which shows that
HASH(A) satisfies condition (B).
Corollary 1: For all i, |¢;(P) — ci(Q)] <
Ha(1+8)d(P, Q) and [si(P)—si(Q)] < Ha(l+
BYd(P, Q) hold. O
From Corollary 1, if |¢;(P) — ci(Q)]
Ho(l+ B)8 or |si(P) — si(Q)] > Ha(l +6)8
holds for some i, then d(P, @) > § holds. Note
that hs(P) can be computed in O(H) time,
and whether or not (]s;(P) — si(@Q)] < v A
|ci(P)—ci(Q)| < v) holds for all ¢ can be tested



in constant time since we assume that D is a
fixed integer. Let HS(P, Q,) denote this con-
dition ( ([s:(P) —s:(Q)] £ YAei(P) —ci(@)| <
<) holds for all 7).

Next, we describe several variants of
HASH(A). HASH(B) and HASH(B’) are ob-
talned by replacing ¢ of HASH(A) with

N

d= Zp and e = E p", respectively.
k=1 k=N-L+1

HASH(A+B) is a combination of HASH(A)
and HASH(B), and HASH(A+B+B’) is a
combination of HASH(A), HASH(B) and
HASH(B’). It is not difficult to see that similar
properties as Corollary 1 hold for all vectors.

4 Approximate Alignment

The alignment problem might be solved ex-
actly using similar approach as in Refs. [3, 8].
However, it would be too complicated and the
time complexity would become very large.

Thus, we have developed an approximation
algorithm using an idea introduced by Heffer-
nan and Schirra [6, 7, 16]. Moreover, ideas in
Refs. [11, 14] are combined. In this paper, we
overview the algorithm, and details and proofs
are omitted.

4.1 Algorithm

The algorithm in a basic form is very simple
as shown below, where «, 8 and 7 denote con-
stants.

Procedure ApproAlign(P,Q, K, )
M+ §;
for all triplets PP = (p'!,p'?,p*®) of P do
for all triplets QQ = (¢°*,¢"%,¢%®) of Q do
if D(PP,QQ) < v6 then
Compute a matching M between P and Q;
if [M'] > (1 —1/a)K and M’ is better than M
then M + M’;
Output M;

FH

Note that D(PP,QQ) denotes the minimax
distance defined in the next subsection. To
compute a matching M, we construct a
weighted bipartite graph G(P, Q; E), such that
(p'.¢%) € E if |p' — T(¢)| < aBs, and

w(p', /) = ||p* — T(q?)|. Then, we compute a
minimum weight maximum matching M (such
that the orders of sequences are preserved) us-
ing a dynamic programming procedure. We
say that M' is better than M if M = @ or
|M'| > | M| A d(M’P,Mb) < d(Mp, Mg) holds.

4.2 Analysié

First we analyze the time complexity of the
procedure ApproAlign(P,Q, K, ). Since there
are O(n®) triplets PP (resp. QQ) for P (resp.
Q), part (#) is executed O(n®) times. The
most time consuming part in (#) is the com-
putation of a matching M. It can be done in
O(n?) time. Thus, the total time complexity
is O(n®). Of course, it is too long time. How-
ever, the average case computation time can be
reduced considerably using several techniques
such as random sampling, sparse dynamic pro-
gramming and binary search.

Next we consider the approximation ra-
tio. Here we consider the minimax distance

D(P,Q) defined by:

D(P,Q) = min max llp -T(d)] ,
where T is an isometric transformation, and
|Pl] = |Q] = n. Then it is trivial that
d(P,Q) < D(P,Q). Moreover, the following
lemma holds.
Lemma 1: If there exists an alignment M be-
tween P and @ such that d(Mp, Mg) < § and
|M] > K, then there exists an alignment M’
between P and Q such that D(M}, Mp) < ad
and |M'| > (1 - 1/a)K for any o > 1. O
From d(P,Q) < D(P,Q) and this lemma, it
is seen that a good approximation under the
rms distance can be computed if a good ap-
proximation under the minimax distance can
be computed. Thus we consider the approxi-
mation ratio under the minimax distance.
The following lemma states that there is a
pair of triplets from which we can find an iso-
metric transformation approximating the min-
imax distance.
Lemma 2: Let M be an alignment between



P and Q such that D(Mp,Mg) < 6. Let
{(p™, ¢/), (p™,q?)} the subset of M such
that ||p"* — p|| is maximum. Let (p%,q®)
be the element of M such that the distance
between the point p® and the line piip® is
maximum. Then, ||p° — T(¢?)|| < B¢ holds
for any pair (p’,q¢’) € M and for any iso-
metric transformation T such that (1 < Vk <
3)(Ip™ — T(¢*)]| < 79), where 7 is any con-
stant such that v > 1, and B is a constant
dependent on v only. a
From Lemma 2, we obtain the following the-
orem.
Theorem 2: If there is an alignment M such
that [M| > (1 — 1/a)K and D(Mp,Mg) <
aé, then ApproAlign(P,Q, K,$) computes an
alignment M’ such that [M']| > (1 — 1/a)K
and D(Mp, M) < ofs, where a > 1 is any
constant and f is some fixed constant. O
Using the technique described in Ref. [16],
the constant 8 can be made arbitrary small
(where § > 1) with increasing the computation
time by only a constant factor. From Lemma
1 and Theorem 2, we obtain the following.
Corollary 2: If there is an alignment M
such that |[M] > K and d(Mp,Mg) <
8, then ApproAlign(P,Q, K,8) computes an
alignment M’ such that |M'| > (1 — 1/a)K
and d(Mp, My) < ofd, where a > 1 is any
constant and g is some fixed constant. O
Note that the constant § can be made arbi-
trary small too.

5 Experimental Results

Experiments have been made using PDB (Pro-
tein Data Bank) data [4]. Although PDB data
contain various information, only positions of
Ca atoms are used. All algorithms are im-
plemented in C-language on a SUN SPARC
STATION-10 (a UNIX workstation).

5.1 Results for Substructure Search

The new hashing methods are compared with
the previous and the naive ones in Table 1. NV

denotes the naive algorithm described in Sub-
section 2.2. LS denotes the least-squares hash-
ing method proposed in Ref. [2]. A, B, A+B
and A+B+B’ denote HASH(A), HASH(B),
HASH(A+B) and HASH(A+B+B’), respec-
tively, where D =4 and L = % is used in each
case. In general, it is expected that search time
is reduced if larger D is used. However, search
time was hardly reduced even if D = 8 was

used. Thus, D = 4 is used.

Table 1: Comparison of hashing methods.

DATA || 4HHB 7LZM TR69 3ADK | 8LDH
(50-94) | (35-80) | (5-55) (115~ (150~
(A) 170) 194)
NV §3.0 64.0 67.5 70.9 63.2
126 % | 255% | 255 % | 44 % 8.0 %
LS 121 23.7 2438 5.1 8.1
6.7 % 12.7 % 9.1 % 8.7 % 1.2 %
A 7.9 8.8 6.7 6.3 12
6.6 % 125% | 9.0% 8.7 % 1.1 %
B 4.0 5.1 8.8 19 11
5.0 % 6.5 % 11.2% | 5.7% | 07 %
ATE 2.5 2.3 3.8 3.4 0.6
3.0% 2.5% 4.5 % 3.8 % 0.3 %
A¥B 1.5 T3 15 1.8 0.5
+8’ 1.3 % 0.9 % 1.1% 1.6% | 01%

Each item in DATA denotes a filename (de-
noting a protein structure) of PDB data, where
chain A is used in the case of 4HHB. Each
pair of numbers in parentheses denotes the
range of positions of a fragment P. For each
method and each pattern fragment, search
time (CPU time (sec)) amongst all structures
in a database is shown, where 811 structures
are used and all structural data are stored on
main memory of the workstation. A percent-
age of indices for which rmsd’s are computed
is described too. In each hashing method, pre-
processing (i.e., computation of hash vectors)
for all structures was completed in a few min-
utes, so that it can be neglected.

The following parameters were used: H =
40, @ = 20.0, B = 05, § = 4.0(4) and
v = 1200.0. Although v <« Ha(l + pB)$
was used, each method except LS could find
all structures each of which contained a frag-
ment Qg,i-i—m—-l such that d(P, Q{,i+m—1) < 6.
LS failed to find 3 structures in the case of
3ADK. Moreover, LS took longer time than the




other hashing methods in most cases. Thus, it
is proved that the new hashing methods are
much more useful than the least-squares hash-
ing method.

From Table 1, it is seen that the following
relation holds approximately:

A+B+B’ > A+B > A= B > LS~ NV,
where z > y denotes that z is faster than y,
and z = y denotes that z is as fast as y. Thus,
it can be said that we had better combine dif-
ferent types of hash vectors. In each new hash-
ing method, it can be seen that the search
time was reduced considerably compared with
the naive algorithm. Especially, it is seen that
HASH(A+B+B) is 30 ~ 100 times faster than
the naive algorithm.

5.2 Results for Alignment

The new alignment algorithm is compared
with the previous and the naive ones in Ta-
ble 2. NV denotes the naive algorithm de-
scribed in Subsection 2.2. DP denotes the
dynamic matching algorithm proposed in Ref.
[2], where it is based on the dynamic program-
ming technique.

Each item in DATA denotes a filename of
PDB data, where chain A is used in the cases
of 4HHB and 4MDH. For each algorithm and
each pair of structures, rmsd (A) and the
length of the obtained alignment and CPU
time (sec) are described in this order.

From Table 2, it is seen that rmsd’s ob-
tained by DP and NEW are much smaller than
those obtained by NV, and the lengths of the
alignments obtained by DP and NEW are not
so much shorter than those obtained by NV
(i-e., the lengths of shorter sequences). Since
the typical distance between the adjacent Cor
atoms is 4A, it can be said that good align-
ments are obtained by DP and NEW.

It is seen that rmsd’s obtained by NEW are
slightly better than those by DP in general.
However, NEW takes much more computation
time than DP. Thus, NEW is not necessarily
better than DP for practical use.

Table 2: Comparison of alignment algorithms.

DATA SMBN 2ILA 3ICB SCDH
[ ” 4HHB(A) | 411B | 5CPV | 4MDH(A)
5.35K 11.1X 7.795 15.09X
NV 140 144 74 328
0.01sec 0.01sec 0.02sec 0.10sec
1.25K 2.58X 214X 359K
DP 120 100 40 300
1.62sec 7.98sec 0.24sec 54.3sec
1.334 1.56X 1.78XK 2.08K
NEW 134 105 58 273
75.6sec 16.7sec 69.6sec 83.7sec

6 Conclusion

In this paper, two practical algorithms for
3D protein structures have been described:
a hashing technique for quick substructure
search, and an alignment algorithm for 3D
structures. There is a theoretical proof for the
quality of outputs in each algorithm. More-
over, experimental results show that proposed
algorithms are effective. Especially, it is seen
that the proposed hashing technique is much
better than the previous one. This hashing
technique is already included in PROTEIX [1],
which is a database management system for 3D
protein structures, being developed by us.

On the other hand, the proposed alignment
algorithm is not so much better than the pre-
vious one. Thus, better alignment algorithms
should be developed. Moreover, an alignment
algorithm for multiple structures should be de-
veloped because the proposed algorithm can
not be applied for more than two structures. In
the hashing method, only small pattern struc-
tures can be treated. Thus, quick substructure
search methods which can be applied for large
structures should be developed.

Acknowledgement

This research was partially supported by the
Grant-in-Aid for Scientific Research on Prior-
ity Areas, "Genome Informatics”, of the Min-
istry of Education, Science and Culture of
Japan,



References

[1] T.  Akutsu, “PROTEIX: an inter-
active database system for three dimensional
protein structures,” Proc. Genome Informatics
Workshop IV, pp.430-433, 1993.

[2] T. Akutsu, “Efficient and robust three-
dimensional pattern matching algorithms us-
ing hashing and dynamic programming tech-
niques,” Proc. 27th Hawaii International Con-
ference on System Sciences, Vol. 5, pp. 225-234.
1994.

H. Alt, K. Melhorn, H. Wagener and E. Welzl.
“Congruence, similarity, and symmetries of ge-
ometric objects,” Discrete and Computational
Geometry, Vol. 3, pp. 237-256, 1988.

[4] F. C. Bernstein, T. F. Koetzle, G. J. B.
Williams, E. F. Meyer Jr., M. D. Brice, J. R.
Rodgers, O. Kennard, T. Shimanouchi and M.
Tasumi, “The Protein Data Bank: A computer-
based archival file for macromolecular struc-
tures,” J. Molecular Biology, Vol. 112, pp. 535-
542, 1976.

[3

[5] C. Branden and J. Tooze, Introduction to Pro-
tein Structure, Garland Publishing, 1991.

(6] P. J. Heffernan and S. Schirra, “Approximate
decision algorithm for point sets congruence,”
Proc. ACM Symp. Computational Geometry,
pp. 93-101, 1992.

[7] P. J. Heffernan, “Generalized approximate al-
gorithms for point sets congruence,” Proc.
Workshop on Algorithms and Data Structures,
pp. 373-384, 1993.

[8] K. Imai, S. Sumino and H. Imai, “Minimax

" geometric fitting of two corresponding sets of
points,” Proc. ACM Symp. Computational Ge-
ometry, pp. 266-275, 1989.

[9] W. Kabsch, “A solution for the best rotation
to relate two sets of vectors,” Acta. Cryst., Vol.
A32, pp. 922-923, 1976.

[10] E. Kishon and H. Wolfson, “3-D curve match-
ing,” Proc. AAAI Workshop on Spatial Rea-
soning and Multi-Sensor Fusion, pp. 250-261,
1987.

[11] R. Nussinov and H. J. Wolfson, “Efficient de-
tection of three-dimensional structural motifs
in biological macromolecules by computer vi-
sion techniques,” Proc. Natl. Acad. Sci. (USA),
Vol. 88, pp. 10495-10499, 1991.

[12] C. A. Orengo and W. R. Taylor, “A rapid
method of protein structure alignment,” J.
Theoretical Biology, Vol. 147, pp. 517-551,
1990.

(13} S. T. Rao and M. G. Rossmann, “Comparison
of super-secondary structures in proteins,” J.
Molecular Biology, Vol. 76, pp. 241-256, 1973.

[14] M. G. Rossmann and P. Argos, “Exploring
structural homology of proteins,” J. Molecular
Biology, Vol. 105, pp. 75-95, 1976.

[15] R. B. Russell and G. J. Barton, “Multiple
protein sequence alignment from tertiary struc-
ture comparison: assignment of global and
residue confidence levels,” PROTEINS: Struc-
ture, Function, and Genetics, Vol. 14, pp. 309-
323, 1992.

[16] S. Schirra, “Approximate decision algorithms
for approximate congruence,” Information Pro-
cessing Letters, Vol. 43, pp.29-34, 1992.

[17] J. T. Schwartz and M. Sharir, “Identifica-
tion of partially obscured objects in two and
three dimensions by matching noisy character-
istic curves,” Int. J. Robotics Research, Vol. 6,
pp- 29-44, 1987.

[18] A. Tamura and M. Hirota, “A study on auto-
matic methods for finding relationship between
structural patterns and sequence patterns of
proteins,” Bachelor Thesis (in Japanese), Sci-
ence University of Tokyo, 1994.

[19] W. R. Taylor and C. A. Orengo, “Protein
structure alignment,” J. Molecular Biology,
Vol. 208, pp. 1-22, 1989.

[20] J. M. Thornton and S. P. Gardner, “Protein
motifs and data-base searching,” Trends in Bio-
chemical Science, Vol. 14, pp. 300-304, 1989.

[21] G. Vriend and C. Sander, “Detection of com-
mon three-dimensional substructures in pro-
teins,” PROTFEINS: Structure, Function, and
Genetics, Vol. 11, pp. 52-58, 1991.

[22] D. E. Willard, “New data structures for or-
thogonal range queries,” SIAM J. Computing
Vol.24, pp. 232-253, 1995.



