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Abstract

In this paper we newly define a generalized vertex-ranking of a graph G as follows: for
a positive integer ¢, a c-vertex-ranking of G is a labeling (ranking) of the vertices of G
with integers such that, for any label i, every connected compo'nent of the graph obtained
from G by deleting the vertices with label > i has at most ¢ vertices with label i. Clearly
an ordinary vertex-ranking is a 1-vertex-ranking. We present a linear algorithm to find a
c-vertex-ranking of a given tree using a minimum number of ranks for any bounded integer
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1 Introduction

A vertez-ranking of a graph G is a labeling (ranking) of vertices of G with integers such that any
path between two vertices with the same label i contains a vertex with label j > i. The vertez-
ranking problem is to find a vertex-ranking of a given graph G using the minimum number
of ranks (labels). The vertex-ranking problem is NP-complete in general [BDJ*94, Pot88].
On the other hand Schiffer has given a linear algorithm to solve the vertex-ranking problem
for trees [Sch89]. Very recently Bodlaender et al. have given a polynomial-time algorithm to
solve the vertex-ranking problem for graphs with bounded treewidth [BDJ*94]. The problem
of finding an optimal vertex-ranking of G has applications in VLSI layout and in scheduling
the manufacture of complex multi-part products [Sch89, IRV88]; it is equivalent to finding the
minimum height vertex separator tree of G.

In this paper we newly define a generalization of an ordinary vertex-ranking. For a positive
integer c, a c-vertez-ranking ( or a c-ranking for short) of a graph G is a labeling of the vertices
of G with integers such that, for any label i, every connected component of the graph obtained
from G by deleting the vertices with label> i has at most c vertices with label i. Clearly an
ordinary vertex-ranking is a 1-vertex-ranking. The integer label of a vertex is called the rank
of the vertex. The minimum number of ranks needed for a c-vertex-ranking of G is called the
c-vertez-ranking number (or the c-ranking number for short) and denoted by r(G). A c-ranking
of G using r.(G) ranks is called an optimal c-ranking of G. The c-ranking problem is to find an
optimal c-ranking of a given graph G. The problem is also NP-complete in general since the
ordinary vertex-ranking problem is NP-complete [BDJ +94, Pot88]. Figure 1 depicts an optimal
3-ranking of a tree using three ranks, where vertex numbers are drawn in circles and ranks next
to circles.

Consider the process of starting with a connected graph and partitioning it recursively by
removing at most ¢ vertices and incident edges from each of the remaining connected subgraphs
until the graph becomes empty. The tree representing the recursive decomposition is called a
c-vertex separator tree. Thus a c-vertex separator tree corresponds to a parallel computation
scheme based on the process above. The c-vertex-ranking problem is equivalent to finding a
c-vertex separator tree of the minimum height. Figure 2 illustrates a 3-vertex sparator tree of
the tree depicted in Figure 1, where deleted vertex numbers are drawn in ovals.
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Figure 1: An optimal 3-vertex-ranking ¢ of a tree T'.
In this paper we give a linear algorithm to solve the c-ranking problem on trees for any

positive bounded integer c. Our algorithm uses techniques employed by Schiffer [Sch89] and
Iyer et al. [IRV88] for the ordinary vertex-ranking problem as well as new techniques specific



Figure 2: A 3-vertex sparator tree of the tree in Figure 1.

to the c-ranking preblem.

2 Preliminaries

In this section we define some terms and present easy observations. Let T = (V, E) denote
a tree with vertex set V and edge set E. We often denote by V(T') and E(T') the vertex set
and the edge set of T', respectively. We denote by n the number of vertices in T'. T is a “free
tree,” but we regard T as a “rooted tree” for convenience sake: an arbitrary vertex of tree T is
designated as the root of T'. We will use notions as: root, internal vertex, child and leaf in their
usual meaning. An edge joining vertices u and v is denoted by (u,v). The maximal subtree of
T rooted at vertex v is denoted by T'(v).
The definition of a c-ranking immediately implies the following lemma.

Lemmal. Any c-ranking of a connected graph labels at most ¢ vertices with the largest rank.

For integers a and B, o < 8, we denote by [, 3] the set of integers between o and S, that
is, [, 8] = {a,a +1,---,8}. Let [@,8] = ¢ if @ > . Let ¢ be a c-ranking of a tree T. The
number of ranks used by ¢ is denoted by #¢. One may assume without loss of generality that
¢ uses the ranks in set [1,#¢]. A vertex v of T" and its rank ¢{v) are visible (from the root
under ¢) if all the vertices in the path from the root to v have ranks < ¢(v). Thus the root
of T and #¢ are visible. Denote by L(p) the list of ranks of all visible vertices, and call L(y)
the list of a c-ranking ¢ of the rooted tree T. For an integer ¥ we denote by count(L(),7)
the number of v’s contained in L(yp), i.e., the number of visible edges with rank «. The ranks
in the list L(y) are sorted in non-increasing order. Thus the c-ranking ¢ in Figure 1 has the
list L(p) = {3, 3,1}, count(L(y),3) = 2, count(L(p),2) = 0 and count(L(p),1) = 1. One can
easily observe that count(L(y),v) < c for each rank 7.

We define the lezicographical order < on the set of non-increasing sequences (lists) of positive
integers as follows: let A = {a;,---,a,} and B = {by,---,b,} be two sets (lists) of positive
integers such that a; > --- > a, and by > --- > by, then A < B if and only if there exists an
mteger 7 such that

(a) a;j =b; forall 1 <j < ¢, and

(b) etther a; < b; or p < i <yq.

We write A < B if A= B or A < B. The non-increasing list obtained by merging two lists A
and B is denoted by A+ B. A — [«, A] denotes the list obtained from A by deleting all ranks
v € [a, B8]. Obviously if A < B then A—[1,a] < B—[1,q] for any a > 1.

A c-ranking ¢ of T is critical if L(¢) <X L(n) for any c-ranking n of T. The optimal c-
ranking depicted in Figure 1 is indeed critical. The list of a critical c-ranking of T is called
the critical list of tree T and denoted by L*(T"). Clearly any critical c-ranking is optimal, and
L*(T) corresponds to an equivalent class of optimal c-rankings of 7.



For a c-ranking ¢ of tree T and a subtree T' of T, we denote by ¢|T” a restriction of ¢ to
V(T'): let ¢’ = o|T", then ¢'(v) = ¢(v) for v € V(T").

3 Optimal c-Ranking

The main result of the paper is the following theorem.

Theorem2. An optimal c-ranking of a iree T can be found in linear time for any bounded
integer c.

In the remaining of this section we give a linear algorithm for finding a critical c-ranking of a
tree T'. Our algorithm uses the technique of “bottom-up tree computation.” For each internal
vertex u of a tree T', we construct a critical c-ranking of T'(u) from those of the subtrees rooted
at u’s children.

One can easily observe the following lemma.

Lemma3. Any tree T of n_vertices has at most ¢ vertices whose removal leaves subtrees each
having no more than 2n/(c + 3) vertices.

By Lemma 3 we have the following lemma.

Lemmad. Every tree T' of n vertices satisfies r.(T) < flog%_g n] + 1.

Proof. Recursively applying Lemma 3, one can construct a c-partition tree of height A(n)
satisfying the following recurrence relation

2
h(n) < 1+h<c+3n>.

Solving the recurrence, we have h(n) < ﬂogc_;ta_ n]. Note that h(1) = 0. Hence r(T) <
h(n)+1< I’logg# n] + 1. Q.£.D.

Let d(u) be the number of children of vertex u in T, and let vy, vy, - - - » Vd(u) be the children of
u. Our idea is that a critical c-ranking of T'(u) can be constructed from any critical c-rankings
@i of T(v;), i = 1,2,---,d(u). One can easily observe that a vertex-labeling n of T(u) is a
c-ranking of T'(u) if and only if there are no more than ¢ visible vertices of the same rank under
7 and n|T'(v;) is a c-ranking of T'(v;) for every ¢, 1 < i < d(u).

We first have the following lemma.

Lemmab5. T(u) has a critical c-ranking n such that n|T(v;) = ¢; for every i, 1 < i < d(u).

Proof. Let n be an arbitrary critical c-ranking of T'(u). Clearly L(n|T(v;)) = L(;) for each i,
1 <4< d(u). If L(n|T(v;)) = L(yp;), then let v; be an integer such that

(a) L(n|T(v:)) — [1, %] = L(#:) = [1, 7], and
(b) count(L(n|T(v:)),v:) > count(L(w:),7:)-

Otherwise let 7; = 0. Let ymax = max{y; | 1 < i < d(u)}. Construct a vertex-labeling 7’ of
T'(u) from 5 and ¢; as follows:

/) {max{n(U),‘ymax} if v = u; and

v)=

7 i(v) if v € V(T(v:)) and § € [1, d(w)).

Since there is no visible rank < ymax under 7', 7’ is a c-ranking of T(u). Since L(n') < L(n),
is a critical c-ranking of T'(u) and #'|T(v;) = ¢; for all 4, 1 < i < d(u). Q.ED.



Let m = max{#w; | 1 << d(u)}, then we have the following lemma.
Lemma6. r.(T'(u)) =m orm+ 1.

Proof. Clearly m < r.(T'(u)). Therefore it suffies to prove that r.(T(u)) < m + 1. One can
extend ¢;, 1 < i < d(u), to a c-ranking n of T(u) as follows:

) {m+l if v = u; and

M) = i) i € V(T(w)) and i € [1, d(u)).

Thus r.(T(u)) < #n=m+ 1. Q.£D.
The following Lemma 7 gives a necessary and sufficient condition for r.(T(u)) = m.

Lemma7. r(T(u)) = m if and only if there is a rank o € [1,m] such that
(2) T count(L(ei), @) < e — 1
d

b qﬁ")count L{pi),v) < ¢ for all ranks v € [a + 1, m].
i=1

an

Proof. <=: One can easily extend the cirtical c-rankings ¢; to a c-ranking n of T'(u) with
#n = m as follows:

o if v = u; and

n(v) = {‘Pi('v) if v € V(T(v:)) and i € 1, d(w))].

Therefore ro(T'(u)) < #n = m, and hence by Lemma 6 r,(T'(u)) = m.

==: Suppose that r.(T'(u)) = m. By Lemma 5 there is a c-ranking n of T'(u) such that
nlT(vi) = ;i for each i, 1 < i < d(u). Let o = 5(u), then (a) and (b) above hold since 7 is a
c-ranking of T'(u). Q.£.D.

In order to find a critical c-ranking n of T'(u) from ¢;, i = 1,2,---,d(u), we need the
following two lemmas.

Lemma8. If r,(T(u)) = m+ 1, then

m+1 ifv=u; and
pi(v) ifveV(T(v)) and i €[1,d(u)]
is a critical c-ranking of T'(u) and L(n) = {m + 1}.

o) ={

Proof. immediate. Q.£.D.
Lemma9. If r.(T(u)) = m, then

o if v =u; and

wi(v) Hfve V(T(v,ﬁ)) and i € [1,d(u)]

is a critical c-ranking of T(u), where a € [1,m)] is the minimum integer such that
® i count(L(pi), @) < ¢ — 1

o) = {

an
(b) Zf’g‘l) count(L(p;),v) < c for every rank v €[a+1,m].
Furthermore L(n) = Z,ﬁl}) L) = [l,a = 1]+ {a}.



Proof. By Lemma 5 there is a critical c-ranking 7’ of T'(u) such that L(n'|T(v;)) = L(s;) for
every i, 1 < i < d(u). Since a = n(u) is the minimum integer satisfying (a) and (b) above,
L(n) < L(n’) and hence 7 is a critical c-ranking of T'(u). Clearly '

d(u)

Lin) = 3 L:) = Lo = 1] +{a}.

Q.ED.

By Lemmas 7, 8 and 9 above we have the following recursive algorithm to find a critical
c-ranking of T'(u).

Procedure Ranking(T'(u));
begin

1 if uis a leaf
then return a trivial c-ranking: u — 1
2  else
3 begin
4 let vy, vs,+,vaeu) be the children of u;
5 for i := 1 to d(u) do Ranking(T'(v;));
6 find a critical c-ranking of T'(v;) from critical c-rankings
of T(v;),i=1,2,,d(u), by Lemmas 8 and 9;
7 return a critical c-ranking of T'(u)
8 end
end.

Clearly one can correctly find a critical c-ranking of a tree T by calling Procedure Ranking
(T(r)) for the root r of T Therefore it suffices to verify the time-complexity of the algorithm.
Let ¢;, i = 1,2,---,d(u), be a critical c-ranking of T'(v;). Assume without loss of generality
that #¢; and #@, are the two largest, possibly equal, numbers among #¢;, i = 1,2, - ,d(u),
and that #p; > #¢2. Let #p2 = 0 if d(u) = 1. Let 7 be a critical c-ranking of T'(u) obtained
from ¢;, i = 1,2,---,d(u), at line 6. Then the following lemma holds, which will be proved
later.

Lemmal0. One ezecution of line 6 can be done in time O(zy + d(u) + ¢+ #3) where x,, 15
the number of vertices which were visible in T(v;) under @;, t € [1,d(u)], but are not visible in
T'(u) under n.

Once a vertex becomes non-visible, it will never become visible again. Furthermore } d(u) <
n where the summation is taken over all internal vertices. Therefore the total time counted by
the first term z, and the second term d(u) is O(n) when Procedure Ranking is recursively
called for all vertices. Let n,, be the number of vertices in the second largest tree among
T(v),i=1,2,---,d(u), if d(u) > 2. Then by Lemma 4 we have #¢; < ﬂog_c%g Nu,| + 1. Let
Vo = {u € V | d(u) > 2}. The following lemma implies that the total time counted by the third
term c - #¢9 is also O(n). Thus the total running time of Ranking is O(n). This completes the
proof of Theorem 2.

Lemmall. ) .y, ([logggg Ny, | + 1) = O(n).



Proof. For a tree T, let S(T') = EuEV:p (ﬂog%_a_ Ny, | + 1) . We now prove by induction on n
that ' | '
S(T) < 20~ ([logegs ] +1). (1)

Trivially Eq. (1) holds when n = 1. Now assume that Eq. (1) holds for any tree having at most
n — 1 vertices.

Let T be a tree with n vertices rooted at vertex u. One may assume that d(u) > 2. Let
v1,v2,*+,V4(u) be the children of u, and let n;, i = 1,2,--+,d(u), be the number of vertices
of T(v,), respectively. Assume w1thout loss of generahty that n; 2> ng > - 2 ng(u)- Then
ny, = ng, and we have

d(u)
S(T(w) = ZS vi)) + [logega na] + 1
d(")
< D {2ni — (Mlogegs ni] + 1)} + [logega na2] +1
i=1
d(u)
< 2n—{d(u)+1+logegs ny1 + Z logegs n;}.
i=3
Since
d(u)—1
(C;B) niN3Ng - Ngu) > gd(u)=1p, > d(u)ny > n,
we have
d(u)
d(u)+l+log_c_ﬂn1 +Zlogl ng >logj_n+2> flog_i_n] +1.
=3
Therefore S(T'(u)) < 2n — ([logg{_g n] +1). Q.£.D.

We finally give an implementation of line 6 of Procedure Ranking, which finds a critical
c-ranking 7 of T'(u) from the critical c-ranking ¢;, i = 1,2,-- -, d(u).

Procedure Line-6(1, - -, ¥au), 1);
begin
n|T(v;) := ¢; for each 7,7 :=1,2,---,d(u);

—

{ determine the rank of u as follows. }

2 if d(u) =1 then

3 begin

4 find a smallest rank « > 1 such that count(L(p1),a) <c—1;

5 n(u) 1= a;

6 L(n) := (L(p1) = [L,a = 1)) + {a}

7 end

8 else {du)>2}

9 begin

10 find the two largest, possibly equal, numbers among #¢;, 1 :=1,2,---,d(u);

{ assume w.lo.g. that #¢; and #p, are these largest numbers and #¢1 > #p2. }



11 let L, := (L(p1) — [#e2 + 1, #01]) + T0) L(g:);

12 find a smallest rank o € [1, #<p2] such that count(L,,e) < c¢— 1 and
count(L,,7) < c for all ranks v € [a + 1, #¢3);
13 if such a rank o exists then
14 begin
15 n(u) := a;
16 L(n) = (Epr) — [, #a]) + (Lo — [1,a = 1) + {a)
17 end
18 else
19 begin
20 Ly = Ly + (L(g1) = [1, #2]); { L, =Y8 L(e:) )
21 find a smallest rank a € [#¢2 + 1, #¢1 + 1] such that count(L,,a) < c—1;
22 n(u) = a;
23 L(n) := (L, = [1,a ~ 1]) + {a};
24 end
25 end
end;

We are now ready to prove Lemma 10.

Proof of Lemma 10. As a data-structure to represent a list L(€) of a c-ranking &, we use a
linked list L¢ consisting of records. Each record contains two items of data: rank v € [1,#¢]
and count(L(£), ) such that count(L(£),v) > 1.

If d(u) = 1, then using linked list L,,, one can easily find « at line 4 in O(z,) time where
zy = |L(p1) N[1, @ — 1]|. It should be noted that all the z, edges of ranks in L(p;) N[1l,a —1]
were visible but they become non-visible after lines 5 and 6 are executed. Thus lines 3—7 can be
done total in time O(z,). Similarly, if lines 20-23 are executed, then at line 21 one can easily
find @ in O(z,) time, and hence lines 20-23 can be done in time O(x,,) time.

We now claim that if d(u) > 2 then lines 10-12 and 15-16 can be done total in time
O(d(u) + ¢ - #p32). We construct a linked list L, as follows. First set L, as an empty list.
For each i € [1,d(u)], add to L, all ranks 7 (< #p2) in L, in the decreasing order of v until
either count(L,s,7v) > ¢ or all such ranks v have been added. Thus line 11 can be done in time
O(c-#+p3). Clearly line 10 can be done in time O(d(u)) and lines 12, 15 and 16 in time O(#2).
Therefore lines 10-12 and 15-16 can be done total in time O{(d(u)+ c- #¢2). Thus Procedure
Line-6 can bo done total in time O(z, + d(u) + ¢ - #p2). Q.ED.
Remark

If ¢ is not bounded, our algorithm takes time O(cn/log(c+ 3)). Note that Lemma 11 holds
for any integer c.
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