7 o =T U X A 42—-5
(1994. 11. 18)

BIERD & ~N— VB BRIBEITHR L COHT LV Wkl

AP R TP X
CTOIRS G IAVART 4 Ta—h

"R AK
RRKFEFIERR AR

FRITIL wNMFTrEy S VAT ARG DAMAIH ATY O AT Y FRICHETIMEERVES .
ZOMED BRITE SRR RS- VROV TR—VT 7 R0 A R BMEL B L K_—U%H £ L
BYHIETERTIN—VEBOTNVT) XAEROFHI L THD, ZOMER, BEA T 7
Y XADALRT 4 T4 T L DBTOSFCER SN TV ARETH S,

FHATIIFC, TRETERLALHEROBLATVRNAY T A VHIRS & ~_— CBBIRIEC R LT,
HIMHTRELRBLENEMITTI DL ICL Y, KV BRVEREZEL T,

A New Framework on the Constrained Migration Problem

Susanne Albers
Max-Planck-Institut fur Informatik

Hisashi Koga
The University of Tokyo

This paper deals with problems that arise in the distributed shared memory management of large
multiprocessor systems. The purpose of these problems is to find an efficient migration strategy which
locates each writable page at an appropriate processor by migration to reduce the total access cost. This
problem is focused recently in the competitive analysis for on-line algorithms.

Especially in this paper we examine the on-line constrained migration problem deeper about which
only few result is known by defining and attacking some special case of the problem called the direct-
mapped constrained migration problem.

1 Introduction

This paper deals with problems that arise in the
memory management of large multiprocessor sys-
tems. Such multiprocessing environments typical-
ly consist of a network of processors, each of which
has its local memory. A global shared memory is
modeled by distributing the physical pages among
the local memories. Accesses to the global mem-
ory are then accomplished by accessing the local
memories. Suppose a processor v wants to. access
a memory address from page P. If P is stored in
v’s local memory, then this access operation can
be accomplished locally. Otherwise, v determines
a processor u holding the page and sends a request
to u. The desired information is then transmitted
from u to v, and the communication cost incurred
thereby is proportional to the distance from u to
v. If v has to access page P frequently, it may
be worthwhile to migrate or replicate the entire
page of P from u to v because subsequent access-
es will become cheaper. However, transmitting an
entire page incurs a high communication cost pro-
portional to the page size times the distance from
u to v.

Finding efficient migration or replication strate-
gies is studied very much from both of applied
and theoretical sides. Especially from the theo-
retical point of view, three main problems are de-
fined. The migration problem [BS89, ABF93] deals
with a writable page under the condition that the
number of copies of the page is limited to one.
This condition is reasonable to avoid the problem
of keeping multiple copies of the page consistent.
The purpose of the migration problem is to decide
in which local memory the single copy of the page
should be stored so that a sequence of memory ac-
cesses can be processed at low cost. On the other
hand, if a page is read-only, it is possible to keep
several copies of the page in the system without
considering the consistency problem. In the repli-
cation problem [BS89, AK94] we have to determine
which local memories should contain copies of the
read-only page. The allocation problem [BFR92,
ABF93] allows multiple copies of a writable page.
This requires us to-handle the additional broad-
casting cost for keeping all copies of the page con-
sistent. All of these three problem are focused re-
cently in the competitive analysis area. One rea-
son for this is the association of these problems
with the important k-server problem with ezcur-
sions [MMS88].

However, all the above problems used the as-
sumption that each local memory has infinite ca-

pacity, i.e. there is always vacant space for repli-
cating or migrating the page in every local memo-
ry, which made the problems rather impractical
because the conflicts between multiple different

" pages are not considered. Recently Bartal et al.

introduced the more practical version of the prob-
lems called the constrained migration problem and
constrained allocation problem, which try to solve
many migration (respectively allocation) problem-
s each for an individual page, simultaneously in a
single distributed shared memory under the con-
straint that every local memory has fixed finite ca-
pacity. In this version when a local memory is full
and a page is copied into that local memory, some
other page must be dropped from that memory to
make room and must be stored somewhere else.

For the constrained migration problem we deal
with pages with the equal size. This makes sense in
the context of distributed virtual memory. In ad-
dition every local memory is assumed to have the
same capacity. A local memory consists of k block-
s, [L],[2] -, [k]. A page copy in a memory must
be stored in one of its k blocks. Therefore one lo-
cal memory can accommodate at most k pages at
the same time. This paper examines the on-line
constrained migration problem deeper by attack-
ing some special case of the problem. In order to
analyze the performance of an on-line algorithm
we will use competitive analysis [ST85], the worst
case ratio of the cost incurred by an on-line algo-
rithm and the cost incurred by an optimal off-line
algorithm.

Although for the migration problem a lot of
results have been obtained already, for the con-
strained migration problem only few result is
known. For the migration problem Black and
Sleator [BS89] proved that no deterministic on-line
algorithm cannot be better than 3-competitive for
any graphs, even if the graph consists of only two
nodes connected by a single edge. They actual-
ly presented 3-competitive algorithms for tree and
uniform graphs. A uniform graph is a complete
graph in which all edges have the same length.
For general graphs, Awerbuch et al. [ABF93] have
presented a 7-competitive deterministic on-line mi-
gration algorithms. :

On the other hand, for the constrained migra-
tion problem, the only result obtained so far is by
Bartal et al. [BFR92]. They described a O(kn)-
competitive deterministic on-line algorithm for u-
niform graphs with n nodes. However whether this
competitive ratio is the optimal one for uniform
graphs is still open. Moreover for any other topol-

ogy no competitive algorithm is found yet.

In this paper to shed lights onto the hard con-
strained migration problem we define and study
a new framework called the direct-mapped con-
strained migration problem*. The direct-mapped
constrained migration problem is the constrained
migration problem with the restriction that each
processor manages pages in its local memory us-
ing the same hash function h. That is, whichev-
er memory a page A belongs to, it is stored in
the block [A(A)modx + 1] of that memory. Be-
cause introducing this hashing technique elimi-
nates the possibility of the conflict between two
pages A and B such that A(A)modk # A(B)modk,
what we have to deal with is only the conflic-
t between pages which take the same hash val-
ue, having the possibility of being stored in one
identical block. Thus, we can analyze the direct-
mapped constrained migration problem by divid-
ing it according to k£ block numbers. Therefore in
the direct-mapped constrained migration problem
we concentrate on one particular block number ¢
(1 €¢ < k). Let F be the number of pages A such
that h(A)modr + 1 = i. The problem is to decide
where to locate F' pages among n block [i]s, one
for each processor. Note the constrained migration
problem collapses to the direct-mapped constrained
migration problem if k = 1. On the other hand if
F =1, then the direct-mapped constrained migra-
tion problem is reduced to the migration problem.
Thus this newly defined problem is positioned in
the middle of the migration problem and the con-
strained migration problem.

In this paper we develop a number of on-line al-
gorithms for the direct-mapped constrained migra-
tion problem. All our algorithms are quite simple.
In Section 3, the lower bounds of the competitive-
ness of deterministic on-line algorithms are investi-
gated. We show for any networks no deterministic
on-line algorithm is better than 3-competitive. We
also prove that for some specific topology no de-
terministic on-line algorithm is better than (n—2)-
competitive where n is the number of nodes in the
network. In Section 4 first we present an opti-
mal 3-competitive deterministic on-line algorithm
when the graph consists of only 2 nodes. Next we
develop an 8-competitive deterministic on-line al-
gorithm for uniform graphs, called Concurrent-M
which is based on algorithm M [BS89] for the mi-
gration problem. What is interesting about our

*We named this problem the direct-mapped constrained
migration problem, because a similar hashing technique is
adopted in the context of the direct-mapped caching proto-
col for snoopy caching systems.

results is that in the constrained migration prob-
lem with k = 1, we can find a O(1)-competitive
deterministic on-line algorithm for uniform graph-
s, thus breaking the previously best upper bound
of O(n)-competitiveness obtained by applying the
O(kn)-competitive constrained migration algorith-
m by Bartal et al. to the case k = 1. Observing
this fact, in Section 5 we give an interesting future
work on the constrained migration problem.

2 Problem Statement and Com-
petitive Analysis

Formally, the direct-mapped constrained migra-
tion problem can be described as follows. We are
given an undirected graph G = (V, E). Each node
in G corresponds to a processor and the edges rep-
resent the interconnection network. The number
of nodes |V is denote by n. Associated with each
edge is a length that is equal to the distance be-
tween the connected processors. We assume that
the edge lengths satisfy the triangle inequality. Let
6;; denote the length of the shortest path between
node % and node j.

Each node has its own local memory. One lo-
cal memory is divided into k blocks, [1],[2},-- -, [k].
One block can exactly store one page copy. In the
direct-mapped constrained migration problem, all
nodes use the same hash function h(A4) to deter-
mine the unique block in which page A will re-
side. A node cannot contain two pages A and B
at the same time in its local memory, such that
h(AYmodk = R(B)modk- On the contrary, at any
node there is no conflict between two pages such
that h(A)modk # R(B)modk- Thus we can analyze
the direct-mapped constrained migration problem
by dividing it according to k block numbers. In the
following, we concentrate on one particular block
number 7 (1 € ¢ < k). Let F be the number of
pages such that h(A)meds+1 =i and f1, fo, -+, fr
be the F pages whose hash value equal to .

We say that a node v has a page A if the page
A is contained in block [7] of v’s memory. A node
v is said to be empty if v does not hold any page
in block [i] of its memory. A request to page A
at ¢ node v occurs if v wants to read or write A.
The request can be satisfied at zero cost if v has
A. Otherwise the request incurs a cost equal to
the distance from v to the node u with page A4
(i.e. 6u»). Immediately after a request to page
A at a node v, if v is empty, A may be migrated
into v’s local memory. The cost incurred by this
migration is d - 8,,. Here d denotes the page size
factor. In case v has another page B already, in

order to move A to v either after B is dropped
from v and migrated to some other processor, A4 is
migrated to v or A and B are swapped. The cost
incurred by this swapping is 2d - 64,

A direct-mapped constrained migration algo-
rithm is usually presented with an entire sequence
of requests that must be served with low total cost.
A direct-mapped constrained migration algorithm
is on-line if it serves every request without knowl-
edge of any future requests.

We study the direct-mapped constrained migra-
tion problem under the assumption that F < n,
which can be realized easily by the proper choice
of h. If F = 1, since a direct-mapped constrained
migration algorithm need not to use swapping op-
erations to change the location of the only file f;,
this case is reduced to the migration problem. On
the contrary, if F' = n, then an algorithm neces-
sarily has to use swapping operations to change
the configuration of pages. Throughout this paper
although our algorithms are described for any ar-
bitrary value of F (< n), we always analyze them
assuming that F' = n for the simplicity.

Competitive analysis [ST85] is a powerful means
to analyze the performance of an on-line algorith-
m. In a competitive analysis, the cost incurred
by an on-line algorithm is compared to an optimal
off-line algorithm. An optimal off-line algorithm
knows the entire request sequence in advance and
can serve it with minimum cost. Given a request
sequence o, let C'4(o) denote the cost incurred by
on-line algorithm A in serving ¢ and let Cppr(0)
denote the cost incurred by the optimal off-line al-
gorithm OPT. Usually a deterministic on-line al-
gorithm A is called c-competitive if there exists a
constant a such that for every request sequence

Ca(o) < c-Coprio) +a.

The competitive factor of an on-line algorithm A is
the infimum of all ¢ such that A is c-competitive.

3 Lower Bounds

Before introducing our algorithms, this section in-
vestigates the lower bounds of the competitiveness
achievable by deterministic on-line algorithms. We
obtain two kinds of lower bounds. The first low-
er bound represents the limitation of the power of
on-line algorithms no matter how simple the un-
derlying graph structure may be. The second lower
bound demonstrates how badly any deterministic
on-line algorithm behaves for some specific topol-

ogy.

Theorem 1 Let A be a deterministic on-line al-
gorithm for the direct-mapped constrained migra-
tion problem. Then A cannot be better than 3-
competitive, even on a graph consisting of two n-
odes.

Proof: Let s and ¢ be two nodes connected by an
edge of length 1, and f; and f, be pages whose lo-
cation need to be managed. Consider the situation
in which requests are generated only to f;. We can
view this situation as the migration problem where
the page size factor is 2d. Thus the lower bound of
3-competitiveness for the migration problem in [B-
589] also holds for the direct-mapped constrained
migration problem. O

Next we prove the existence of some specific -
topology against which no deterministic on-line al-
gorithm is better than (n — 2)-competitive. The
following star H is considered as the example. Let
v1,v2," "+, U, be the nodes in H and v; be the cen-
ter node of the star. The length of the edges is set
as follows.

1
6"‘”‘={n-2

Theorem 2 Let A be a deterministic on-line al-
gorithm for H for the direct-mapped constrained
magration problem. Then A cannot be better than
(n — 2)-competitive.

for2<i<n-1
fori=n

Interestingly this theorem certifies the difference
between the migration problem and the direct-
mapped constrained migration problem, because
for the migration problem Black and Sleator [B-
589] developed a 3-competitive deterministic on-
line algorithm for all trees including any star.

Proof of Theorem 2: For any deterministic on-
line algorithm A, we will construct a request se-
quence o which can be arbitrary long, such that
Ca(o) is at least (n — 2) times the cost incurred
by some off-line algorithm OFF which may not
necessarily be the optimal off-line algorithm. This
yields the theorem. Assume that initially both A
and OFF have the same page p at node v,. Let V/
=V — {v,} in the subsequent proof.

We will construct o as follows. The first request
is generated at v; to the page p. This request is
repeated until A swaps p and some other page ¢
which is stored in one of the nodes in V'. The
next request is also generated at v; to the page
q which has just been stored at v,. This request
is also repeated until A moves ¢ to some proces-
sor in V. Similarly from them on at every point

a request is generated at v; to the page which v,
holds. Therefore every time there is a request at
vy, it takes 8,,,, = n —2 for A to satisfy the re-
quest.

The request sequence can be partitioned into
phases in the following way. The first phase be-
gins with the first request. The first phase ends
after n— 1 distinct pages including p have been re-
quested at v1 during the phase and just before the
remaining nth page r is requested. The second
phase begins with the request at v; to this page
r. The second phase ends in the same way as the
first phase. The subsequent phases are determined
similarly.

We show that at any phase, the cost incurred
by A is at least (n — 2) times the cost incurred
by OFF. Suppose ¢’ is the subsequence of ¢ which
corresponds to the phase and the length of o’ is
. First consider the cost incurred while A pro-
cesses o’. Let m be the number of swappings by
A for processing ¢’, counting the swapping which
takes place after A satisfies the last request of o’
The cost of a single swapping is at least 2(n — 2)d.
More precisely speaking, it costs 2(n — 2)d if the
swapping is done between v; and v,. Else if the
swapping occurs between v; and v, (2 < i < n—1),
it costs 2(n — 1)d. Since a swapping takes place if
and only if the kind of the page requested at vy is
changed and vy requests n — 1 distinct pages dur-
ing this phase, m > n — 1. Thus the total cost for
m swappings is at least 2(r — 1)(n — 2)d.

The cost incurred by satisfying requests in o'
whose length is ! is (n — 2)I, since each request
is satisfied at the cost of n — 2. Thus we have

Ca(d) 22(n—1)(n—2)d+n-2)Il. (1)

Next we show that the following off-line algorithm
OFF can serve o’ at the cost of 2(n — 1)d + L. At
the beginning of o’ before the first request OFF
swaps the page located at v, and the page r which
is first requested at vy in the next phase and after
this swapping OFF never changes the location of
any pages throughout the phase. We remark that
7 is never requested in the entire o/. Now consider
Corr(o’). The cost incurred by the only swapping
which occurs at the beginning of the phase is at
most 2(n—1)d. The cost of OFF satisfying a single
request is at most 1, since any page requested at
v1 during the phase is necessarily located at one of
the nodes in V' in OFF’s configuration. Since the
length of ¢’ is I, the total cost for OFF to satisfy
requests contained in ¢’ is at most .. Thus we have

Corr(d) < 2(n—1)d +1. (2)

By comparing (1) to (2), we can conclude
Ca(d') 2 (n - 2)Corr(s").

At the beginning of each round v, has the same
page both in A and in OFF. Therefore we can ex-
tend o arbitrarily by repeating this construction.
Thus the proof ends. O

4 Owur Algorithms

In this section we describe our on-line algorithms
for the direct-mapped constrained migration prob-
lem when the network topology is a practical one
such as 2 nodes, uniform graphs. Section 4.1 deals
with an optimal 3-competitive deterministic algo-
rithm for 2 nodes. In section 4.2, we present a
O(1)-competitive deterministic algorithm for uni-
form graphs.

4.1 2 nodes

This section introduces a deterministic on-line al-
gorithm for 2 nodes that is 3-competitive. From
Theorem 1, we conclude that this algorithm is op-
timal. To describe our algorithm, we need some
notation. Again let s ant ¢ be two nodes connected
by a single edge of length 1. We denote two pages
whose location need to be managed by p and ¢. In
2-node networks, there are only two types of page
configurations as illustrated in Figure 1: (state 1)
s has p and ¢ has ¢ and (state 2) s has g and ¢ has
p. Any algorithm must take either (state 1) or (s-
tate 2) at any time. The transition between (state
1) and (state 2) costs 2d. Under these notations
our algorithm is described as follows.

Figure 1: Two types of page configurations

O—0O
(state 1)

s t

2d by a swapping)

. (state 2) P

Algorithm TN: Every node v has two counters ch
and cf. Initially all counters are set to 0. If T-
N is in (state 1) and ¢ + ¢ < 4d, every time s
requests ¢ or ¢ requests p, respectively ¢ or dis

incremented by 1. If cf + ¢ = 4d after the incre-
ment, the algorithm changes its configuration to
(state 2) using a swapping operation and ¢ and
cf are reset to 0. On the other hand, if TN is in
(state 2) and c? +cf < 4d, every time s requests p
or t requests ¢, respectively c? or cf is incremented
by 1. If & + ¢f = 4d after the increment, the algo-
rithm changes its configuration to (state 1) using
a swapping operation and c? and c] are reset to 0.

Theorem 3 Algorithm TN is 3-competitive for t-
wo nodes.

4.2 Uniform Graphs

This section deals with the case when the network
topology is the uniform graph. W.L.g. we may as-
sume that the length of each edge equals to 1. We
present an 8-competitive deterministic on-line al-
gorithm for uniform graphs. As the name implies,
this algorithm is thought of as the concurrent ver-
sion of algorithm M [BS89] for the migration prob-

lem.

Algorithm Concurrent-M : Each processor v has
F counters cfi (1 < < F). All counters are ini-
tialized to 0. Concurrent-M processes a request at
node v to page f; as follows. If v has f; already,
then the request is free and nothing happens. If v
does not have f; and ¢ < 2d, then the algorith-
m increments ¢/ and chooses some other non-zero
counter among {cfi|lu € V} if there is one, and
decrement it. When cff reaches 2d after the incre-
ment, if v is empty, fi is migrated to v and ci" is
reset to 0. Otherwise f; is swapped with the page
f;(i # j) which v currently holds, and ¢ff and cﬂ"
are reset to 0, where v denotes the node which
stores f; before the swapping.

In the above swapping, we say f; is swapped ac-
tively and f; is swapped passively. The description
of the algorithm implies any counter value does not
exceed 2d.

Theorem 4 Concurrent-M is 8-competitive for u-
niform graphs.

Before the proof, we remark one lemma which
plays an important role. Nearly the same lemma
is proved in [BS89].

Lemma 1 V page f, Y ev o < 2d.

Proof: We prove this lemma by induction. Ini-
tially Y,ey ¢f = 0, since all counters are zero.
Sovev ¢f is incremented only if one counter is in-
cremented and all other counter values are 0. This

is because if there is another non-zero counter,
that counter is decremented so that 3, .y cf re-
mains unchanged. Since a counter value cannot
exceed 2d from the description of the algorithm,
also 3,y ¢f cannot be larger than 2d. O

This lemma implies two important facts.

1. Just before a page f is swapped actively to
node v, ¢f = 2d and all other counters associ-
ated with f are 0.

2. After the page f is swapped actively, all coun-
ters associated with f are 0.

Proof of Theorem 4: As is mentioned in Section
2, we analyze the algorithm assuming that F =n. .
Let Ccar(o) be the cost incurred by Concurrent-
M to process a request sequence o. We shall show
that, for any algorithm A, Ccoam (o) < 8C4(o) for
any request sequence o. Our proof uses the s-
tandard technique comparing simultaneous runs of
Concurrent-M and A on o by merging the action-
s generated by Concurrent-M and A into a single
sequence of events. This sequence contains three
types of events: (Type I) Concurrent-M swaps
pages, (Type II) A swaps pages, and (Type III)
a request is satisfied by both Concurrent-M and
A. We shall give a non-negative potential function
@ (initially 0) such that the following inequality
holds for all kinds of events.

ACoM + AP < BAC)Y (3)

where the A indicates the change in the value as a
result of the event. Summing up (3) for all events
results in

CCM(U) +q>end — ‘I)sta.rt < SCA(O').

Since @giart = 0 and @4 > 0 from the definition
of the potential function, we have

Com (o) < 8Ca(o).

Thus the proof ends. It remains to specify the
potential and verify (3) for all events.

Let s/ be the node which has f in Concurrent-M
and t/ be the node which has f in A. The potential
function ® is defined as:

o = Y ¥
f
5ZC£ if s/ =1/,
veV
& =
ad—cf +3) e ifsl £
veV
vFEL

Note the initial value of @ equals to 0 and always
® is non-negative.

From now on (3) is proved for all events. In the
subsequent proof we omit the specification of the
page in the expression of counters when obvious.

(Type I): Concurrent-M swaps pages.

Suppose that page p is swapped actively from s to
s’ and page g is swapped passively from s’ to s.
Therefore as the result of the swapping, ¢, is reset
from 2d to 0 and cf is reset from some positive
value [to 0. Furthermore let ¢ be the location of
p in A and u be the location of ¢ in A. In this
case ACcy = 2d and AC4 = 0. So we must show
that A® < —2d. Trivially, A® = AP, + AP,.
We calculate A®, and A®, separately and then
obtain A® by summing up them.

First consider A®,. There are three cases depend-
ing on whether s, s’ coincide with . Lemma 1 and
deduced two facts make the calculation of AP, so
simple.

s=t : AP, =5 0—(4d—2d+ 0)
=-2d
s=t : AD,=(4d—-0-3) 0)—5-2d
= —6d
s, £t AP, =(4d—0-3) 0)

—(4d—0—3-2d) = —6d

Next calculate A®,. For clearness, we denote the
counter value of ¢; before the swapping simply by
¢, and that after the swapping by c,(=0). There
are also three cases depending on whether s, s’ co-
incides with u. In the right side of three formulas
below, the first term represents the value of A®,
after the swapping and the second term represents
A, before the swapping.

s=u : A®=5% c,—(4d—cu+3 D cy)
veV veV
vHu
=2y cy+5d+c —4d
veV
vias
=92 Z cy +cg —4d
veV
vias
<2y c,—4d<0.
veV
d=u : AD;=(4d—c,+3) c)—5) ¢
vev VeV
v#u
< (4d+3 Z cv)—5z Cy
vev vEV
vis! vs!

S4d+3d,—5c, -2 Y o
vEV
viEas,s!

=4d—5c,—2 Y ¢, <4d

vEV
vs, sl

Al = (4d—cy, +3) cy)
V;EAV

—(4d—cu'+3Zc,,)
ugV

=3(c, — ;) = -3l < 0.

5,8 #u

Now that A®, and Ad, are obtained, the addition
of A®, to A®, calculates A®. Table 1 displays
AQ® as the sum of AP, and A®,. For example,
if s =1t and & = u then A® = A®, + AP, <
—6d + 4d = —2d. Since one node cannot have p
and ¢ at the same time, ¢ cannot be identical with
u. Therefore the case when s = ¢ = u and the case
when s’ = t = u are impossible. As Table 1 shows,
A® < —2d in all cases, which implies (3) holds for
this case.

Table 1: A® as the sum of A®, and Ad,

Ad,
s=ul|sd=ulssd#u
s =1 —2d null —2d
Ad, | s=t null —2d —6d
5,8 #1| —6d —2d —6d

(Type II): A swaps pages.

Suppose that page p is swapped from ¢ to ¢ and
page ¢ is swapped from ¢’ to {. Furthermore let s
be the location of p in Concurrent-M and w be
the location of ¢ in Concurrent-M. In this case
ACeym = 0 and AC, = 2d. So we must show
that A® < 16d. Again we calculate A®, and A®,
separately and obtain A® after that.

First consider A®,. There are three cases depend-
ing on whether ¢, coincide with s.

=5 : ADp=5) c,—(4d—ci+3) c))
veV 3%
vl
=6ct—-4d+2ch
veV
vt
<6) cv—4d<12d—4d=8d
veV
t=s : AD,=(dd—cp+3D ¢) =5 ¢
vEV veV
v#L!
=4d—6cp —2 Y ¢, < 4d
veV
v

tt'#s © A, =(4d—cy+3) cy)

veV
vyt!

—(d—c+3) c)

vEV
vt

= “4Ct’ +4c; = 4(61 fad Ctl) S 8d

As is shown above, we have obtained A®, < 8d
regardless of whether t,t’ coincide with s.

In the same way, we can prove A®, < 8d. Thus,
about the total change of @

A® = A, + AD, < 164,

which proves (3) holds for (Type II).

(Type III) A request is satisfied by both A and
Concurrent-M.

Let v be the node at which the request is generated
and f be the requested page. We denote the node
which has f in Concurrent-M by s and the node
which has f in A by t. There are two cases to
consider depending on whether v = s or v # s.

Case 1: v =s.

ACecym = 0. AC, is at least 0. AP = 0, since
Concurrent-M never changes the counter values.
Thus (3) is satisfied.

Case 2: v # s.

In this case AC¢cpy = 1 since v does not have f
in Concurrent-M. And cf is incremented by 1. We
need to consider the following three cases.

Case (a): Suppose that v = t.

AC, = 0. So we have to show that A® < —1.
Note that-s 7 . The increment of ¢/ decreases ®
by 1. If another counter is decremented, then ®
decreases by 3. Thus A® € {—4,—1} < —1. Thus
(3) holds for this case.

Case (b): Suppose that v #t = s.

AC4 = 1. So we must show that AP < 7.
The increment of ¢f increases & by 5. If anoth-
er counter is decremented, then @ decreases by 5.
Thus A® € {0,5} < 7.

Case (c) Suppose that v # t # s.

AC, = 1 and we must show that A® < 7. The
increment of ¢f increases ® by 3. If no decrement
takes place A® = 3. Else if another counter except
¢; is decremented, @ decreases by 3 and totally
A® = 0. If ¢; is decremented, ® increases by 1
and totally A® = 4. Thus the claim that A® <7
is proved.

Since (3) is proved for all kinds of events, the entire
proof of Theorem 4 is completed. [J

We can treat Concurrent-M as an on-line algorith-
m for uniform stars. In that case its competitive
ratio grows 2 times larger than for uniform graphs.

Theorem 5 Concurrent-M is 16-competitive for
uniform stars.

5 Furure Works

In this paper we obtained an O(1)-competitive de-
terministic on-line algorithm for uniform graphs
in the constrained migration problem when k =1
by examining the direct-mapped constrained mi-
gration problem. This algorithm breaks the pre-
vious best upper bound of O(n)-competitiveness
obtained by applying the O(kn)-competitive con-
strained migration algorithm by Bartal et al. to
the case k = 1. We conjecture that it is also possi-
ble to break the upper bound of O(kn) by Bartal
et al. for larger values of k. In other words, we
conjecture that in the constrained migration prob-
lem there exists a O(k)-competitive deterministic
on-line algorithm for uniform graphs.

References

[ABF93] B. Awerbuch, Y. Bartal and A. Fiat.
Competitive distributed file allocation. In Proc.
25th Annual ACM Symposium on Theory of Com-
puting, pages 164-173, 1993.

[AK94] S. Albers and H. Koga. New On-line Al-
gorithms for the Page Replication Problem. In
Proceedings of 4th Scandinavian Workshop on Al-
gorithm Theory, pages 25-36, 1994.

[BFR92] Y. Bartal, A. Fiat and Y. Rabani. Com-
petitive algorithms for distributed data manage-
ment. In Proc. 24th Annual ACM Symposium on
Theory of Computing, pages 39-50, 1992.

[BS89] D.L. Black and D.D. Sleator. Competitive
algorithms for replication and migration problem-
s. Technical Report Carnegie Mellon University,
CMU-CS-89-201, 1989.

[MMS88] M. Manasse, L. McGeoch and D. Sleator.
Competitive algorithms for on-line problems. In
Proc. 20th Annual ACM Symposium on Theory
of Computing, pages 322-33, 1988.

[ST85] D.D. Sleator and R.E. Tarjan. Amortized
efficiency of list update and paging rules. Commu-
nication of the ACM, 28:202-208, 1985.

