7 oA =T ¥ X 4 43—7
(1995. 1. 23)

— 7y FEBERE IR D Blhmi 7 v Ty XA
R Wk MR R B

25 RIS R KRB TR e
T 630-01 ZXRILABIHIE LN 8916-5

E-mail: akihir-f@is.aist-nara.ac Jp :

HR2EEROL—~2 Y v FESEREE, ANDEERICOWTH 2 & %ub‘!ﬂlﬂu$i'c‘0)1 sy K
BT ROZUHATHY, Oy TV a v, 15—V, ORT 4y S AR EOFBFCBOTEELNHT
5. BRTNTYXLTIE, H#, n x n O 2MEERICH LT, O@R?) B T1— ¢ Yy I EREASRTHE % R
DATNTYZX LB DPRENT. ;

FRTRIOL—2)y FERERLT%) PRAM LOFEFIT VT X a%Rkd. SOTNTY XA
n x n DAL LT, EREW PRAM LTt O(logn) BB, n2/logn 70ty 4 TEFTE , arbitrary
CRCW PRAM LT3, O(logn/loglog n) FilH, n’loglogn/logn 7' 0ty 4 TEITCTE 5. ZOTLITYX
Alxa—7)y FEMZT TR, 4EEHH, 8 nFRE, 8 ABKEECT v L7 7 —Hilk &Stk
7 7R LTHMTHA.

A Parallel Algorithm for the Euclidean Distance Maps
Akihiro FujiWMa, Toshimitsu Masuzawa, Hideo Fujiwara

Graduate School of Information Science
Nara Institute of Science and Technology (NAIST)
8916-5 Takayama, Ikoma, Nara, 630-01 Japan

E-mail: akihir-f@is.aist-nara.ac.jp

The Euclidean distance map (EDM) is a map where each element has the Euclidean distance between
the correponding pixel and the nearest black pixel in an input binary image. The EDM plays an important
role in the field of machine vision, pattern recognition, and robotics. In recent years, several O(nz) time
sequential algorithms have been proposed for the EDM of an n x n binary image.

We present a PRAM algorithm for computing the EDM. This algorithm can be performed in O(logn)
time using n?/log n processors on the EREW PRAM and in O((log ./ loglog n) time using n®loglogn/logn
processors on the arbitrary CRCW PRAM, respectively. This algorithm is applicable to a wide class of
distance maps as well as the EDM. The class contains, for example, cityblock, chessboad, octagonal and
chamfer distance maps.

1 Introduction

The Euclidean distance map (EDM) of a black
and white n X n binary image is the n X n map
where each element has the Euclidean distance
between the corresponding pixel and the near-
est black pixel. The EDM plays an important
role in machine vision, pattern recognition, and
robotics[9)]. \

Many algorithms have been proposed for com-
puting the EDM. Yamada[10] presented an EDM
algorithm that runs in O(n) time using n? pro-
cessors on an 8-neighbor connected mesh array.
By the straight forward simulation of the al--
gorithm, we obtain O(n?) time sequential algo-
rithm. An O(n?logn) sequential algorithm for
computing the EDM was presented by Kolountza-
kis and Kutulakos[8] .. They also showed that
their algorithm can be modified to run in
O(n?logn/p) time using p processors (1 < p <
n) on the EREW PRAM.

In recent years, two O(n?) time sequential al-
gorithms were presented for computing the EDM
[2][6]. These algorithms are optimal since the
trivial lower bound of the EDM problem is (n?).
Chen and Chuang’s algorithm(2] is based on the
algorithm presented in [8]. They showed that
their algorithm can be performed in O(n?/p +
nlog p) time using p processors on the EREW
PRAM . On the other hand, Hirata and Kato’s
algorithm[6] takes a geometrical approach. They
also showed that their algorithm can be paral-
lelized to run in O(n?/p) time using p processors
(1 £ p £ n) on the EREW PRAM.

In this paper, we present a parallel algorithm
for computing the EDM on the PRAM. The al-
gorithm can be performed in O(log n) time using
n?/ log n processors on the EREW PRAM and in
O(logn/loglogn) time using n?loglogn/logn
processors on the arbitrary CRCW PRAM, re-
spectively. The algorithm is optimal in the sense
that the product of the time and the number of
processors is equal to the lower bound of the se-
quential time for computing the EDM. Our algo-
rithm is based on Hirata and Kato’s algorithm(6],

which is applicable to a wide class of distance
maps as well as the Euclidean distance map.
The class contains, for example, cityblock, chess-
boad, octagonal and chamfer distance maps. Our
algorithm is also applicable to the same class of
distance maps.

In Section 2, the definition and models of
parallel computation which are used through-
out this paper are given. Section 3 introduces
the algorithm proposed by Hirata and Kato[6].
In Section 4, we present our parallel algorithm
and describe complexities on the EREW PRAM
and on the arbitrary CRCW PRAM. Section 5
discusses the class of distances that our parallel
algorithm is applicable to.

2 Preliminaries

Given a black and white n x 7 binary image,
let (4,j) denote each pixel (1 < 4,5 < n). The
index 7 stands for the row number, and the index
j stands for the column number. We assume the
pixel (1,1} is the one on the upper left corner in
the image. Let BL denote the set of all black
pixels. The Euclidean distance map (EDM) of
the image is an n X n array ED, where each
element ED;; stores the Euclidean distance from
pixel (4, j) to the nearest black pixel. For each ¢
and j (1 <i,j < n), ED;; is defined as follows.

ED,',' = min(,,y)ggl,\/(i - :lt)2 + (] - y)2

An example of a binary image and its EDM is
illustrated in Fig.1.

For each row i (1 < ¢ < n), we define BL; as
the set of all black pixels in the ith row or above,
namely BL; = BL N {(z,y)lz < i}. In this
paper, we consider the computation of the Eu-
clidean distance from pixel (z,j) to the nearest
black pixel in BL;: if we want to obtain the com-
plete EDM, all we have to do is to turn image
upside down, to apply the same algorithm and
to compare the two Euclidean distances. The
Euclidean distance from pixel (z, j) to the near-
est black pixel in BL; is denoted by d;;.

Since we treat some geometric problems in
this paper, we present definitions of them. Let
F = {fi(z), fo(z),..., fa{z)} be a set of func-
tions. The lower envelope of F' is a function
h(z) = minice<n fe(z). Wesay fi(z) is on the
lower envelope of F if fi(z') = h(z') holds for
some z'.

The convez hull of point set P is the smallest
convex polygon of which each point in P is either
on the boundary or in the interior. A point of
P is called an extreme point of P if it is on the
boundary of the convex hull. Let p; and p, be
the extreme points of P with the smallest and
the largest = coordinates. Notice that p; and
pr are uniquely determined in our application of
the convex hull, since every point has a distinct
z coordinate. By cutting the boundary of the
convex hull at p; and p,, the boundary is divided
into two chains, an upper hull and a lower hull.
For completeness, we assume that p; and p, are
contained in both the upper and the lower hull.

The parallel computation model used in this
paper is the EREW (exclusive read exclusive
write) PRAM and the arbitrary CRCW (concur-
rent read concurrent write) PRAM. The PRAM
employs processors which have the capability to
access any memory cell in the shared memory
synchronously. Several models of the PRAM
have been proposed with regard to simultaneous
reading and writing to a single memory location[7].

The EREW PRAM does not allow any si-
multaneous access to a single memory location.
Simultaneous access to the same location for a
read or a write instruction is allowed on the
CRCW PRAM. In the case of concurrent writ-
ing, different assumptions are made about which
processor’s value is written into the memory lo-
cation. On the common CRCW PRAM, pro-
cessors are allowed to write to the same mem-
ory location only when they are attempting to
write the same value. On the arbitrary CRCW
PRAM, any one of the processors attempting to
write succeeds in writing its value.

of1{o0}1]|2]3

1j{oj1N2] 25

0j0|1|2]1[7]

11 N2[1]0]1
; 2]12]t1fofo]t
| 3N3Nz] 1|1 7]
@ R ()

Figure 1: An example of the Euclidean distance
map: (a) an input image I. (b) the Euclidean
distance map of 1. :

3 Hirata and Kato’s algo-
rithm

Our parallel algorithm can be considered as a
parallel implementation of the optimal sequen-
tial algorithm presented by Hirata and Kato[6].
We first briefly describe the sequential algorithm.
The algorithm consists of three steps.

Hirata and Kato’s algorithm (!
step 1: For every pixel (4,7) (1 < 1,7 < n),
compute the Euclidean distance g;; to the near-
est black pixel in the same column:

gij = i — max jeprk

If no black pixel is in {(1,7),(2,7),-..,(%, 1)}
set g; = +00.
step 2: Let f;x(j) be the Euclidean distance
from (i, 7) to the nearest black pixel in a column
k, namely f;x(j) = 4/(j — k)? + g4. Since d;; =
miny<k<n fix(7), compute a function h;(z) =
mini<k<n fik(z), for each row i (1 < i < =w).
(Notice that the function h;(z) is the lower en-
velope of F; = {fix(z)|1 < k < n}.)
step 3: Compute d;; from h;(z) for each i, j (1 <
i,J < n). : a
Fig.2. shows an input 6 x 6 image, the set of
functions F5 = {fs51, fs2, f5,3, f5,4, fs.5} and the
lower envelope of Fs.: The Euclidean distance ds;

can be computed from fs,1, ds2 can be computed
from f52, ds3 and ds4 can be computed from fsa
and so on.

wmun denotes lower envelope of Fs,

Figure 2: An example of the lower envelope. The
function set Fy is {fs,1, f5,2, fo,3, f5.4, f5.5}-

The first step can be performed in O(n?)
time by scanning each column downward. In the
second step, we compute the lower envelope by
scanning each row from left to right. Using the
similar technique to Graham’s scan for the con-
vex hull problem[1], we can compute the lower
envelope of F; in O(n) time: the total running
time of the second step is O(n?). We use a stack
to store the lower envelope found in the second
step. The last step can be performed in O(n?)
time by popping the stack and storing the each
Euclidean distance to the element from right to
left. Therefore, overall of the algorithm can be
perfermed in O(n?) time sequentially. Hirata
and Kato[6] also pointed out that the algorithm
can be performed in O(n?/p) time using p pro-
cessors (1 < p < n) on the EREW PRAM by
processing rows or columns in parallel.

4 A parallel algorithm

4.1 An overview of the algorithm

In this section, we present a para,llel algorithm
for computing the EDM. Our parallel algorithm

is based on the algorithm described in the pre-
vious section, so our algorithm consists of the
same three steps.

The first step.can be easily parallelized. We
now present an overview of the second and third
step.

In the step 2, we compute a function h;(z) =
Mini<k<nfik(2), namely the lower envelope of
Fy = {fix(x) | 1 < k <'n}, where fix(z) =
kP + g, .

Remark the following expression:

V(@ —a)2+b < (2 - ar)? +b,

(=4 —2a1w+af+b1 < —2a2$+a§+b2

From this expressxon we obtain the following
lemma.

Lemma 1 Let F = {fi | fi = +/(z — ai)? + by,

1 < k < n}, and let © be, the transform that

maps a function fi = \/(z — a)? + by into the
line 7(fi) defined by y = —2a,z + aZ +by,. Then
a function fy, is on the lower envelope of F if and
only if =(fx) is on the lower envelope of n(F),
where w(F) is the line set {n(f) | 1 < k < n}.

. m}

Another key observation is the following trans-
form.

Definition 1 (Dual transform'!)) A dual trans-
form 7 is the transform that maps a point p =
(a,b) into the line y(p) defined by y = ax + b,
and that maps the line l : y = cx + d into the
point ¥(l) = (—¢,d). a

Property 1 I pet 7 be the dual transform. A
point p is below a line l if and only if the line
Y(p) is below the point y(l). .o

Using this property, we can reduce the prob-
lem of computing the lower envelope of lines to
the problem of computing the convex hull.

Lemma 2 U Let L = {l,12,.. ., 1o} be a set of
lines and v be the dual transform. Then a line l;,
is on the lower envelope of L if and only if y{I)
is an eztreme point on the lower hull of v(L),
where y(L) is the point set {y(Ix) | 1 < k < n}.

)

In consequence of Lemmas 1 and 2, we obtain
the following lemma.

Lemma 3 Let F = {fi | fe = /(2 — ar)? + by

, 1 <k <n}, and X be the transform that maps

a function fi = /(2 — ax)? + by into the point
Afi) = (2ax,02 + be)'. Then a function f; is
on the lower envelope of F if and only if A(fi)
is an extreme point on the lower hull of A(F),
where A(F) is the point set {\(fi) | 1 < k < n}.

a

Fig.3 shows an example of these transforms.
In this example, functions fy, f2, f4, fs are on the
lower envelope of F = {fi, f2, f3, f4, f5}. There-
fore, lines m(f,), n(f2), ®(fs), n(fs) are on the
lower envelope of (F'). Also points A(f1), A(f2),
A(fs), A(fs) are extreme points of the lower hull
of A(F).

IA(f) = 1(=(fe))

(b)

y ()
o 9o

) ‘.I"“"" 7 (fs)

. ot
y) 7 “"L-»-»""‘ 7 ()
.mml"
(c)

Figure 3: An example of transforms: (a) A func-
tion set F' = {fi, fa, fs, fa, f5} and its lower en-
velope. (b) The line set 7(F) and its lower enve-
lope. (c) The point set A(F') and its lower hull.

In summary, the problem of finding the lower
envelope of F; is reduced to the problem of com-
puting the lower hull of A(F;). Since A trans-
forms a function fix(z) = /(z — k)2 + g% to
the point (2k, k% 4 ¢2,), the sequence of points
’\(fi,l(z))) ’\(fi,Z(z)): ey ’\(fi,n(x)) is sorted by
2 coordinate. The convex hull of n sorted points
can be found in O(log n) time using n/ log n pro-
cessors on EREW PRAMB! and in O(loglogn)
time using n/loglogn processors on the com-
mon CRCW PRAMP!, respectively. Therefore
the step 2 can be done efficiently.

In the step 3, we compute d;; from the lower
envelope of F;. Let LE = {f;; (), fi;,(z), ...
yfijm (%)} be the set of the functions that are on
the lower envelope, whete j; < j2 < ... < jm.
First, we compute intersection point (z,y) of
figi(x) and fi .. (z) (1 <k < m—1). Then
Tk < Tpy4r and hy(z') = fiz,,, (¢') holds for any

z' (zp < 2’ < Try1). In other words, the Eu-
clidean distances df,, di[z, 41 - + - » Dijzy,,) CBD
be computed from f;;,,,(x). Since fi;,,, () =

\/(:c - Jr1)? + Q?J‘Hx’ we broadcast jiq1 and gij, .,
to the pixels (4, [z]+1), (%, [zx]+2), - .., (%, [Trt1])

using prefix maxima operation and prefix sums
operation, and compute the Euclidean distances
for these pixels.

4.2 Details of the algorithm

In this subsection, we describe details of our par-
allel algorithm. In this algorithm, we use two
operations, prefic sums and prefiz mazima. The
prefix sums of a sequence (z1,z2,...,Z,) is de-
fined to be the sequence (s1, 52, ..., 5,) such that
sp = 1+x3+. ..+, The prefix maxima of the
same sequence is also defined to be the sequence
(mq,ma, ..., m,) such that m; = maz;<i<r®r.

The detail of the algorithm is described in
the following. In the description, f;x(z) =
V{z—kP+gi, Fi={fix(z) |1 < k < n},and
X is the transform that maps a function f;(z)
into the point A(fix(z)) = (2k, k* + g3).

Parallel algorithm

stepl: (Compute g;; for every pixel (4,7))
For each column j (1 € j £ n), execute the

following operations.

1. For each i (1 < i < n), set A;[i] = 1 if pixel
(3,7) is black, else set A;[if = 0. Com-
pute the prefix maxima of A; and store
the result in array M A;, i.e. set MA;[i] =
mazlsks,-Aj[k].

2. For each i (1 < ¢ < n), set gi; = +oo if
MA;li) = 0, else set gij = i — MA;li].

step2: (Find the lower envelope of F;)

For each row i (1 < ¢ < n), execute the fol-
lowing operations. (On the termination of step
2, the lower envelope of F; is in the array LE;.)

1. Compute the set of points {A(fix(z)) | 1 <
k < n}, and find the convex hull of the
point set.

2. For each j (1 < j < n), set Bi[j] = 1 if
A(f:;(z)) is the extreme point on the lower
hull, else set B;[j] = 0.

3. Compute the prefix sums of B; and store the
result in SB;, i.e. set SB:j] = T}, Bilk].
For each j (1 < j < n), set LE;[SB;[j]} =
jifBifj]l=1
(Letting m; be the number of functions on
the lower envelope of F;, LE;[k] (1 <k <
m;) stores the index of the k** function on

the lower envelope. Let j, be the index
stored in LE;[k].)

step3: (Compute the Euclidean distance

map)
For each row i (1 < ¢ < n), execute the

following operations.

1. For each k (1 < k < m; — 1), compute the
intersection point (zx, ¥i) of two functions

fi-ik (m) and fi..ik+x (:l:)

2. For each j (1 < j < n), set G;[jl = 0. For
each k (1 <k <my — 1), if [zr] # [Tat1]
and 1 < zp < n, then set Cif[zi]] = Jes.
If there exists k'(1 < k' < m;—1) such that
T < 1 and zpyy > 1 then set Cifl] =
Jw41, else set Ci[1] = ji;. Compute the
prefix maxima of C; and store the result
in MC,', i.e. MC,[]] = mazlskst;[k].
(MC;[j] stores index ji such that f;;,(j) =
dij.)

3. Set MC;[0] = 0 and g;q = 0. For each j (1 <
7 < n), set Dilj] = gimeygj) — 9imcij-1 if
MCi[j] # MCi[j — 1], else set D;[5] = 0.
Compute the prefix sums of D; and store
the result in SD;, i.e. SD;[j] = T}, Dilk].
(SDi[j] stores g; mc;fs)-)

4. For each j(1 < j < n), set
diy = /(5 — MCi5])* + SDi[if2. o

4.3 Complexities on the EREW
PRAM

In this subsection, we discuss complexities of
the parallel algorithm on the EREW PRAM.
As mentioned in the subsection 4.1, the extreme
points of the lower hull of n sorted points can be
found in O(log n) time using n/ log n processors!®l.
Both prefix sums and prefix maxima of n num-
bers can be computed in O(logn) time using
n/logn processorsr?'. The other operations in
the algorithm can be performed with the same
complexity obviously. Therefore, for each row or
column, all steps can be performed in O(logn)
time using n/logn processors. So the following
theorem holds.

Theorem 1 The Euclidean distance map of nx
n binary image can be obtained in O(log n) time
using n?/ log n processors on the EREW PRAM.

O

4.4 Animplementation on the ar-
bitrary CRCW PRAM

On the arbitrary CRCW PRAM, the extreme
points of the lower hull of n sorted points can
be found in O(log n/loglogn) time using

nloglogn/logn processorsi®. Also the prefix
sums of » numbers can be computed with the
same complexities if each number is of O(logn)
bits4l. We adapt the prefix sums computations
in our parallel algorithm, since every number
is smaller than n in each prefix sums opera-
tion in our algorithm. Therefore, our parallel
algorithm runs in O(logn/loglogn) time using

are applied satisfy the following conditions.

(c1) Every element of the sequence is a non-
negative integer of O(logn) bits.

(c2) Let the sequence be § = (s1,82,-.,8a). If
s; and s; (i < j) are positive, then s; < s;

holds.

For the sequences satisfying the above condi-
tions, the prefix maxima operation can be per-
formed in O(logn/loglogn) time using
nlog log n/ log n processors on the arbitrary CRCW
PRAM as follows. In the algorithm, we use the
prefix sums computation presented in [4].

Computing the prefix maxima

Let § = (81, 32, ..., 8,) be a sequence satisfy-
ing the condition (c1) and (c2). The prefix max-
ima of S is denoted by (maz;, maz,, ..., maz,).

1. For each k¥ (1 < k < n), set A[k] = 1 if
sk # 0, else set A[k] = 0. Compute the
prefix sums of A and store the result in
array S4, ie. SAk] = T, A[l].

2. For each k (1 < k < n), set B[SA[k]] = s; if
s # 0.
(By the operation, B[i] stores the i** pos-
itive element if exists.)

3. Foreach k (1 < k < n), set mazy, = B[SAk]]
if SA[k] # 0, else maz;, = 0. n}

It is clear that the above prefix maxima op-
eration can be performed in O(logn/loglogn)
time using nloglogn/logn processors. There-

n?loglog n/ log n processors on the arbitrary CRCW fore, the following theorem holds.

PRAM, if we can perform the prefix maxima op-
eration with the same complexities. In what fol-
lows, we show that the prefix maxima “in our
algorithm” can be computed with the complex-
ities on the arbitrary CRCW PRAM.

In our parallel algorithm, prefix maxima op-

erations are performed in steps 1 and 3. The se-
quences to which the prefix maxima operations

Theorem 2 The Euclidean distance map of n x
n binary image can be obtained in O(log n/loglogn)
time using n®loglogn/logn processors on the
arbitrary CRCW PRAM. m]

5 The class of distances

Hirata and Kato ‘pointed out in [6] that their
algorithm can be applied to the computation of
the distance map for distances other than the
Euclidean distance with a little modification if
the distance satisfies the following two condi-
tions. (We denote the distance from p; = (2, %)

to p; = (zj,v;) as d(pi, p;).)

(1) Let f(z,y) be a function such that d(p;, p2) =
f(lz1 = 22, |y — yo|). Then f(z,y) is a
monotone increasing function for = and y,
respectively. In other words, f(z,y) satis-
fies the following two conditions.

Vz1,22,y [(le1] < |z2| = f(l2al, l9]) < f(l2al, [9])]

vw,yl;?h “yll < |y2l = f(l:cI,Iyl') ..<- f(lxl>|y2l)]

(2) If we assume that py,ps,ps is on the same
line, then d(Pth) + d(PmPa) = d(plv Pa)-

Many distances (e.g. the Euclidean, city-
block, chessboad, octagonal and chamfer dis-
tances) satisfy these two conditions.

Since our algorithm is based on their algo-
rithm, our algorithm can be also applicable to
the same class of distance maps with a little
modification.

6 Conclusions

In this paper, we presented an optimal paral-
lel algorithm for computing the EDM of a n X
n binary image. The algorithm computes the
EDM in O(log n) time using n?/ log n processors
on the EREW PRAM and in O(log n/loglogn)
time using n®loglogn/logn processors on the
arbitrary CRCW PRAM, respectively. The al-
gorithm is applicable to a wide class of distance
maps.

References:

[1] T. Asano. Computational Geomnetry.
Asakura-Syoten, 1990, in Japanese.

{2] L. Chen and H. Y. H. Chuang. A fast al-
gorithm for Euclidean distance maps of a
2-D binary image. Information Processing
Letters, 51:25-29, 1994.

[3] W. Chen. Parallel Algorithm and Data
Structures for Geometric Problems. PhD
thesis, Osaka University, 1993.

[4] R. Cole and U. Vishkin. Faster optimal par-
allel prefix sums and list ranking. Informa-
tion and computation, 81:334-352, 1989.

[5] P. Fjallstrém, J. Katahainen, C. Levcopou-
los, and O. Petersson. A sublogarithmic
convex hull algorithm. Bit, 30:378-384,
1990.

[6] T. Hirata and T. Kato. An algorithm for
Euclidean distance transformation. Tech-
nical Report AL41-4, IPSJ, 1994, in
Japanese.

[7] 3. JaJ4. An Introduction to Parallel Algo-
rithms. Addison-Wesley Publishing Com-
pany, 1992. ‘

[8] M. M. Kulountzakis and K. N. Kutulakos.
Fast computaiton of the Euclidian distance
maps for binary images. Information Pro-
cessing Letters, 43:181-184, 1992.

[9] D. W. Paglieroni. Distance transforms:
Properties and machine vision applications.
CVGIP: Graphical Models and Image Pro-
cessing, 54:56-74, 1992.

[10] H. Yamada. Complete Euclidean distance
transformation by parallel operation. In
Proc. 7th -Conference on Pattern Recogni-
tion, pages 69-71, 1984.

