7 o =Y X s 43—4
(1995. 1. 23)

CEHRBERAN—F 72T T TY X ACDONT
A EL
EBAE TR ER

BRRHAON—F 9 27 7V TY X8R REF 5o HBL— 27) v FERIEY, BR
BRERICE HICHERT 5o MEBEHEICZHIAT (0,1, -1} DERP L L LU 2ERHALH
W, DA BT OERE LISERICT Yo 0 EHEMOBELTHE X, 0 AT S
sy 7Y A7 VTHRBEYITZ A, £ 0y VAl INVOESIE N IZL %‘f—*%f‘ﬁ)
b0 METNITY XLCED CHRBRERL, ¥y AT A AXOHRAIE L\ VAT
EELTHEY, VISHECEL TV A, N—F o x 7RI 0 CHBIT 5,

On a Hardware Algorithm for Modular Division

Naofumi TAKAGI

Department of Information Engineering, Nagoya University

A hardware algorithm for modular division is proposced. The extended Euclidean algo-
rithm is further extended to perform modular division. The redundant binary representa-
tion with a digit set {0,1, —1} is ciuployed so that additions are performed without carry
propagation. A modular divisiou is carried out in O(n) clock eyeles where n is the word
length of operands. The length of cachi clock cyele is constant independent of #. A modular
divider based on the algorithm has a regular cellular array structure with a bit slice feature
and is very suitable for VLSI implementation. Its amount of hardware is 1)1'()])()1"r.io1ml‘ to

n.

1 Introduction

Modular division in a residue class field is one of the
basic operations in abstract algebra. It plays im-
portant roles in several applications, such as public-
key cryptosystems. For example. we can acceler-
ate decryption in ElGamal public-key system [1].
by developing a fast modular divider with a large
modulus (e.g.. longer than 500-bit).

In this paper. we propose a hardware algorithny
for modular division. We further extend the ex-
tended Euclidean algorithm (EEA) [2]. In EEA. a
procedure for finding the multiplicative inverse is
intertwined with that for calculating the greatest
common divisor (GCD). We modify the procedure

for finding the multiplicative inverse to calculate *

the quotient. Furthermore, we accelerate the cal-
culation by using a redundant binary (RB) repre:
sentation with a digit set {0,1, —1}. Using RB rep-
resentation, we can perform addition/subtractions
fast without carry propagation.

Recently, we proposed a hardware algorithm for
modular inversion based on EEA with RB represen-
tation [3]. The algorithm proposed in this paper is
an extension of this algorithm. Parikh et al. in-
dependently proposed an algorithm for computing
the GCD of given two integers based on Euclidean
algorithm in which RB representation is also used
[4]. Although they suggested that their algorithm
can be extended for modular inversion, they did not
show any procedure for modular inversion. They
mentioned nothing on modular division. »

The algorithm proposed in this paper performs
modular division within O(n) clock cycles where n
is the word length of the operands. The length of
each clock cycle is constant independent of n. A
modular divider based on the algorithm has a reg-
ular cellular array structure with a bit slice feature
and is very suitable for VLSI implementation. Its
amount of hardware is proportional to n. It secms
easy to fabricate a modular divider VLSI based on
the proposed algorithm using today’s technology.

In the next section, we further extend the ex-
tended Euclidean algorithm to perform modular i-
vision. In Section 3, we introduce the redundant
binary representation and show procedures to per-
form several modular operations in the redundant
binary system. We propose a hardware algorithm
for modular division in Section 4. In Section 5, we
analyze the number of clock cycles required by the
algorithm.

2 Further Extension of EEA

We counsider the modular division X/ (mod A1)
for positive integers X and Y (X.} < M) in the
residue class fickd with ‘imodilus A where M is
prime. Namely. we intend to obtain a positive inte-
gor Z (< M) whichsatisfies ZxY =X (mod M),
Although we are assuming the modulus Al being
prime. the algorithm to be proposed works as long
as M is odd and relatively prime with Y.

The algorithm is based on the extended Eu-
clidean algorithm (EEA) [2). We further extend
EEA so that we can performn modular division.
EEA consists of two intertwined parts. Oue is for
calculating the greatest common divisor (GCD) of
the modulus and the given number and the other is
concerned with finding the multiplicative inverse of
the number. We modify the procedure for finding
the multiplicative inverse to caleulate the quotient
modulo M. We also make a'slight modification
for adopting the redundant binary (RB) represen-
tation.

The further extended EEA is as follows. Note
that ged(M,Y) = 1.

Algorithm [EEEA]
(Inputs)
Modulus: Af (a prime nuuber)
Dividend: X (a positive integer. X < Af)
Divisor: Y (a positive integer. 17 < M)
(Output)
Quotient: Z (a positive integer. Z < 1,
ZxY =X (modl}))
(Algorithm)
Step 1:
Agi= AL A =Y. 0 :=0.0, := X,
k=0 ’ V
Step 2
while |dg41] # 1 do
begin
k=k+1
Choose Qp so that |4y — Ay - Q] < [4e]-
Apr = Aoy = Ag - Qe
Choose C so that U =U-Qrp—Ci- M| < M.
Ui i=Upy = U Q= G- M
end
Step 3:
if 4py = -1 then Z' = -0y
else Z' := Uiy,

Step 4:
ifZ'<0then Z:= 2"+ M
else Z2:=2' (]

—

The procedure for calculating GCD is the same
as that of EEA except that A4 may be negative.
We choose (Qy, so that Ay satisfies | 41| < |4kl
while in EEA, the quotient of A4y +.4; is chosen as
Qr and Apyq satisfies 0 € Apyy < Ag. This mod-
ification allows us to adopt RB representation into
this procedure. |Ag41] for the final k is gcd(AI.)
which is 1 in our case,

The ploccduw for calculating the mulhpll(ative
inverse is modified so that it calculates the guotient.
We set U) being X, while it is set being 1 in EEA.

‘e allow Uy to be negative so that we can also
adopt RB representation into this procedure. Z is
the quoticnt of X/Y modulo M. (Note that when
X =1, Z is the multiplicative inverse of ™ modulo
M.) To prove this fact. we first give the following
lemma. Hereafter. kf denotes the final k.

[Lemma 1] .
Up - Y 41 - M = Ay - X holds for any & (0 <

E<kf+1), where Wy =X, W =0and Wiy =

Wiy =W Qr+Cp - Y

(Proof)

We prove the lemma by induction on k.

Up- Y4+Wo-M = 4p-X and U Y4U77-M = 4,-X
hold, since 49 = M. A, =Y, Uy =0. U, = X,
Wy =X, and W, =0.

Assume that Up— - Y+ Wi M = 4 - X and
Up-Y4+Wi-M = A;-X hold for a k (k > 1). Then,
subtracting @, times the latter equation from the
former, we get (Up—y — Ur - Qi) - Y + (Wioy —
Wi Qi) M = (Ar_y — Ar - Qi) - X. Therefore,
Uk 1 +Ch- M) Y+ (Wi = C Y)-M = 444+ X
holds, and hence. Upqy - Y + Wiy - M = A4y - X
holds.

Hence, the lemma has been proved. (]

Now. we get the following theorem.

[Theorem 1]

Z obtained by [EEEA] is the guotient. X/Y°
(mod A).

(Proof)

Ulcj+l Y + Wi - M o= ‘1kf+l - X (from
[Lemma 1}). and [dgppi} = 1 (= ged(AY)).
When Agppr = -1 Uk Y + Wippy - M = -X
and Z' = —Upspy. When Appyp = 10 Uppy -
Y+ Wippr - M = X and Z’' = Uppyy. Therefore.

Z'xY =X (mod M) holds. |Z'] < M. because
|Z| = IL I+l| and lULf‘HI < M. When'Z' < 0.

Z = Z' + M, and otherwise, Z = Z'. Therefore.
ZxY =X (mod M)and0< Z < M hold.
Hence, the theorem has been proved. [w]

Fig. 1 shows a flow of the modular division
of 79/108 (mod 211) by [EEEA]. |4, = 1 (
ged(211.108)). Sinee Ay = 1. Z' = U = 116 fuul
since Z'' > 0, Z = 2’ = 116. 116 is the quotient.
In fact. 116 x 108 =79 (meod 211).

M =211.X =79.7 = 108

Qk ‘Ak : L'wk
SAdp = 211 Uy = 0
4, = 108 U, = 79
= 2
o 22 A= =5 Uy= -158
Qz - '3 A= -2 U= -21
5 L= 1 Uy 116
Z' =116 (= Uy)
Z =116 (= 2Z")

Figure 1: A modular division by [EEEA]

3 Modular Operations in RB
System

In the algorithm to be proposed. we represent the
intermediate results in [EEEA]. Au's and Up's. in
the redundant binary (RB) representation.

RB representation has a fixed radix 2 and a digit
set {1.0,1}, where 1 denotes —1. An n-digit RB
integer A = [ayay---a,] (a; € {1.0.1}) has the
value Z:':l @;*2"=. Note that there may be several
RB numbers which have the same value. Using this
redundancy. we can perform addition of two RB
numbers without carry propagation.

Let us ('(msi(l(‘l RB addition of § := A+ B where
A=fay-rapnl B=[by---b,] and S = [spsg -« s,).
A carry- prop‘tgdhon-fu'o addition is carried ont
through two steéps. In the first step. we deter-
wine thé intermediate carry ac; and the interme-
diate sum ad; at cach position. In the second step,
we add up ad; and the carry ac;py from the next
lower position and obtain the final sum s; at cach
position. In the first step. we determine ac; and
ae; so that no carry generates in the second step.
by looking into the next lower position. Table 1
shows the addition rule. For the details of carry-
propagation-free addition. see. e.g.. [5].

We can get a negation of an RB uumber by
changing the signs of all nonzero digits in it.

We need no computation for binary to RB con-
version, because a binary number itself is an RB

Table 1: The computation rule in the RB addition

Step 1
ac;ad;
I a; b; " 1 I 0 l 1 I
1 1.0 *0,1/1,1 0.0
0 *0,1/1.1 0,0 *1.1/0.1
1 0.0 1 *1,1/0,1 1.0
*: Both a4y and by are non-negative./ Otherwise,
Step 2
si
l ad; aciyy 1101 I
1 x|[1]0
0 1{o0]1
1 011} x
x: Never occurs.
number. On the othier hand, we need a carry-

propagate addition for RB to binary conversion. In
the conversion of an' RB number A. we calculate
At — A7 where AT and A~ are binary numbers
formed from the positive and the negative digits of
A, respectively. »

In the algorithmn to be proposed, we need several
modular operations on U's. Here. we show pro-
cedures to perform addition, doubling and halv-
ing modulo Al in RB system. Let the modulus
M = [tmy---m,] (m; € {0.1}) be an n-bit bi-
nary (prime) number. (2"~! < M < 2") Let U =
[wouy---uyl, V= [vgvy -+ - v,] and T = [tot, -+ - 1,,)
(wisvist; € {1,0.1}) be (n+1)-digit RB integers
satisfying —M < U.V,T < M.

We perform modular addition
T := MADD(U,V, M), i.e. the calculation of T
such that 7= U4V (mod AM). through two steps
[6]- In the first step. we calculate §:= U+1V in RB
system according to the addition rule shown above,
S = [s~159s1 -+ s,]is an (n+2)-digit RB number.
In the second step. we add A or O or A’ +1 to S.
accordingly as the value of the three most signifi-
cant digits of S, sv = [s_15081], is negative or zero
or positive. M’ = [10m..an’] is the (n+1)-digit
RB number where m{ is 1 or 0 accordingly as m;
is 0 or 1, and has the value —M — 1. Note that
—2M < § < 0 when sv < 0, —2""! < .§ < 27!
when sv = 0, and 0 < § < 2M when s > 0. We
also perform: this addition iu RB system. Since all
addend digits except the most significant one are
non-negative, the addition in this step is simpler.

Table 2 shows the computation rule for this addi-
tion. The addend digit. r; (€ {0.1}).is m; or 0 or
m'. accordingly as sv is negative or zero or posi-
tive. We let adg be 25| +sgorQor 2s_y + 59— 1
also according to se. We let aeyqq be 1 when se is
positive,

Table 2: The computation rule in the simpler RB

addition
Step 1 Step 2
aciad; . - ti -
I 8; T “ 0 I 1 I lTld,‘ Cit] " 0 I 1J
1 0.110.0 1 1{0
0 00] 1.1 0 011
‘1 11110
We can perform modular doubling T =

MDBL(V,M). i.c. the calenlation of T such that
T =217 (mod M), by applying the second step of
the modular addition to 217, We can obtain 217 by
shifting 17 with one position to the left. '

We perform wodular halv-
ing T := MHLV(V, M), i.c. the calenlation of T
such that T = V/2 (mod). through two steps.
In the first step, we add M to V7 when 17 is odd.
i.e. when p, # 0. We use the simpler addition rule
shown in Table'2. We do nothing when V7 is even.
In the second step, we shift the result of the first
step with one position to the right with throwing
the least significant digit. which is 0, away. (Recall
that M is odd.) :

We can perform the procedures M ADD. MIDBL
and ATHLY in constant time independent of n by
means of combinational circuits. A modular adder
consists of two RB adders. one of which is simpler
and is also used for modular doubling. A modular
halving circuit consists of a simpler RB adder.

4 A Hardware Algorithm for
Modular Division

The algorithm is based on EEEA shown in Sec-
tion 2.

We assume six shift registers. REG-A. REG-B.
REG-U, REG-V, REG-P and REG-D. Each regis-
ter can shift its content with one position to the
left or right in one clock cyele. We also assume a
register. REG-M.

REG-A (= [wjay:--a,]) and REG-B. (=

[biby---b,]) are n-digit registers and keep Ap_y

and A; represented in RB representation.. respec-
tively. To fix the positions which have to be checked
at each computation step, we treat Ap’s as frac-
tious. Only a few digits around the radix points are
checked. REG-A and REG-B can exchange their
contents. o
REG-U (= [wpu;---n,]) and REG-V (=
[vpty -« - vn]) are (n+1)-digit registers and keep
Ui and Uy, also represented in RB representation,

respectively,. REG-U and REG-V can exchange
their contents. :
REG-P (= [.pr+** pn]) is an n-bit register and in-

dicates the position of the least significant digit of
A in REG-B. Namely, REG-P keeps ouly a num-
ber in the form 27, and when its content is 2=, the
least significant digit is at the /-th binary position.
REG-D (= [dp.dy---dy]) is an (n+1)-bit register
and indicates the difference of the positions of the
least significant digits of Ax—; in REG-A and that
of Ay in REG-B in unary representation. Namely.
REG-D also keeps only a number in the form 27/,
and when its content is 27, the difference is /.

REG-M (= [y ++ - my]) is an n-bit register and
keeps the modulus M. '

Hercafter, we use A (B, U. V.. P, D. and M)
to denote both the representation aud the value of
the content of REG-A (REG-B, REG-U. REG-\
REG-P, REG-D. and REG-M respectively). Note
that a;. bi. ui. o; € {1,0,1}, while p;.d;om; € {0.1}.

As in our modular inversion algorithm [3] and
Parikh et al.’s GCD algorithm [4], "normalization™
of an RB fraction is one of the key poillts; An RB
fraction A = [ajay - - - a,] is normalized if a; # 0
and ay # —ay. Note that when A is normalized,
1/4 < |4l < 1.

The outline of the algorithm is as follows
Algorithm [MODDIV]

(Inputs))
-Modulus: A (an n-bit binary number,
-l < M < 2%)
Dividend: X (an n-bit binary number,

0<X < M)
Divisor: Y (an n-bit binary number,
0<Y < M)
{Output)
Quotient: Z (an n-bit binary number,
0<Z< M,
ZxY =X (wmodAl))
(Algorithm)

Step 1: [Initialization]
A=M.-22"B:=Y.27"

U:=0: ‘ =X
P:=2""D:=1
AM = AM;
Step 2:

Step 2-1: [Normalization of B]

Shift B to the left until it is normalized,

Double V" modulo AL, shift P to the left and shift
D to the right with the same number of times
as B is shifted. ;

" If P becomes 271 i.e., B becomes 1or —1. during
the umm.«\.hmtmu shiff D to the left and halve
V" modulo M until D becomes 1, and then go
to Step 3,

Step 2-2: [Pseu(l()—(husum])

Performn pseudo-division lmtil |4 < 1B|.

{(When calculating 4 := 4 — ¢ B in RB system.
calculate U :i=U — ¢ - 1 modulo M in RB.)

(When shifting A to the left, shift D to the left
and halve 17 modulo A.)

Step 2-3: [Swapping]
Swap A and B. Swap U and V.
Go to Step 2-1
Step 3: [Correction]
If B = —1, negate 1",
Step 4: [Conversion]
Convert 17 into binary number Z.
If Z is negative. add M to Z. -~ (n]

In Step 1, we initialize the registers. We put M/
(= 4o) and Y (= 4) into REG-A and REG-B re-
spectively, so that their least significant bits occupy
the n-th binary position. We initialize REG-U to
0 (= Cy). Weput X (=L7) into REG-V. We put
27" and 1 to REG-P and REG-D. respectively. We
put Al into REG-M.

In Step 2-1. we normalize B. The procedure for
normalizing B is as follows. We use the procedures
MDBL and M HLV shown in the previous scction.
LSHIFT(D)and RSHIFT(D) mean one-position
left and right shifting of D, respectively.

[Normalization of B]
while p; = 0 and (h. =0or b b= —l) do
begin ‘
if b = 0 then by := by clse by := by
bi := biyy (for i > 2) (/* left-shift */):
V:=MDBL(V M)
LSHIFT(P):
RSHIFT(D):
end;)
if pi = 1 then do
begin
while dg = 0 do

begin
LSHIFT(D);
Vi=MHLV(V,M);
end;
go to Step 3
end; o
else go to Step 2-2 . o

In the main staée. we perform the evaluation of
[-b1b2], the one-position shifts and M DBL in one
clock cycle. In the termination stage, we perform
the one-position shift and M HLY in one clock ¢y-
cle.

In Step 2-2, we perform a pseudo-division, so that
the remainder hecomes smaller than the divisor.
i.e., |A] < |B|. The procedure for pseudo-division
is as follows. abs([.a;1a,]) denotes the absolute value
of [.a1az]. sgn(].a1ag]) denotes the sign of the value
of [.ajag). which is —1 or 0 or 1, accordingly as
[-a1aq] is negative or zero or positive.

[Pseudo-division]
while dg = 0 do
begin ‘
if abs([.b1b2]) = 3/4 and abs([.a1a2]) = 2/4
then do
begin
Vi=MHLV(V,M);
LSHIFT(D);
q:=ay - by;
A=2-4-¢-B;
U:=MADD(U,—q-V,M);

end
else do
begin
q:=a;-I;
A:=A-q-B; .
U:=MADD(U,—q-V,M);
end;
{Normalization of A]
while dy =0 and (¢; =0 or ¢;-a; = -1) do
begin

if @y = 0 then a; := a3y else a; := ay:
a; := a4 (for i > 2) (/* left-shift */);
Vi=MHLV(V,M);
LSHIFT(D);
end;
end;
[Termination of pseudo-division] (/* dp = 1 */)
if abs({.b1bs]) = 3/4 and abs([.a1a2]) > 2/4
then do
begin
g:=ay-by;

A=A-¢q-B; -
U= MADD(U.~q-V. M)
end; -
clse if nbs([.by b)) = 2/4 and abs([.ajay]) 21/4
then do L
begin
r = sgn{[.a;az]);
while sgn([.a1az]) = r do
begin
qi=reby
Ai=A-q:-B;
U= MADD(U,—q -V, Al)
end;
if wbs([.ayaz]) = 2/4 then do
begin
g = ay by
Ai=A~-q¢q-B;
U:= MADD(U.—q-V.M)
. end;
end;
go to Step 2-3; o

In the main and the termination stage, we per-
form the evaluation of [.ayay] and [byby], the cal-
culation of 4, M ADD. the possible A HLV" and
the possible LSHIFT in one clock cycle. In the
normalization of A, we perform the evaluation of
[-aiay], the one-position shifts and ATHLYV in onc
clock cycle.

We perform the addition (subtraction) for cal-
culating A in RB system using the addition rule
shown in Table 1 in the previous section except at
the most significant position where we adopt a spe-
cial computation rule to make the integer part of
the sum 0. The addend digit at the i-th position is
—q - b;. In the case of calculating 2- A — ¢ - B. the
augend digit at the i-th position is a;4; and we let
ady = ap. In the case of calculating 4 — ¢ - B, the
augend digit is «; and we let ady be 0 when a; # 0
and be —ay (= —q¢-b;) otherwise. (The case ay =0
occurs only in the termination stage.)

From the computation in the termination stage.
we can show the following lemima.

[Lemma 2]

|4] < |B] holds at the end of pseudo-division.
(Proof)
Case 1: abs([.byb,]) = 3/4

When abs([.a1a2]) < 1/4 at the beginning of the
termination stage, since |4| < 2/4, |4| < |B] holds.
Note that [B| > 2/4.

When abs([.a1az]) = 2/4. we caleulate 4 =
A — q- B where q := a; - bj. When sgn([.ayus])

has not changed by the calculation, |4] < 2/4, and
therefore, | A} < |B| holds for the updated 4. When
sgn([.a1a3]) has become 0, |4] < 1/4, and there-
fore, |A| < |B| holds. When sgn([.a1a3]) has been
negated, | 4| < |B| holds.

Case 2: abs([.b1b2)) = 2/4

When abs([.a1a2]) = 0 at the beginning of the
termination stage, since |4] < 1/4, |4] < |B| holds.
Note that |B} > 1/4.

When abs([.aya3]) > 1/4, we perform 4 1= A —¢-
B, where g is the initial sgn{[.a;a]) times by, itera-
tively till sgn([.@1a2]) changes. When sgn([.a;a3))
has become 0, 4| < 1/4, and therefore, |4] < | B].
When sgn([.a1as]) has been negated, abs([.a1az]) <
2/4 from the addition rule. When abs([.a1az2]) =
1/4, |A] < |B| holds. When abs([.a1az]) = 2/4. we
add back B to A.

In any case, |A] < | B| holds at the end of pseudo-
division. [m]

In Step 2-3, we swap A and B, and U and V", in
one clock cycle.

In Step 3, when b, = I, we negate V" in RB sys-
tem in one clock cycle.

In Step 4, we first convert 1 into the ordinary
binary representation. We need a carry-propagate
addition for this conversion. Then, we add M to
the converted V in the ordinary binary number sys-
tem with carry propagation, if it is negative. We
can perform a carry-propagate addition bit-serially
using a one-bit full adder.

Through [MODDIV], all computations carried
out in one clock cycle can be performed within con-
stant time independent of n by means of combina-
tional circuits. Therefore, the length of the clock
cycle is constant independent of n.

Fig. 2 shows the first several steps of the compu-
tation of 79/108 (mod 211) by [MODDIV]. Ouly
the registers with change are shown.

A modular divider based on the proposed algo-
rithm mainly consists of seven registers, a redun-
dant binary (RB) adder, a modular adder and a
modular halving circuit. Recall that the simpler
RB adder in the modular adder is also used for
modular doubling. The divider has a regular cel-
lular array structure with a bit slice feature and
is very suitable for VLSI implementation. Each bit
slice mainly consists of 11 flip-flops and four redun-

dant binary addition cells, two of which are simpler..

Note that we need two flip-flops to store an RB
digit. For the details of the redundant binary ad-
dition cells, see, e.g., [6]. The amount of hardware

of the divider is proportional to n. It sceins easy
to fabricate a modular divider VLSI using today’s
technology.

5 Analysis of the Algorithm

In this section, we show that the number of clock
cycles required by [MODDIV] to perform a modular
division is proportional to n. the word length of the
operands.

In Step 1, if we feed operands to the registers
bit-serially, we need » clock cycles.

In Step 2, initially, P is 27", Step 2 terminates
when P becomes 2-1. P is shifted to the left with
several positions in a normalization of B (Step 2-1).
D is shifted to the right with the same number of
positions as P is shifted. In the succeeding pseudo-
division (Step 2-2), D is shifted to the left with the
same number of positions as it was shifted in the
normalization of B. P is unchanged during this
step. We investigate how many clock cycles are
required in one pass of Step 2.

When P and D are shifted j positions in one
pass of Step 2-1, j clock cyeles are executed there
except in the final pass. (In the final pass, 25 clock
cycles are executed there, and theu the process ex-
its Step 2.) During the succeeding Step 2-2, D is
shifted back j positions. Except in the termination
stage, we can show that no more than two cycles
are executed succeedingly without a left-shift of D
[3]. In many cases, D is shifted with more than one
positions during normalization of A. We can also
show that no more than three cycles are executed in
the termination stage. The number of clock cycles
executed in the pass of Step 2-2 is at most about
2j. In the succeeding swapping step (Step 2-3). one
clock cycle is executed. Therefore, the number of
clock cycles executed in one pass of Step 2 is at
most about 3j.

We have to consider the casc that no shift ocenrs
in Step 2-1. In such case, Step 2-2 immediately en-
ters the termination stage. We can show that no
more than two pseudo-divisions without normaliza-
tion of B are performed succcedingly [3].

Hence. in total, the number of clock cycles re-
quired in Step 2 is at most about 3n. It varies with
operands.

For Step 3, we require only one clock cycle.

In Step 4, we need one or two carry-propagate
additions. For a carry-propagate addition, we need
n clock cycles if we perform it bit-serially using a

one=bit full adder.. Of course, we can accelerate the
processing by the use of a longer adder.

6 Concluding Remarks

We have proposed a hardware algorithm for modu-
lar division in a residue class field. We have fur-
ther ‘extended the extended Euclidean algorithm
and have accelerated it by the use of the reduidant
binary representation for internal computation.

A modular divider based on tlic algorithm has a
regular cellular array structure with a bit slice fea-
ture and is very suitable for VLSI implementation.
The amount of hardware of an n-bit modilar di-
vider is proportional to n. It carries ont a modular
division in O(#) clock cycles, where the length of
each clock cycle is constant independent of n.

References

{1] T. ElGamal: *A public key cryptosystem and a
signature scheme based on discrete logarithms.”
IEEE Trans. Information Theory, vol. IT-31,
no. 4, pp. 469-472, July 1985.

[2] D. E. Knuth: *The Art of Computer Pro-
) gramming,’ vol. 2, 'Seminumerical“Algoritluns.'
Addison-Wesley, 1969.

[3] N. Takagi: ‘A modular inversion hardware al-
“gorithn with a redundant binary representi-
tion,” IEICE Trans. on Information and Sys-
tems, vol. E76-D, no. 8, pp. 863-869, Aug. 1993.

[4] S. N. Parikh and D. W. Matula: ‘A redundant
binary Euclidean GCD algorithm,” Proc. 10th
Symp..Computer Arithmetic, pp. 220-224, June
1991.

[5] N. Takagi, H. Yasuura and S. Yajima: *High-
speed VLSI multiplication algorithm with a re-
dundant binary addition tree,’ IEEE Trans.
Comput., vol. C-34, no. 9, pp. 789 796. Sep.
1985.

[6] N. Takagi and S. Yajima: ‘Modular multiplica-
tion hardware algorithms with a redundant rep-
resentation and. their application to RSA cryp-
tosystem,’ I[EEE Trans. Comput., vol. 41. no. 7.
pp. 887891, July 1992.

Initialization . A L 11010011 (Ap)
. B .01101100 (A)
U 000000000 (L'(,).
v 001001111 (L))
P 00000001
D L00000000
M 11010011 (M)
Norm. B B .11011000
- : V 011001111
P .00000010
D ().109000()()
.A-B A .00001101
) T 010100110
Norm. A A .00011010
‘ . V--001010111
D 1.00000000
Swap A .11011000 (4))
B .00011010 (A2)
U 001010111 (C7)
V 010100110 (Uy)
Norm. B B .00110100
o V- 010101001
P .00000100
D 0.10000000
Norm. B B .01101000
YV 000000011
P .00001000
D 001000000
Norm. B B .11010000
Vv 000000110
P .00010000
D _0.00100000
Norm. B B .101I00000
. A% 000001100
P .00100000
D 0.00010000
A+ B A .01001000
U 0100000060
Norm. A A .10010000
. Y 000000110
D _0.00100000
A+B A .011iIo0000
U 0111117111
Norm. A A .11100000
vV 000000011
. D _0.01000000
Norm. A A .11000000
V 010111010
- D 0.10000000
A-B A ,001000090
U 000111101
Norm. A A .01000000
7 001011101
D 1.00000000
A-B A .10100000
U 0100110171
A4+B “A 01000000
U 000111111
Swap A 10100000 (4)
B .01000000 (43)
U 001011101 (I%)
Vo o000111111 (Uy)

Figure 2: A computation by [MODDIV]

