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How to cut pseudo—parabol‘as into segments
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An arrangement of curves is a major rescarch target in computational geometry.
Although many results are known on complexities of arrangement of lines, few nontrivial
corresponding results are known for other classes of curves. In this paper, we consider
combinatorial complexity of an arrangement of pscudo-parabolus. '

Let T be a collection of unbounded Jordan ares intersecting at most twice éa.ch
other, which we call pseudo-parabolas, since two axis parallel parabolas intersects at
most twice. We investigate how to cut pseudo-parabolas into the minimum number of
curve segments so that each pair of segments intersect at most once. We give an Q(n/3)
lower bound and O(n*/?) upper hound. We give the same hounds for an arrangement
of circles. Applying the upper bound, we give an O(n?/2) hound on the complexity of
a level of pseudo-parabolas, and O(n*>~12a(n)) hound on the number of combinatorial
transitions of Ly Euclidean minimum spanning trees of lincarly moving points.



1 Introduction

Arrangement of curves in a plane is a major ve-
search target in computational geometry. Com-
binatorial complexities of parts of arrangements
such as a cell, many cells, k-levels, < k-levels, and
peaks of k-levels play key roles in desiguing al-
gorithms on geometric optimization aud motion
planning problems [4, 7, 12].

Although arrangements of lines and line seg-
ments are most popular, an arangement of
curves which satisfy the condition that each
pair of curves intersect. at most s times for a
given constant s, is also important in both the-
ory and applications[9, 13]. When s = 1 and
the curves are z-monotone and unbounded, such
an arrangement is known as an arrangement of
pseudo-lines, to which many results on an ar-
rangement of lines generalizes. For example, the
complexity of the k-level of an arrangement of n
pseudo-lines is known to be O(vkn) [15. 4].

We focus on the case s = 2 in this paper. A
familiar example of such an arrangement. is that
of axis-parallel parabolas in which two curves in-
tersect at most twice. An arrangement of axis-
parallel parabolas is used in dynamic compu-
tational geometry, since it shows the transition
of Lo distances among a set of linearly moving
points. The complexity of the lower envelope
and the k-level of an arrangement of parabolas
gives the number of combinatorial changes on
the nearest pair and the nearest k pairs, respec-
tively [1]. Also, the complexity of topological
change on the Ly minimum spanning tree can be
formulated into a problem on an arrangement of
parabolas [10].

"More generally, we consider an arrangement
of unbounded z-monotone Jordan curves inter-
secting each other at most twice. Although -

monotone condition is not necessary for deriving:

the results except in Section 5, we assume it for
simplicity in this paper. Such an arrangement
is called an arrangement of 2-intersecting curves
in the literature; however, for convenience's sake,
we call it an arrangement of pseudo-perabolas.
It is often more difficult to analyze the com-

plexity of an arrangewent of curves than an ar-
rangenient of lines or pseudo-lines. For example,
the only upper bound previonsly known on the

© k-level complexity of an arrangement of parabo-

las is O(kn), which is the same as the bound for
< k-levels[13].

The aim of this paper is to link the complexity
of an arrangement. of pseudo-parabolas to that of
an arrangement of pseudo-lines. Our approach
is to split psendo-parabolas by cut points, gen-
erating an arrangement of pseudo-segments in
which each pair of pseudo-segments intersect at
most once. For example, the arrangements of
Figure.1 can be made into an arrangement of
pseudo-segments by giving seven cuts. We call
the minimum of cuts to make an arrangement I’
into arrangement of pseudo-segments the cutting
number of T'.

Our main results are the following two theo-
rems:

Theorem 1 There erits an arrangement of
azis parcllel parabolas whose cutting number is
Q(n“/:’).

Theorem 2 The cutting number of an arrange-
ment of pseudo-parabolas is O(n®/?%).

We also give the same bounds for the cutting
number of an arrangement of circles.

The lower bound of Theorem 1 is derived
from the Edelsbrunner-Welzl’s lower bound ex-
ample [5] on the complexity of n cells in an ar-
rangement of lines.

The upper bound of Theorem 2 is derived from
an ineauality of Lovész's used in the proof of
his fractional covering theorem [11], combined
with extremal graph theory [2] and a probabilis-
tic method [3, 13]. A greedy algorithm outputs
cuts attaining this upper bound.

Combining Theorem 2 with the known upper
bound on the level complexity of an arrangement
of pseudo-lines, we derive a non-trivial O(n23/12)
upper bouud on the complexity of a level of an
arrangement of pscudo-parabolas. The technique
used here is such that any improved upper bound
for pseudo-lines will lead to an improved upper




bound for pseudo-parabolas. Thus, Theorem 2
establishes an importaut link between the com-
plexitics of arrangements of these two types.

Also, we improve some bounds on problems
in matroid theory and dynamic computational
geometry. For instance, we improve the upper
bound in [10] of the number of transitions of
L Euclidean minimum spanning trees of linearly
moving points by a factor of n!/12,

2 Preliminary

Let T' be an arrangement of pscudo-parabolas.
The arrangement makes a subdivision of the
plane into faces. We use the terms ccll, edge, and
“vertex for 2, 1, and 0 dimensional faces, respec-
tively. A lens of the arrangement is the bound-
ary of a closed region bounded by two pseudo-
parabolas; we say that these pscudo-parabolas
formn a lens.

The boundaries of the shaded regions in Fig-
ure 2 are lenses. We say a lens is a 1-lens if
no curve cross the lens. Consequently, a 1-lens
consists of exactly two cdges of the arrangement.
There exists no 1-lens in Figure 2.

We have the following lemma, which will be
used in the proof of the lower bound:

Lemma 3 The cutting number of T is not less
than the number of 1-lenscs.

Proof: One of the two edges in each 1-lens must
be cut, and an edge is contained in at most one
1-lens. Thus, the lemma follows. i

We define a hypergraph H(I'). whose node set
is the set of edges of the arrangement I'. A set of
nodes of H(I') forms a hyperedge if and only if
its corresponding set of edges of the arrangement
fors a lens.

The node covering of a hypergraph H is a sub-
set of the node set of H such that every Liyper-
edge contains at least one node of the set.

The node covering with minimum size (num-
ber of nodes) is called the minimum covering.
The size of the minimum covering is ¢ alled the
covering number.

The following is a key lemma for owr upper
bound of the cutting munber:

Lemma 4 The cutting number of T' cquals the
covering number of H(T').

Proof: Given a minimmun covering C of H(T),
we cut all edges of T associated with nodes in C.
Then all lens are cut, that means all pair of curve
segments after the cut intersect at most once. On
the contrary, given a mininmuu cut of T, consider
the collection of the edges cut. Then associated
node set of H(T') is a covering. [}

3 Lower bound

We give a proof of Theorem 1 in this section. We
use the following well-known fact:

Theorem 5 [5] The total complexity of m cells

in an arrangement of lines is Qn23n23) ifm >
1/2

nl/2,

In particular, the total complexity of n cells is
Q(n'/3). The total sum of the nuubers of cdges
in the upper chains of n cells is also Q2(n4/3). We
first show the same lower bound for the arrange-
ment of psendo-parabolas.

Proposition 6 There exists an arrangement
of pseudo-parabolas whose cutting number is
Qnt/3).

Proof:- Let A be an arrangement of n lines, and
R be a cell of 4. We choose n cells Ry, Ry,...R,
such that the total complexity of uppu chains of
those cells is Q(n/3).

For each cell R, we can draw an z-monotone
counected cwrve segment y(R) in the elosure of
R, such that y(R) is tangent to every edge in
the upper chain of R. We make a curve J(RR)
which separates the planc by adding a vertical
downwards ray to each endpoint of vy(R).

Cousider the arrangement B of the union of the
set of lines in A and the set of curves {¥(R;) :
i =1,2,..,n} The munber of touching points be-
tween curves and lines in B is §(n?/3). Now,



we perturb B by slightly translating all curves
Y(R;) ¢ = 1,2,..,n upwards. Then, the arrange-
ment has Q(n“/ 3) 1-lenses. It is not difficult to
see that each pair of curves (and lines) in this
arrangemnent intersects at most twice. Thus, the
proposition follows from Lemma 3. o

Next, we show that the lower bound can be at-
tained in an arrangement of parabolas. To show
the lower bound example of n cells in an arrange-
ment, Edelsbrunucer and Welzl [5] construct a
highly degenerate arrangement A’ which has a
set V of n vertices with total degree Q(ni/3).
Also, due to that construction, we can assume
that each line of the arrangement has a positive
slope which is not larger than 7/4.

We consider a very skinny axis-parallel
parabola v, and draw a copy y(v) which has its
peak at v for each v in V. Now, we translate cach
line, so that the degeneracy of A’ is resolved, and
each line through a point v in V is translated so
that it is tangent to v(v). Since the point of con-
tact of a line to a given parabola is determined by
the slope of the line, the translation is unique for
a line with a given slope. Hence, the translation
does not generate global .inconsistency.

We consider the union of A’ and the translated
parabolas. Then, the nwmber of vertices in this
arrangement at which two curves arc tangent is
Q(n?/3). Thus, by perturbing this arrangement,
we obtain a lower bound example proving Theo-
rem 1.

4 Upper bound

It suffices to give an upper bound for the cover-
ing number of hypergraph H (I'). 'We recall some
notations on hypergraphs. The degree d(z) of a
node z of a hypergraph is the number of hyper-
cdges containing z. The maximum degree in a
hypergraph H'is denoted by d(H).

A k-matching of H is a collection M of hy-
peredges (the same cdge may occwr wore than
once) such that each node belongs to at most k
of them. A k-matching is simple if no edge oceurs
in it more than once. The maxinnun nunber of

hyperedges in a simple & matching is denoted by
vi(H) (this is denoted by oy (H) in Lovasz [11]).
Note that vy ) (H) is the number of hyperedges
in H. We remove the argiuent H- from functions
d and v, if no confusiou arises. -A greedy algo-
rithm for computing a covering is the following:

1: Fiud the node of maximum degree;

2: Tnsert the node in-the covering,

and remove the node and all edges containing
it from H; N

3: If all edges are covered, Exit; Else GOTO
1;

- Loviész [11] shows that the greedy algorithmn
achieves a covering of size at most log d(H) + 1
times the covering number of H. The following
is the key inequality in his proof. Let ¢ be the
number of covering of H obtained by a greedy
algorithun. Then,

! 2 Ve W

+ +- +— (1)
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Consequently, the minimum covering munber
of H is also bounded by the righthand side of
(1). Therefore. we want to estimhate vi(H(T))
for k=1.2,..d.

Suppose we have a simple l-matching M of
H(T') of size M. Recall that a hyperedge in H(T)
is a lens in T

We define a bipartite graph G(M). The vertex
set is S;USy, where S and Sy are disjoint, |S| =
|S2] = |I'| = n, with associated bijections 7, :
Si—=Tlandy,:8;, —T. ‘

We draw an cdge between a node w of S| and
v of Sy if and ouly if the associated curves 1 (u)
and y2(v) form a lens which is associated with a
hyperedge in M, and v, () is above y2(v) within
the lens. Here, a curve v is ebove another curve
1 within their lens L if a vertical downward ray
from a point on v U L intersects p. (Note: here,
we usc 2-mmonotonicity. We need a more compli-
cated definition without the assumption).

By definition, G(M) has 2n vertices. It is clear
that the number of cdges in G(M) is the:size of
the matching M. : :



First, we consider the munber vy (H(T')) of 1-
matchings.

Lemma 7 Suppose M is a simple 1-matching of
H(T'): Then, G(M) does not contain K34 as a
subgraph.

Proof: Assumec that G(M) contains & copy of
K3,4. Then, we have three curves Cy.Cy, C3 and
four curves Dy, Dy, D3, Dy such that cach pair
(Ci, Dj) makes a lens, in which C; is above Dj,
for 1 €£7< 3,1 <7 <4, Furthermore. becanse
M is a l-matching, no edge in the arrangement
constructed from these seven curves is contained
in more than one such lensc. Let A(C) denote
the arrangement of {Cy,C»,C3} and A(D) that
of {D1, Dy, D3, D4}. If an edge e is located on
Dy, and e is below two curves Cp and Cs. ¢ must
be on both of two lenses (Cy, D)) and (Cy, D).
This means that the two arrangements A(C) and
A(D) intersect each other only at points that are
on the upper envelope of A(C). Similary. those
intersection points must be on the lower envelope
of A(D) at the same time. Since there must be
12 lenses, the number of intersections must be at
least 24. However, the upper envelope of A(C)
has at most 5 edges, and the lower cuvelope of
A(C) has at most 7 edges. Because each curve
intersects at most twice, the munber of intersect-
ing points cannot exceed 22, which is a contra-
diction. O

Remark. We can also show that G(M) does
not contain K33 with more careful analySis.

We use the following result in extremal graph
theory, which can be found in Bollobas [2] in a
more general form (page 73, Leina 7).

Lemma 8 Let G(n,n) be a graph without a K,
subgraph. Suppose G(n,n) contains m = yn
edges. Then, n(g) <(t— 1)(7:). ‘

Theorem 9 G(M) ' contains O(n>/3) ctlye};.
Hence, V1(H(F)) = 0(135/3)‘

Proof: - We substitute s = 3 and ¢ = 4 in the
above lemma, and obtain y = O(n?/3). m]

. Next, we consider v (H(T)). for & < /n.- We
apply the probabilistic argiunent: similar to the
one Sharir [13] used for analyzing the complexity
of < k level of curves. ‘ )

Supposc we have a simple k-matceliing M, and
associated set £(M) of lenses. Assume M has
v hyperedges (i.c. £(M) has v lenses).

For cach lens L bounded by two cwrves C| and
Cy, its edge is called extremal if it contains one of
the intersection points of C and Cy. Obviously,
there are at most four extremal edges associated
with L. o

Now, we choose a random sample Y of n/k
curves from I'. We say .a lens L is near I-lens
of the sample if (1) L is a lens consisting of two
curves of Y and (2) for each extremal edge e of
L, L is the only lens which consists of two curves
of Y and contains e.

Let us consider the set of near 1-lens, and con-
sider the associated matching Mg of H(Y).

Lemma 10 My is a 1-matching of H(Y).

Proof: Suppose an edge e of the arvangement Y
is contained in two near 1-lenses L and L. Let C
be the curve on which e is located. Then. L and
I’ contain intervals I and I’ of C. Both inter-
vals must contain e; thus. at least one cudpoint
of either I or I’ must be contained in the other
interval. W.lo.g., we assume an endpoint of I
is contained in I’. This means that an extremal
edge of L is contained in L', which contradicts
the definition of near 1-lens. . ]

Now, analyze the expected number of near 1-
lenses. A lens L of £(M) becomes a near 1-
lens if (1) both of its bounding curves are in the
sample and (2) no.other curve contributing alens
containing an extremal edge of L is in the sample.
Since M is a k-matching, the munber of such
curves in (2) is at most & for each extremal edge.

Thus, the probability that L becomes a near
1-lens is at least k=2(1 — 1/k)** . hence the ex-
pected mumber of near 1-lenses is at least £72(1—
1/k)Y*u;.. Note that (1 - 1/k)* > 1/256.

Since the number of l-matchings in the sam-
ple is O((n/k)**), v = OWK2(n/k)y) =
OMSI3k13), C



Now, let us compute the righthand side of the
Lovaazs's inequality (1).

yog v LI
1-2 + 23 +---+ (2—1)(7

. ] /3 n?
= o™l m%u%] + Yoy mhrn)
= O(n3).

This proves Theoremn 2.

5 Applications

Level complexity

Let I" be an arrangement of n pseudo-parabolas.
In this section, we need the asswunption that each
curve is z monotone and unbounded. The level
of an edge'e of the arrangement I' is the munber
of edges which intersect with the vertical half line
downward from an internal point on e. Level is
well-defined since the above number is indepen-
dent of the choice of the internal point of e. It
is well-known that the union of all edges with a
given level k is a connected chain of curve and
separates the plane. This chain is called the A-
level of I. The complexity of A-level of T' is the
number of edges whose level is k.

“Theorem 11 The complexity of k-level of T is
O(n?/12),

Proof: Without loss of generality, we assuine
that the arrangement is simple, that meaus no
three curves intersect at a point. We cousider the
set P of cutting points of I' into pscudo-line ar-
rangements. We know that m = [P| = O(n5/3).
We subdivide the plane into m + 1 slabs with
m vertical lines through points of P. Inside a
slab, the arrangement can be considered as an
arrangement. of pseudo-lines.

Let X; be the number of vertices of the ar-
rangement located in the i-th slab S;. Then,
Em+1 X; = 0(712)_ , .

Suppose that exactly n; curves coutribute to

- k-level in S;. The k-level of T inside S; is a level
of these n; curves.

Suppose a curve 7 is on k’-level at the lcf(' end
of the slab S;, and contributes to k-level in S;.

Then, 7 must have at least [k — &’| vertices on
it in S;. Therefore, the arvangement must have
at least n?/2 vertices in S;. This means that
n; = O(VX;). ‘ '

The complexity of a level of n; pseudo-lines is
O(nj/n7), which is O(X?M).

Thus, thc (mnplexity of the k-level of T is
()(}:"'+l = O(m(n?/mn)*"). Since m =
O(n5/3) we obtain O(n23/‘2). m}

Note that this result improves the known
bound of O(kn) [13] when k > n!1/12, Also note
that the bound would be automatically improved
further, if we had a better bound ecither on the
level complexity of an arrangement of pseudo-
lines or on the cutting number of pseudo parabo-
las.

Transitions of minimum matroid base
and MST

Let E be a finite st and B a family of subscts of
E. The pair (E, B) is called a matroid M(E, B),
and the clements of B are the bases of M(E, B),
if the following two axioms hold [14}:

(A1) For any B.C Cc Ewith B # C,if B € B
and CC B, C¢B.

(A2) For any B, B’ C B with B # B’ and for any
e € B - B, there exists ¢/ € B' — B such
that (B — {e})u{e'} € B.

For instance, let 7 be a set of spanning trees in
an undirected connected graph G = (V, E'); then
(E,T) forins a matroid and T is a sct of bases
{14]. ' ‘

The number |B| of elements of a base B €
B is independent of the choice of B [14], and is
denoted by p. Let m = |E], and assume the
elements of F to be indexed from 1 through .
We assume that each element 7 has a real-valued
weight w;(t) that is a function in the parameter t.
The minimum (resp. maximum) weight base is
the one in which the sumn of weights of clements
is minimwun (resp. maximum).

If the weight functions of two clements have
constant nunber of intersections, - we have an



O(m?) trivial upper bound on the number of
transitions of the minimwun (resp. maxinnun)
weight base of M(E,B). If w;(t) is linear,
this was improved to O(mmin{\/p. v/ = p}) by
[6, 8]. _

We have the following theorem, which can be
proved similarly to Theorem 11:

Theorem 12° When all wi(t) are quadratic in t,
the number of transitions is O(mz‘/ 12)

Corollary 13 Let G be a graph with m edges,
and each edge has a weight function which is
quadratic in a parameter t. Then, the number
of transitions in its minimum spanning tree is
O(m23/12),

Theorem 14 Let S be a set of n lincarly mov-
ing points in d dimensional space, where d is «
constant. Then, the transition of Euclidean min-
imum spanning tree is O(n33/122001) where o 1s
the inverse Ackerman function.

Proof: Sece [10] for the L;-distance analogue of
this theorem, and replace the number of transi-
tions of linear-weighted MST used there by that
of quadratic-weighted MST shown above. O

This improves the known O(n*2°"}) bound
[10] by a factor of n!/!2,

6 Related topics

Competitive ratio of the greedy  algo-
rithm '

The upper bound of the cutting number is ob-
tained by analyzing the greedy algoritlin. How-
ever, one may suspect that the real cutting
number is much smaller than the cutting mun-
ber output by the greedy algorithm. However,
Lovisz [11] gave the following performance ratio
of the greedy algorithm:

Theorem 15 The competitive ratio of the
greedy algorithm is O(logd) for the minimum
covering problem, where d is the largest degree
of any node of the hypergraph. '

Thus, the ratio of the cutting number of the
greedy algorithin to the optimal one is O(logn).

Arrangement of circles

We are given au arrangement of n circles. Al-
though a pair of circles intersects at most twice,
a circle is not a simple curve. However, we can
cut each circle withi its horizontal diameter, and
divide it into an upper half-circle and lower half-
circle. We can connect two vertical downwards
(resp. upwards) rays to an upper (resp. lower)
half-circle at its two endpoints, and obtain a sim-
ple curve separating the plane. It is casy to sce
that every pair of curves intersects at most twice,

Thus, we have a family of pseudo-parabolas.
We can now apply owr upper bouud results in
the previous section. Also, if we are permitted to
consider a line as a circle with infinite diameter,
we can deform our lower bound example so that
it holds for circles.

Thus, we have the following:

Theorem 16 Using O(n®?) cuts. an arrange-
ment of circles can be transformed to an arrange-
ment of pseudo-segments. There erists an exem-
ple for which Un*3) cuts are required.

Cutting a 2t intersecting family

It is desired to extend the upper bound on cut-
ting munber to that for an arrangement of curves
intersecting ¢ times cach other. Unfortunately,
the technique employed in this paper does not
work for cutting such an arrangement into an ar-
rangewent of pseudo-segments. We only have the
following weak result (we omit the proof):

Theorem 17 Given an arrangement of curves

in which every pair of curves intersccts at most

2t times, we can cut it at O(n2=1/811)) points to

make it an arrangement of curve segrments, in

- which every pair of segments intersects at most

2t —1 times. Here, 3(t) is the minimum positive
number y satisfying y* > 4ty (y). where Ayy(y)
is the length of Davenport-Schinzel scquence of
degree 2t on y characters.
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Figwre 1: Cut points

Figure 2: Lenses



