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“Dispersion problems involve arranging a set of points as far away from each other as possible. They
have numerous applications in the location of facilities and in management decision science. Must work to date
has focused on two particular measures of the dispersion. We study and introduce several natural measures
of remoteness, motivated by real-life problems, and present the first algorithms with non-trivial performance
bounds.

facility dispersion, network optimization, approximation algorithms



1 Introduction

As the proud and agressive owner of the McWoofer burger chain, you are given the opportunity to build
p new franchises to be located from any of n choice locations available. After ensuring that the available
slots are all attractive in terms of cost, visibility etc, what would your criteria be for locating the franchises
relative to each other?

Locating two identical burger joints next to each other would not increase the number of customers,
and thus halve the amount of business that either of them could do if apart. Non-competitiveness is a
concern here, which can be alleviated by properly dispersing the facilities.

Dispersion problems.  The franchise location example is one of many problems where we seek a subset
of points that are, in some sense, as remote from each other as possible. Dispersion has found applications to
diverse areas: locating undesirable or interfering facilities; aiding decision analysis with multiple objectives;
marketing a set of products with different attributes; providing good starting solutions for ’grand-tour’ TSP
heuristics. Dispersion is also of combinatorial interest, as a measure of remote subgraphs.

Which measure of remoteness should be applied? The focus of the literature has been on the minimum
distance between any pair in the selected set, with some work done on the average pairwise distance. The
proper measure is very much a question of the problem under study, and several of the applications we
consider give rise to quite different notions of remoteness.

In this paper, we give the first approximate algorithms for dispersion problems under several measures
of remoteness. We unify these and the other dispersion problems in the literature by a novel formalization,
where each dispersion problem P corresponds to a-certain class of graphs II. This by itself suggests various
interesting new dispersion problems.

Applications. Location theory is a branch of management science/operations research that deals with
the optimal location of facilities. Most of that work deals with desirable facilities, where nearness to users
or each other is preferable. More recently, some number of papers have considered the opposite objective
of placing the facilities far from users or each other. We are interested in intra-facility dispersion cases.

Strategic facilities that are to be protected from simultaneous enemy attacks is one example suggested
by Moon and Chaudhry [9]. This could involve oil tanks [9] missile silos, or ammunition dumps [4], which
would be preferable to keep separated from each other to minimize the damage of a limited attack. Limiting
the range and possible spread of fire or accidents at hazardous installations is also helped by proper spacing
[8].

Non-competition is another motivation for dispersal, as in the case of the burger chain example. This
may apply to other types of franchises such as gasoline stations, or to the location of radio transmitters
with the objective of minimizing interference. Dispersal has also been seen to be desirable in order to obtain
a more effective and/or fair coverage of a region. In fact, White [12] cites some example of government
regulars to that effect, including firehouses and ambulance stations in New York City.

Yet another dispersal issue in facility location involves undesirable interaction between all facilities
that grows inversely with distance [4]. This may apply to dormitories at a university, or chairs during an
examination.

All of the above applications suggest a metric sensitive to the largely two-dimensional nature of our
world. This is not the case, however, for the problems outside the location area.

White [12] considers dispersion problem motivated by multiple objective analysis in decision theory.
Given a potential set of actions for a decision maker, we are to find a fixed-size subset of these that are
as dispersed as possible, for further consideration by the decision-makers. White lists several studies that
have used dispersal as a filter of the possible choices, involving e.g. oil drilling, media selection, and forestry
management

Dispersion also has application to product development. The marketing of new but related products is
helped by diversity [2]. From dimensions including price, quality, shape, packaging, etc., a set of products
can be produced which are likely to gain greater market coverage if they are easily distinguished rather
than all very similar.




Dispersion Formulations. Let us now formulate the dispersion problems that have been considered
in the literature.

The input is an integer p and a network G = (V,V x V) with a distance function d on the edges
satisfying the triangular inequality (d(u,v) < d(u,2) + d(z,v)). The output is a set V' of p vertices. The
objective is a sum of some of the edges in the subgraph induced by V'.

Remote-Edge ming yevr d(u,v)
Remote-Clique Lvuev d(u,v)
Remote-Star minyeyr Pyeyr 4, )

Remote-PseudoForest 37, v/ minyecy: d(u,v)

Our choice of names comes from the graph structure induced by the solutions to these problems. The
names used in the literature are quite different and varied. Remote-Edge is known as p-Dispersion [2, 8]
and Maz-Min Facility Dispersion [10]; Remote-Clique as Mazisum Dispersion [8] and Maz-Avg Facility
Dispersion [10]; Remote-Star as MazMinSum dispersion [4]; and Remote-PseudoForest as p-Defense [9] and
MazSumMin dispersion [4]. '

Related work. A considerable body of work has appeared on facility dispersion problems in the
management science and operations research literature; [9, 2, 3, 4, 12, 8]. Most previous work has focused
on either easily solvable tree networks, or empirical studies of heuristics, Only recently have some of these
heuristics been analyzed analytically.

For Remote-Edge, Tamir [11], White [12, 13] and Ravi, Rosenkrantz and Tayi [10] independently showed
that a “furthest-point greedy” algorithm is 2-approximate. The latter also showed that obtaining an
approximation strictly less than 2 was NP-hard.

For Remote-Clique Ravi et al. gave a greedy algorithm that they showed came within a factor of 4, while
Hassin, Rubinstein and Tamir [6] have recently given elegant proofs of two 2-approximate algorithms. This
problem has also been studied for non-metric graphs under the name Heavy Subgraph Problem by Kortsarz
and Peleg [7] and they presented a sequence of algorithms that converge with a performance ratio of
O(n3.865)‘

No analytic bounds have been previously given for either Remote-Star or Remote-Pseudoforest problems.
Moon and Chaudhry [9] suggested the star problem. Erkut and Neuman [4] gave an branch-and-bound
algorithm that solves all four of these problems simultaneously.

All of these problem can be seen to be NP-hard by a reduction from Clique. The same reduction also
establishes that Remote-Edge cannot be approximated within a constant smaller than 2 [10]. Further,
when the weights are not constrained to be metric, the problem is as hard to approximate as Max Clique,
which implies that n!/® approximation is NP-hard [1]. Reductions from Clique also yield the same hardness
for the PseudoForest problem [5]. On the other hand, no hardness results are known for Remote-Clique
and Remote-Star.

Our formalism and further problems.  We suggest a unifying formalism for describing these and
several other dispersal problems. In each problem, the output is a vertex subset and the objective is a
function of the subgraph induced on that vertex set. More precisely, the objective function is a sum of
a certain set of edges within that subgraph, and this edge set is of minimum weight among edge subsets
satisfying certain graph property.

For instance, in the Remote-Star problem, the objective function is a sum of the edge weights of a
minimum-weight star spanning the vertex set. In general, for a property II of graphs, the objective
function for Remote-II is the weight of the minimum-weight subgraph satisfying property II within the
induced subgraph on X. .

A pseudo-forest is the undirected equivalent of a directed graph where each vertex is of out-degree one.
Hence, each component contains as many edges as vertices. Hence, the Remote-Pseudoforest problem.

We are led to considering other Remote-II problems for other important graph properties. Remote-Tree
and Remote-Cycle was considered by Halldérsson, Iwano, Katoh, and Tokuyama [5], under the names



Remote-MST and Remote-TSP, respectively. They showed that the greedy furthest-point algorithm ap-
proximates both problem within a factor of 4, while obtaining a ratio less than 2 is NP-hard. They
proposed Remote-Matching as an open problem.

Summary of results. In the current paper, we present the following results:

1. O(log p)-approximate algorithms for Remote-PseudoForest and Remote-Matching, and matching lower
bounds for these algorithms.

2. 2-approximate algorithm for Remote-Star
3. 2 or 4-approximate algorithm for various related min-maz problems.

In contrast with all previous results for these problems, our algorithms for the Remote-PseudoForest
and Remote-Matching problems are neither greedy in nature nor does do they use a one-shot computation
of a simple structure. In fact, we show that any greedy algorithm is bound to fail miserably, and that the
solutions to these problem do not relate well to any of the easily computable structures studied before.

As an interesting comparison in the power of the various algorithms, we have similarly analyzed some
of the corresponding min-maz problems.

Overview of paper. In the next section, we consider Remote-PseudoForest and Remote-Matching
which behave similarly for most types of algorithms, and present the first algorithms non-trivial worst-case
performance bounds. In section 3, we use recent results of Hassin, Rubinstein and Tamir [6] to give good
approximation for Remote-Star. In order to compare the power of the various algorithms, we study in
section 4 some of the corresponding min-maz problems, and obtain constant-factor approximations.

Remark. The results presented constitute preliminary work in progress.

1.1 Notation

For a vertex set X C V, let II(X) (x(X)) denote the maximum (minimum) weight set of edges in the
induced subgraph G[X] that form a graph satisfying property II, respectively. In particular, we consider
STAR(X) and star(X) (max- and min-weight spanning star), pf(X) (min-weight pseudoforest), CYCLE(X)
(max-weight tour), TREE(X) and tree(X) (max- and min-weight spanning tree), and MAT(X) and mat(X)
(min- and max-weight matching).

For a set of edges E, let wt(E') denote the sum of the weights of the edges of E'. Let HEU be the
vertex set selected by the algorithm in question, and let OPT be the vertex set of an optimal solution. Let
AvgEDGE(X) be the average weight of an edge in G[X].

2 Remote-PseudoForest and Remote-Matching

We first consider the problem where we want to select p vertices so as to maximize the minimum weight
pseudoforest (pf). A pseudoforest is a collection of directed edges so that the outdegree of each vertex is
at least one, and hence wt(pf) is the sum of the nearest neighbor distances. More formally, given a set of
vertices W, and ¢ € W, define the nearest neighbor of z in W, N Nw (z), to be the vertex (other than
z) in W which minimizes d(z,y). wi(pf(W)) is defined to be Yoew d(z, N Nw(z)). With a reduction
from Clique it is easy to see that Remote-PseudoForest is NP-Hard, in the general case it is at least as
hard to approximate as the independent set problem, and even with the triangle inequality it is hard to
approximate to better than a factor of 2 ([5]). We assume the triangle inequality.

A technique which has worked for some dispersion problems is the greedy approach. For example,
the furthest-point greedy algorithm (henceforth called GREEDY) works by successively selecting a vertex
whose distance to the already selected vertices is maximized. GREEDY works well for Remote-Edge (11,12,
13, 10]) and Remote-Tree and Remote-Cycle [5]. However, for Remote-PseudoForest and Remote-Matching,
GREEDY can do very badly, as can be seen from the following example: V = {ag,a2,b1,b2,...,bn_2},




d(a,,b ) =1, d(ay,a2) = 2, d(bi,b;) = ¢, p = 4. An optimal selection of the vertices is any one of the
a’s and any three of the b’s with wt(pf) > 1, while GREEDY will select a1,az and two of the b's with
wt(pf) = Be. Similar results hold for Remote-Matching.

Upper Bounds We present an algorithm for selecting p vertices for Remote-PseudoForest; the same
algorithm (i.e. choosing the same set of vertices) works well for Remote-Matching also.

We take a two step approach to problem. In the first step we select some number (< p) of vertices
so as to have a large pf on these vertices. This is done by considering the sequence of vertices selected
by GREEDY, and chosing some prefix of this sequence according to a simple optimality criteria. In the
second step, we choose the remaining vertices in such a way that wt(pf) does not decrease too much. This
is done by ensuring that the additional vertices which are selected don’t “kill” too many of the vertices
chosen in the first step. For simplicity, we assume that p < n/4, where n is the total number of vertices. It
is easy to see that the algorithm can be easily modified when this is not the case, as long as p is less than
some constant fraction of n.

The PREFIX Algorithm :

Step 1 : Let Ay = (zl,:cg, .,p) be the sequence of points selected by GREEDY, and let the minimum
distances be ry,73,...,7p-1, i.e. 7; = min; =1{d(:c,+1,a:,)} Let ¢ € {1,2,...,p — 1} be the value
which maximizes ¢ - rq. Let Ag = {z1,...,Z441} be a prefix subsequence of A .

Step 2 : Let S; be a sphere of radius /2 centered at z;, i = 1,...,9 + 1. Note that these spheres are
disjoint. Let B =V — Uiy, _g115i-

Case 1: |B| > p—(¢+1). Let B be a set of any p — (g + 1) vertices from B. HEU = A, U B'.

Case 2: |B| < p—(g+1). Pick a set A’ C A, such that |A’| < 2(g+1)/3 and |Ugzear Sz — A'| >
— (g+1). Let B’ be a set of any p — (g + 1) vertices from U,ea'Sz — A'. HEU = A;U B'.

Theorem 2.1 Let HEU be the p vertices selected by PREFIX, and let OPT be an optimum set of p

vertices.
wt(pf(OPT)) _

wipRHET)) ~ CUosP):

Proof. We first argue as to the correctness of the algorithm, i.e. we can find the p — (¢ + 1) points.
This is clearly true in Case 1, so assume we are in Case 2. Since B is the set of vertices outside the
spheres and [B| < p — (¢ + 1), | Uzea, Sz| > n—p+ (¢ +1). Out of these vertices, g + 1 are in Ag, so
the number of remaining vertices, | Uzea, Sz — Agl, is at least n — p > 3n/4. Since these vertices are
distributed in g + 1 spheres, the average density is at least 3n/4(g + 1), and hence we can find A’ C A,
|A' < [(g+1)/3] < 2(¢ +1)/3 such that | Uzear So — A'| 2 n/42p>p—(g+1).

We now show that H(pf(OPT))

wi(p

We first argue that

wt(tree(Ap))

>
wi(pf(HEV)) 2 ===

1)

We will show this for Case 2; the argument for Case 1 is similar. Let A” = A;— A, so |A"| > (¢+1)/3. By
the disjointedness of the spheres, for any a € A", b € B'UA’, d(a,b) > r,/2. Also, forany a,a’ € A”, a # d/,
d(a,a’) > 4. Hence,

1
wi(pf(HEV)) = Y. dz,NNgpo(@) 2 3 d(@, NNupo(2)) = 3 re/2> 2 ;’ 3> i;—q @)
z€ HEU z€ A" e A"

Consider the spanning tree 7' on A, which is constructed as follows. Put the edge 21,2 in T". Consider
the remaining vertices x3,...,2p in order. When a vertex z; is considered, the minimum distance from =;



to {z1,...,®i~1} is ri_1; connect x; to a vertex which achieves this distance. By the choice of g, r; < "—:1,
fori=1,...,p— 1. Hence,

r—-1 p—1 4
wi(tree(4;)) S wi(T) = Y1 < 3. L = groH,-1 < grglogp. 3)
i=1 i=1 .

Equation 1 follows from equations 2 and 3. .

The following problem was considered in [5]. Find a set of p points F, such that wi(tree(Fp)) is
maximized. In [5] (Theorem 3.1) it was shown that wi(tree(A;)) > wi(tree(F,))/4. Clearly, wt(tree(F})) >
wt(tree(OPT)) and it is easy to see that wi(tree(OPT)) > wi(pf(OPT))/2. From these previous equations
we get . .

wt(tree(4,)) > wi(pf(OPT))/8. (4)

The theorem now follows from equations 4 and 1.
| ]
For Remote-Matching, let HEU be the same set of vertices as selected above by PREFIX (with the as-
sumption that p is even). It is well known that wi(tree(Y)) > wi(cycle(Y))/2 and it is easy to see that (as in
the analysis of Christofide’s algorithm) wt(cycle(Y))/2 > wt(mat(Y)). From this we get wi(tree(OPT)) >
wt(mat(OPT)). The rest of the analysis is similar to the analysis for Remote-PseudoForest, and we get a
similar result:

Theorem 2.2 Let OPT be an optimum set of p vertices selected to mazimize the mini weight match-

ing.
wt(mat(OPT))
wi(mat(BED)) ~ Oo8P)-

Lower bound We omit the proof of the following results.
Theorem 2.3 The performance ratio of PREFIX for both Remote-PseudoForest and Remote-Matching is
Q(logp).

3 Star

We assume for simplicity that p is even.
A mazimum-weight p-matching is a set of p vertices, for which the maximum-weight matching is max-
imized. It can be found efficiently via ordinary matching computation by appropriately modifying the

gra}();luE'GL:lgorithm is the same as Hassin, Rubinstein and Tamir [6] used for the Remote-Clique problem:
Select the points of a maximum weight p-matching.

They proved the following lemma (Lemma 2.1 in [6]):

Lemma 3.1 (HRT) For any vertex set X,

AvgEDGE(X) < |p/2]wt(MAT(X)).

Lemma 3.2 For aeny vertez set X,

wi(star(X)) < (p— 1)AvgEDGE(X).




Proof. We claim that equality holds for the average weight of a (spanning) star in G[X], and hence the
inequality. To see this, note that each edge is included in exactly two of the p stars, and the sum of the
stars is therefore twice the sum of weights of all the edges. n

Lemmas 3.2 and 3.1 yield:
Lemma 3.3 For any vertezx set X,

wi(star(X)) < (2 - 2/p)wt(MAT(X)).

Theorem 3.4 The performance ratio of the algorithm is at most 2 — 2/p.
Proof. From the triangular inequality, the optimality of the p-matching, and the preceding lemma:

wi(star(HEU)) > wi(MAT(HEU)) > wt(MAT(OPT)) > (2 - 2/p)wt(star((OPT))

4 Min-Max problems

We now consider the complementary problems of finding vertex subsets that minimize the corresponding
mazimum weight structures. Hassin et al [6] gave such algorithms for the Clique and Edge problems; we
present here, using similar techniques, constant-factor approximations for the Tree, Cycle, Pseudoforest,
and Matching problems.

4.1 Matching

A p-staris a set of p edges with a common end point; hence, they induce the star graph K; p—;. A minimum
weight p-star in a graph can be found efficiently by adding the p largest weights incident on each given
vertex and selecting the largest of these.

Our algorithm for this min-max p-matching problem is as in Section 3.1 of [6]: Find a p-star of minimum
weight.

Theorem 4.1 wi(MAT(HEU)) < (2 - 2/p)wt(MAT(OPT))
Proof. Using the triangular inequality, the optimality of the p-star, and Lemma 3.3:
wi(MAT(HEU)) < wi(star(HEU)) < wi(star(OPT)) < (2 — 2/p)wt(MAT(OPT)).

4.2 Cycle
Lemma 4.2 For any vertez set X,
wi(star(X)) < (p —1)/p - wt(CYCLE(X)).

Proof. Some cycle must be of weight at least p times the average weight of an edge, and the rest follows
from Lemma 3.2. |

Theorem 4.3 wi(CYCLE(HEU)) < (2 — 2/p)wt(CYCLE(OPT))
Proof. Using the triangular inequality, the optimality of the p-star, and the preceding lemma:

wt(CYCLE(HEU)) < 2uwt(star(HEU))
2wi(star(OPT))
(2 - 2/p)wt(CYCLE(OPT)).

IA A



4.3 Tree, Pseudo-Forest

We now turn to the algorithm of Section 3.2 of [6]: Find the set of points of a p-star, whose maximum
weight edge is minimized.
Let w denote the weight of the maximum weight edge on the selected star.

Theorem 4.4 wt(TREE(HEU)) < (4 —4/p)wt(TREE(OPT))
Proof. The weight of the heaviest edge in HEU is at most 2w, by the triangular inquality. Hence:
wi(TREE(HEU)) < 2(p - 1)w.

On the other hand, some pair of vertices v, w in OPT are of distance at least w, and the other k —2 points
are of distance at least w/2 from either v or w. Hence:

wt(TREE(OPT)) > (1/2)pw.

The same argument holds for Min Max Pseudo-Forest (ratio 4—4/(k+1)), or any Min Max Pi-subgraph,
where II is satisfied by a diameter-3 tree.
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