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We study greedy algorithms for maximum independent scts of 3-regular graphs without
triangles. It is known that the problem of finding a maximum independent set over cubic
graphs without triangles is NP-hard [14]. We show that the performance ratio of a simple
greedy algorithm, named MIN, is asymptotically 3/2 = 1.50. We propose a modified
greedy algorithm whose performance ratio is asymptotically at most 10/7 s 1.428 and at
least 29/21 = 1.381 over the same domain and make this algorithm handle wilder classes
of graphs. Finally, we show an inhercnt weakness of a family of greedy algorithms which
are based on the same strategy as MIN.



1 Imntroduction

An independent set of a graph G is a subset of ver-
tices in which no two vertices are adjacent to each
other. A mazimum independent set is an indepen-
dent set with the largest cardinality. A problem of
finding a maximum independent set is called Max-
imum independent set. Maximum independent set is
one of the most famous A"P-hard problems [6], and
polynomial time exact algorithms for this problem
are unlikely to exist unless P = A'P. Thus, it is
interesting to explore algorithms that produce not
always an optimal solution but a near-optimal so-
lution as a next approach. The performance of an
approximation algorithm is generally measured by
the “performance ratio”. The performance ratio of
an approximation algorithm is defined by a ratio
of the size of an optimal solution (the size of the
maximum independent set) to the size of a solu-
tion (the size of an independent set) found by the
algorithm (see [6, 10]). Unfortunately, Arora et al.
[1] proved the nonapproximability of Maximum inde-
pendent set. They showed this problem has no poly-
nomial time approximation algorithm whose perfor-
mance ratio is less than n’ for some § > 0, where n
is the number of vertices. Although Maximum inde-
pendent set is not approximable well, and problems
occurring in our real world can be reduced to this
problem, some practical constraints will usually be
added to such reduced instances and we do not nec-
essarily have to deal with full general problem. It
is enough for us to consider problems restricted its
domain to a subclass of graphs. For instance, Baker
[2] has recently shown that the problem restricted
its domain to planar graphs admits a polynomial
time approximation scheme. (For more information
about a polynomial time approximation scheme, see
[6,10]). The problem of bounded-degree graphs has
been also studied. In this paper, we will consider
the problem restricted its domain to cubic (the de-
grees of all vertices are three) graphs without trian-
gles (a complete subgraph of three vertices).

Maximum independent set for graphs with the
maximum degree two has many polynomial time
algorithms that find an optimal solution. However,
when the maximum degree is three (not necessar-
ily cubic), the problem remains A"P-hard [5]. But
they are a little easier to handle than the general
one. We easily find that the problem of bounded-
degree has approximation algorithms with a con-
stant ratio. The minimum degree heuristic is one
of them. It is easy to show that, for any graphs
with degree bounded by a constant A, the algorithm
yields an independent set containing at least n/(A+

1) vertices. By this, the ratio becomes at most
(A 4+ 1). The best known approximation algorithm
of bounded-degree graphs is designed by Berman
and Fujito [3]. Their algorithm attains its ratio at
most (A + 3J/5. For bounded-degree graphs with a
large maximum degree, Halldérsson and Radhakr-
ishnan [8] showed the best ratio O(A/loglog A). In
view of the minimum degree heuristic of bounded-
degree graphs, Halldérsson and Radhakrishnan [7]
analyzed this greedy algorithm and showed that its
ratio is (A + 2)/3 and this is the best possible. We
will consider whether or not the performance ratio
of the minimum degree heuristic over cubic graphs
without triangles can be improved better than 5/3.

If a graph does not contain a large clique (com-
plete subgraph), the graph is expected to have a
large independent set.. Based on this observation,
there have been many studies on the size of the max-
imum independent set of bounded-degree graphs
without triangles (complete subgraphs of three ver-
tices) and on approximation algorithms over the do-
main. Although we allow graphs without triangles,
the problem is still A"P-hard [14].

Let us focus on cubic graphs without triangles. If
a graph is r-regular (the degrees of all vertices are
r), then we easily check that the size of a maximum
independent set is at most n/2 (We will actually
verify this at Lemma 2.1 in Section 2.1). Moreover,
if a graph is cubic, Stanton [13] showed that the size
of the maximum independent set is at least 14n/5
and this is the best possible from Fajtlowicz graph
[4]. Shearer [11, 12] got a lower bound of the size
of an independent set obtained by a random algo-
rithm in terms of a degree sequence, which yields an
independent set containing at least 17n/50 vertices
as an expected value.

In this paper, we study the minimum degree
heuristic. And we consider whether or not we can
improve the ratio shown by Halldérsson and Rad-
hakrishnan [7] if we allow a given graph to be cubic
without triangles. The minimum degree heuristic is
obviously inferior to the algorithm of Berman and
Fujito [3]; however, its strength lies in its simplicity
and practicality. Finally, we summarize our results:

1. The ratio of the minimum degree heuristic
is 3/2 asymptotically when applied to cubic
graphs without iriangles and this is the best
possible by construction.

2. We propose a modified minimurm degree heuris-
tic and get a better ratio of 10/7 over the same
domain. And we also show that this ratio can-
not be improved less than 29/21 by construc-
tion.



3. We extend our algorithm to handle r-regular
graphs without triangles.

4. We show an inherent weakness of a family of
greedy algorithms based on the same strategy
as the minimum degree heuristic.

Preliminaries

Maximum independent set restricted to connected
cubic graphs without triangles is called Miscut.

We denote some symbols and notations used fre-
quently in this paper. Through this paper, standard
symbols and notations referred in general textbooks
(see, e.g.[9]) are used so long as not remarked in
particular.

n the number of vertices
d(v) the degree of a vertex v

A the maximum degree of G

é the minimum degree of G

I a maximum independent set

o the size of a maximum independent set
N(v) the set of vertices adjacent to v

For an algorithm A for Miscut (Maximum inde-
pendent set), the ratio Ra(G) of A is defined as
follows.

det @ (G)
RA(G) = I(_G_)_ )

Here A (G) stands for the size of an independent
set of G found by A and a (G) the size of the max-
imum independent set of G. The performance ratio
of A is defined by

Ry max R4(G)

The absolute ratio for A is given by
A(G)

of n vertices. n

AR, &

2 Approximation Algorithm

We introduce our first approximation algorithm.
Once we pick a vertex of a given graph as a mem-
ber of an independent set, we can no longer choose
any vertices in N(v). Intuitively, in order to get as
large a maximum independent set as possible, we
propose to take a vertex with the minimum degree.
Based on this idea, a greedy algorithm for Miscut
called MIN is described as in Table 1. For the recent
results of bounded-degree graphs include triangles,

see [7]. MIN can obviously find an independent set
of G in O(|V|+|E]) time.Many of results and proofs
are shown in [7]. For the sake of completeness, we
review these results and proofs in the next section.

MIN(G) /#* G is cubic without triangles.
begin
I—¢;
while G # ¢ do
choosev eV
such that d(v) = ur)nelgll d(w);
I—Iu{v};
G—=G-({v}UN());
end — while ;
output(l) ;
end.

Table 1: A pseudo code of MIN.

2.1 The performance ratio of MIN

We shall consider a performance ratio of MIN ap-
plied to cubic graphs without triangles in this sec-
tion. We denote a degree of vertex picked at the ith
step as d;. Note that the degree is not in the origi-
nal graph but when it is deleted. We regard a while
loop in Table 1 as one step. We also define integer
variables ¢4 to be the total number of steps that
MIN chooses a vertex of degree d from first step to
the final ¢th step. That is, ¢4 = |{ : d; = d}|. MIN
iterates choosing a vertex v and removes v and ver-
tices in N(v) out of a graph simultaneously. Even-
tually, the total number of vertices deleted by MIN
becomes n. Therefore, we get,

to+2t1+3‘t2+4t3=n. (1)

Next we evaluate the total number of edges
deleted by MIN. Since MIN always picks a vertex
with the minimum degree as a member of an inde-
pendent set, the sum of degrees of vertices removed
at the ith step is at least d;(d;+1). Two sets e;z, €1
of edges deleted at the ith step are defined respec-
tively as follows.

def

ein the set of edges both of which end
points are deleted at the ith step.
ei1 9 the set of edges just one of which end

point is deleted at the ith step.

Since the total sum of degrees of vertices picked
at the ith step equals to the twice of the cardinality
of e;3 plus that of e;;, the following inequality holds.



2lesz] + lear| > di(d; + 1). (2

Furthermore, since graphs contain no triangles,
there is no edges among the vertices in N(v). Then,

el (*5-(5). ®

By (2) and (3), the total number of edges deleted
at the ith step is at least (*}') 4 (%). Thus, the
number of edges removed by MIN from the first step
to the final tth step becomes at least

S{(43)+ (%)} -ne.

i=1

Every cubic graph has 3n/2 edges. Thus,

: t
|E|=3n/22> ) df

i=1

In terms of t4,

t1 + 4ty + 93 5371/2 (4)

We try to solve an integer programming prob-
lem with the above constraints (1) and (4). By
observing the behavior of MIN and the structure of
our inputs in detail, we notice that there are some
other constraints which allows us to sharpen the ra-
tio. Here we give such constraints as the following
lemma.

Lemma 2.1. The following two inequalities and an
equation hold.

to+t1+t2+t3§a§n/2:» (%)
ntg +1t; > 1. (6)
i3=1 M
Proof.
The proof of (5)

For any independent set I (maximum or not), the
number of edges incident to the vertex in I equals
3|7|, while the total number of edges in cubic graphs
is 3n/2. Therefore, {I| < n/2.

The proof of (6)

We show the inequality by contradiction. That is,
we can assume a graph such that ¢5 = t; = 0 holds.
We focus on the final tth stage of MIN. Sincet; =0
and tg = 0, there is no possibility for a vertex with
d (v) = 1 to be picked. Neither the graph can be
an isolated point. Therefore, the graph must be
a triangle in the last stage. Since we restrict our

input graphs to cubic without triangles, this leads
to contradiction.
The proof of (7)

Since our inputs are restricted to connected cubic
graphs without triangles, MIN picks such a vertex
d(v) = 3 only at the first step. Thus, for an arbi-
trary cubic graph, 3 must be one. a

With the argument above, we find a lower bound
of ARy by solving the following integer program-
ming problem. '

minimize itg+1+1iz+13

subject to Zp+ 281+ 32+ 483 = n
1y + 4ty + 93 < 3n/2
tg+ti+ta+1s < n/2
o+ > 1
i3 = 1

L>0(0<i<3) €2

It is easy to see that the problem we have to deal
with is finally reduced to the two-variable integer
programming problem. Solution of this problem re-
laxed to linear programming problem is (t1,%3) =
(1,25%). We can derive a solution of original inte-
ger programming problem from these. Thus, we get
ARy > 1/3.

Theorem 2.2.

ARy = 1/3.

2.2 Bipartite Graphs

Here, we show that MIN can always get an opti-
mal solution if a given graph does not have any odd
cycles. We begin with giving a famous graph theo-
retical fact.

Proposition 2.3. ([9]) For an arbitrary graph G
(not necessarily cubic without triangles), G has no
odd cycles if and only if G is a bipartile graph.

Lemma 2.4. For r-regular graph G, G is bipartite
if and only ifa = nf2.

Proof. See [14]. a

We get the following theorem by Proposition 2.3
and Lemma 2.4.

Theorem 2.5. If G is bipartite and r-regular, then
MIN can always find an mazimum independent set

of G.

Proof. See [14]. o




Theorem 2.6.

Ryvin £3/2-3/n (8)

Proof. For all cubic graphs without triangles, MIN
can get an independent set containing at least n/3
vertices by Theorem 2.2. Thus, the ratio is at most
Byan < -;“—75 If a graph does not contain any
odd cycle, that is, bipartite, then MIN can always
find its maximum independent set by Theorem 2.5.
Since we analyze the worst cases, it is sufficient to
consider graphs containing a few odd cycles. Ifa cu-
bic gra.ph contains an odd cycle, then the size of a
maximum independent set is at most 3 — 1. There-
fore, the performance ratio is at most (2n ~1)/in

EI

2.3 Nonapproximability of MIN

In this section, we show that graphs for which MIn
may miss an optimal solution. The following graph
Ghara (we call this graph “hard graph” for simplic-
ity) is one of instances which MIN does not nec-
essarily find an optimal solution in the worst case.
This graph is consisted of three subgraphs called
front unit, repetition unil, and back unif. The en-
tire of this hard graph is illustrated in Figure 1. We
easily see that the hard graph is cubic and contains
no triangles.

2
A4 AY
ur :‘::. / X
VF
Front umtl 3 / /

Repetition unit

Back unit

Figure 1: An example of a hard graph Ghara. The
black vertices will be put in an independent set by
MiN.

We next show that the worst behavior of MIN.
At the first step, assume that MIN may remove the
vertex up with degree three in the front unit. After
that, this front unit resulted in an isolated vertex
vF. MIN should pick this vertex at the second step.
From the third step to the (¢ — 3)th step, for each
repetition unit, MIN may pick the four vertices in
order of the numbers shown in the leftmost repe-
tition unit in Figure 1. We verify easily that after
removing all four vertices, MIN will have to treat
the same graph except that just one repetition unit
lost. After removing all repetition units, MIN will
pick three vertices from the back unit in an arbi-
trary order.

Finally, we evaluate the performance ratio when
MIN works as above. The number of vertices n in
the hard graph Ghara is equal to 12m + 10 if we
assume the number of repetition units is m. The
size of the independent set of this hard graph Ghard
obtained by MIN is 4m+5. Since an repetition unit
is bipartite, the size of the maximum independent
set is 6m + 4. Combining these, we get,

6m+4 _3 21
R(Grara)Miy = 7, 15 2 2(n+5) - @)
Theorem 2.7.
Ry = 3/2.

Proof. Followed immediately by (8) and (9). O

3 Modified Algorithm

3.1 Strategy and Performance Ratio

The worst behavior of MIN when applied to the
hard graphs Gparq in the previous section suggests
us some way to modify a strategy of MIN. A situ-
ation that MIN reveals its weakness might happen
whenever there exist many vertices of the same de-
gree. In this section, we propose a modified version
of MiIN, named MIN*. Our idea is as follows:

Suppose the minimum degree of a graph is
1wo and there are several vertices of degree
two. If there exisls a vertez such that de-
gree of at least one of its neighbor is three,
MIN* should always pick that vertez.

If no such vertex exists and the minimum degree
is two, then we show that the graph is composed
of several disjoint cycles. In such a case, MIN* can
always get an optimal solution of the graph.

Lemma 3.1.

7 1
ARMIN = 20 T 10

Proof. Here we consider the performance ratio of
Min*. For our analysis, we recall the degree se-
quence in Section 2. Moreover, we divide this se-
quence into two disjoint subsequences X and Y as
in Figure 2. While MIN* yields a subsequence X,
sc Min* necessarily selects a vertex at least one of
whose neighbor is of degree more than two if MIN
picks a vertex of degree two. We call this type of
picking B reduction. While MIN* produces a subse-
quence Y, MIN* picks a vertex whose both neighbor



are of degree two if MIN* picks a vertex of degree
two. We call this type of picking v reduction simi-
larly. Observe that if one  reduction is executed,
then the number of edges deleted in this step is at
least five. Analogously, if one v reduction is exe-
cuted, exact four edges are removed. Furthermore,
we define 35 and t3, as the total number of execu-
tions of § reductions and 7 reductions from the first
step to the final step, respectively. By our strategy,
we can assume that a resulting graph is composed
of a few disjoint cycles after removing the vertex
of degree dy,, which is the last chosen vertex when
MIN* yields a subsequence X . In the following sev-
eral steps after removing the vertex of degree dp,,
MIN* proceed optimally for the resulting disjoint
cycles.

X ¥
[dl)dZ) "'ldm "’ dm+]s dm+2: "'1d¢ l

Figure 2: A degree sequence produced by Minj.

With the new variables, {35 and t,, we amend
the equations (4) and (2) in Section 2 as below,
respectively.

1o+ 2t + 3(tzp -+ iz.r) + 4tz = n. (10)

t1 + 4ty + 5tz + 913 < 3n/2. (11)

Note that 7 reductions occur only in subsequence
Y by our strategy. Moreover, since our input graphs
contain no triangles, the shortest length cycle is Cj.
Hence, if one v reduction is executed, then there
happens at least one selection of a vertex of degree
zero or one. By this, we get

tay <to+ 1 (12)

Now, we obtain the following inequality by 5 x
(10) — (11) + (12).

6to 4 103 + 1023, -+ 10225 + 11t3 > zn

2
We saw that #3 = 1 in Lemma 2.1. Thus,
" 7 1
ARMIN Z 2—0'11— 10
a
Theorem 3.2.
29 10
37 < M =

Proof. First, we prove the upper bound. Since the
size of maximum independent sets in cubic graphs
which MIN" might not always get an optimal solu-
tion are at most n/2 — 1 by 2.5. Combining with
the result of Lemma 3.1, the performance ratio of
MIN* is at most -7-#‘.‘,10%-1-5, which is equal to 10/7
asymptotically.- On the lower bound, we can con-
struct a graph whose ratio is 29/21 asymptotically
when applied to MIN™ in the worst case in the same
way as in the Section 2.3. The graph is consisted
of three subgraphs and has repetition unit similar
to the hard graph in Section 2.3. Due to its large
and complicated construction and lack of space, we
omit to draw it exactly here. a]

3.2 Extensions

In this section, we make our modified algorithm
MIN* be applicable to a wider class of r-regular
graphs without triangles, where r > 4 is a constant.
But we will state only an idea due to lack of space.
We derive the performance ratio of the algorithm
with the same way as in Section 3.1 (see [14]).

At first, we propose an algorithm MiN? for r-
regular graphs without triangles. If the minimum
degree of a given graph is § and there exist a few
vertices with degree § at some step, MIN} should
choose a vertex v such that at least one vertex in
N (v) is degree more than §. If there exists no such
a vertex, we claim that the graph at the step is
consisted of several d-regular components without
triangles. In such a case, we should employ Min}
for these components henceforth. This is an idea.
We give the detail of MIN} in Table 2.

MIN;(G)
/* Gis r-regular and triangle-free
begin
I—¢;
while G # ¢ do
choose ve V
such that d(v) = mela d(w);
if there exists u
such that u € N(v)
and d(u) > d(v)
then I — U {v} ;
GG~ ({s} UN()) ;
else MIN;(V)(G) H
end — while ;
output(l) ;
end.

Table 2: A pseudo code of MIN}.



4 Algorithm with Advice

In the previous sections, we considered the perfor-
mance ratios of two greedy algorithms. These two
algorithms have a common basic strategy of remov-
ing a vertex with the minimum degree in a graph
at each stage. We easily see by the worst case be-
haviors of them applied to their each hard graph
that weaknesses of the two greedy algorithms, MiN
and MIN*, appear when they have several possible
ways of picking. If we could give these algorithms
some advice such that they could proceed optimally
whenever they face branch road, how would the al-
gorithms work better? Or could such an algorithm
with the advice necessarily catch an optimal solu-
tion?

In this section, we consider ability of an algo-
rithm with advice such that an algorithm could al-
ways choose a vertex in an optimal solution when-
ever there are a few vertices of the same minimum
degree. For short, we call this ultimate algorithm
MinAdvice i this section. And we will show that
even if we employ MINAd¥ice there remains graphs
MinAdvice can not find an optimal solution. This re-
veals that a family of algorithms based on the same
strategy as MIN are substantially weak.

In the following, we shall construct graphs G2, 4
such that MiNAdvice might miss an optimal solu-
tion. We fix a maximum independent set I of G2, ;.
First, we make a subgraph H# as in Figure 3.

level 5
level 4

level 3
level 2

level 1

Figure 3: A subgraph H2 of G2 ;.

The size of the maximum independent set of H2
is 10, whereas just 9 when we assume H{ are di-
rectly applied to MiNAdviee a5 an instance. The
shaded vertices in Figure 3 are in I. Let the level
of the root of H2 be 5th and the levels of the other
vertices in H2 be as in Figure 3 respectively. Next,
we construct a pseudo binary tree with four H2s
as its leaves, which is illustrated in Figure 4. Note
that the level increases just by 2. We make a pseudo
binary tree with its top level 2n + 1 (n > 2) by re-
peating the same operation n—2 times. Denote this
pseudo binary tree Ha, ;.

Finally, we join two H4,, , ;s as in Figure 4 in order

Figure 4: A pseudo binary tree H# and a brief con-
struction of G 4.

to make the entire graph cubic and triangle-free.
This graph is G2,

Now, we pursue a behavior of MiNAdvice gyep
G{..q- An optimal solution I of Gf,_, is contain-
ing only and all vertices on the even levels of each
H3, .11 and Hi, 5. Assume that MINAdvice picks
any vertex in H&, +1,1 at the first step. It is easy to
verify that MiNAdvice can proceeds optimally and
find an optimal solution of H, +1,1- But after that
MinAdvice will face an critical situation that the de-
gree of all vertices in I are three and the minimum
degree is two. That is, MiNAdvice mygt unwillingly
choose the degree two vertex of the root of Ha},;
notin I. What is worse, at the next step, MiNAdvice
will again face the same situation as before, since
each H:f,,ﬂ,z is made in a pseudo binary tree. Crit-
ical situations will continue until all the vertices on
the fifth level of H, +1,2 are removed.

Theorem 4.1. For Gf, 4 of two subgraphs H, ,,,
Ryinravice(Ghara) = 16/15.

Proof. We estimate Rpy\advice(Gfyrg). Let the
size of the maximum independent set of a subgraph
H3s, 11 be hany1 and the size of an independent set
found by MinAdvice be py 41 Tespectively. We eas-
ily check that the following two recurrence relations
hold by its construction for n > 3.

h5 = 10, '
hony1 = 4hy, 1 +2.

From these, we get,

hynyy =4hg, 1+ 1.

_9 32 2
h2ﬂ+l=4"2'?—’3'.
. ap 281
h2n+1=4 2'—3—-—5.

The size of the maximum independent set of
Gfird 15 2 X hanyy and the size of an independent



set found by MINAdvice s by oy 4 Ay 1. Thus, the
ratio becomes,

1

4n—2

RMINAdvice (Gll\\ard) R

1

U

64
3
60
3

For a large n, Ryqyaaviee(Ghyra) is asymptoti-
cally equal to 16/15 (~ 1.06). o

5 Conclusion

In this paper, we analyzed some greedy algorithms
for Maximum independent set of cubic graphs with-
out triangles and evaluated their performance ra-
tios. Restricting our domain, we found that a
naive greedy algorithm, MIN, attains its perfor-
mance ratio 3/2 = 1.50 and this is the best pos-
sible by construction whereas the ratio for graphs
with maximum degree three and including triangles
is 5/3 ~ 1.6 [7]. Next, we modified MIN by ob-
serving its worst case behavior and derived a bet-
ter ratio, 10/7 ~ 1.428. And we showed this ra-
tio could not be improved less than 29/21 ~ 1.381
by construction. Furthermore, We extended our
modified algorithm to wider classes of graphs, such
as 4-regular graphs without triangles. Finally, we
considered the most powerful greedy algorithm and
showed its drawback by construction. This implies
that a family of greedy algorithms designed with
the same strategy as MIN is inherently weak.
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