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The e-strongly convex é6-hull of a set S of n points in the plane is defined as
a convex polygon P with the vertices taken from S such that no point of S lies
farther than é outside P and such that even if the vertices of P are perturbed
by as much as ¢, P remains convex. In this paper we propose parallel methods
for computing such a generalized convex hull. Using exact arithmetic we can
construct an e-strongly convex O(e)-hull in O(logn) time using n processors,
and using rounded arithmetic we can construct an e-strongly convex O(e-+p)-
hull in O(log® n) time using n processors, where y is the rounded unit. Our
algorithms can be also taken as the improved sequential algorithms which run
faster and compute the solution more precisely than the known sequential

algorithms. The parallel computation model which we use in this paper is
CREW PRAM.



1 Introduction

Traditional geometric algorithms in which numerical is-
sues are not usually considered arise surprisingly prob-
lems in practice. The major reason is that the basic geo-
metric tests needed to solve the problems are unreliable
or inconclusive when implementing imprecise computa-
tions such as ordinary floating point arithmetic. This
uncertainty makes the constructed geometric objects in-
accuracy or even not satisfying the proposed geomet-
ric properties. Recently, robust geometric algorithms
whose correctness are not spoiled by numerical errors
have been well developed [7,9,11-19]. Among them, ro-
bust convex hull algorithms attract increasing attention
since convex hull problems are the simplest and oldest
problems in computational geometry and have many ap-
plications. Assuming that the coordinates of the input
points are N-bit integers and the operations on N-bit
integers have unit cost, in order to avoid rounding in all
cases (the integers are converted into floating point be-
fore performing additions and multiplications). On the
other hand, the exact algorithm must use (2N + 1)-bit
integer arithmetic, but the robust algorithms requires
only N-bit (mantissa) in floating point arithmetic. For-
tune [9] describes an O(nlogn) time robust algorithm
for computing an e-weakly convex hull H of a set S of
n points, meaning that each vertex may have to be per-
turbed by as much as ¢ in order to make H convex. The
error € is a small multiple of the rounding unit z (de-
fined in Section 3). One drawback of this algorithm is
that the resulting hull is only approximately convex and
therefore does not enjoy many of nice properties associ-
ated with convexity. In fact, considering the situation
that the output of one robust algorithm may become the
input to another robust algorithm, we may desire that
the resulting approximate convex hull is not only weakly
convex, even not only convex, but strongly convex, where
an e-strongly convex hull remains convex even if its ver-
tices are perturbed by as much as ¢, so that many of the
desirable properties are preserved in some fashion even
they are tested with floating-point arithmetic. Li and
Milenkovic [15] present the first algorithm for comput-
ing an e-strongly convex (12¢ + §)-hull of S, that is, the
result is e-strongly convex and no point of S lies farther
than § outside it, where § = 0 for exact arithmetic and
§ = 2882y for rounded arithmetic. Their algorithm
runs in O(nlogn) time. Guibas, Salesin and Stolfi [13]
explain an O(n®logn) algorithm for constructing an e-
strongly (6¢ + B)-hull, where @ = 0 for exact arithmetic
and § = 7A (A is defined as an error unit for a basic ge-
ometric operation) for imprecise computations including
rounded arithmetic.

In this paper, we present parallel robust algorithms
for convex hull problems in CREW PRAM. Many paral-
lel convex hull algorithms have been developed in CREW
PRAM [1-6,8], but none of them considers numerical is-
sues. Qur algorithms show the following results: (1) us-
ing exact arithmetic, an e-strongly convex 6e-hull of a
set S of n points can be constructed in O(log n) time us-

ing n processors, (2) using rounded arithmetic, a convex
64v/2p-hull of S can be constructed in O(log® n) time
using n processors, (3) using rounded arithmetic, an -
strongly convex (6¢ + 96v/2x)-hull of a convex polygon
can be constructed in O(logn) time using n processors,
and (4) using rounded arithmetic, an e-strongly convex
(8¢ + 8X + 128v/2p)-hull of a A-weakly convex polygon
can be constructed in O(log?n) time using n proces-
sors, in CREW PRAM. From the results (2) and (3),
an e-strongly convex (6¢ 4+ 160v/2p)-hull of S can be con-
structed in 0(log3 n) time using n processors in CREW
PRAM. There are a number of reasons why these results
are important. The main contribution is that we give
the first efficient robust parallel methods for convex hull
problems. Traditional parallel methods for convex hull
problems cause large numerical errors internally and the
known efficient robust sequential algorithms are difficult
to be parallelized. In addition, our algorithms implies
a new improved sequential algorithm for constructing a
strongly convex hull. Guibas, Salesin and Stolfi’s algo-
rithm computes a more precise strongly convex hull than
Li and Milenkovic’s but it runs very slowly. Comparing
with them, our algorithm computes a strongly convex
hull whose precision is the same as that of the former
when using exact algorithm and at least close to that
of the former (since the error unit is defined abstractly
in their algorithm, it is difficult to compare precisely)
when using rounded arithmetic, but the cost (product of
the running time and the number of the processors) of
our algorithm is the same as the latter when using ex-
act algorithm and close to the latter when using rounded
arithmetic. We expect that our robust parallel methods
can be generalized for many other geometric problems.

2 Definitions and Lemmas

Definition 1 (7) A simple polygon P is a §-hull of a set
of points S if all vertices of P belong to S and if no point
of S is farther than & from the polygonal region bound by
P.

(2) A simple polygon P is e-weakly conver (¢ > 0) if
there ezists some way of perturbing each vertex of P no
farther than € so that P becomes convez.

(3) A simple polygon P is e-strongly convez (€ > 0)
if P is conver and remains convez even after each vertex
of P is perturbed as far as ¢. [

From Definition 1, we see that any convex polygon is
a 0-weakly and 0-strongly convex polygon. For a polygo-
nal chain C, C denotes the polygon bound by C and the
edge connecting the first and last vertices of C. If Cis a
simple polygon, C is said a simple polygonal chain. We
call the first and last vertices of C' end vertices and the
other vertices inlernal vertices. We use terms é-chain,
e-weakly convex chain and e-strongly convex chain for a
polygonal chain C if the polygon consists of the inter-
nal vertices of C satisfies these properties. Let a simple
polygon (or a simple polygonal chain) be represented by
the sequence of the vertices in clockwise. The following




definition and lemma reduce strong convexity to a local
property.

Definition 2 Let A, B, and C be contiguous vertices in
clockwise order of a simple polygon (or a simple polygonal
chain). We say that vertez B is e-convez if the distance
from B to line AC is greater than e. Yl

No matter where we move B inside a disk of radius ¢,
it cannot cross line AC and angle ABC remains convex.

Lemma 1 If each vertex of a simple polygon (or each in-
ternal vertez of a simple polygonal chain) P is 2¢-convez,
then P is e-strongly convez. 1

3 Exact and rounded arithmetic

Consider the following basic geometric operations: (I)
D(p,1): computes the distance from point p to line I, (1I)
O(AB,CD) < 0: determines if the angle of line segments
AB and CD which equals to the change in orientation
from AB to CD is not larger than 8, where 6 is a very
small angle, (11T} Slop(l): measures the slope of line I,
and (IV) Pos(A, B, C): determines the orientation of A,
B, C which is counterclockwise, clockwise or collinear.
We use rounded floating point arithmetic with a P-bit
mantissa. Let 4 = 2=F M be the rounding unit of P-bit
arithmetic, where M is a bound on the magnitude of the
coordinates in the inputs, the following lemma holds.

Lemma 2 (15) Using P-bit floating point arithmetic,
the basic geometric operation (I) can be ezeculed with
absolute error at mosi 16v/2y, and operations (1I), (111)
and (1V)} can be ezecuted with absolute error at most 4 -
2-P, L

For convenience, we use the notations (D(p,!))p,
(Slop(1))p, (©(AB,CD) < 6)p and (Pos(A, B,C))p to
represent rounded arithmetic computations using P-bit.

There is another operation in our algorithms. Let
X{(A) and Y(A) denote the z and y coordinate of point
A, respectively. Use I(A, B) to denote the line passing
through points A and B, where X(A) < X(B). Point
C is said above (below) (A, B) if Pos(C, A, B) is coun-
terclockwise (clockwise). Therefore, we can determine
if C is above (below) I(A4, B) by the basic operation
(IV). Let S be a set of points. We let Abov(S,I) and
(Abov(S,1))p denote the operation for computing the set
{p| p € S and p is above I}, using exact and rounded
arithmetic, respectively. For any two points A and B
of the input, |AB| <2v/ZM obviously. If an angle 8 is
very small, we can treat the value of sin§ as the actual
value of the angle. Therefore, if ©(C, AB) is very small,
D(C,AB) € 2+/2M©(C, AB). Finally, notice that the
pure comparison is not a geometric operation and arises
no error.

4 Strongly convex hull of a weakly
convex polygon

In what of the follows, the parallel computations are al-
ways considered in CREW PRAM.

4.1 Exact arithmetic method

Let P = (p1,pa,...,Pn) be a A-weakly convex polygon
(or polygonal chain). We use P(i..j) to denote the ver-
tices of P between p; and pj, i.e., the vertices pi, pis1,
..., p;. If vertieces are not e-convex they are called e-flat
vertices, especially, we call the first and last vertices of a
polygonal chain e-flat vertices. We call the edges whose
two endpoints are both eflat as e-flat edges. In this
section, we construct an c-strongly convex y-hull of a A-
weakly convex polygon P using exact arithmetic, where
¥ =06efor A =0 and vy = 8¢+ 8\ for A > 0. We first
create a ridgepiece of P which plays an important role
in our algorithms defined as follows.

Definition 3 Let P = (py,p2,...,pn) be a A-weakly con-
vez polygon. Polygon r(P) is said an (¢, X)-ridgepiece of
P if it salisfies the following conditions:

(1) each vertez of r(P) is a vertez of P,

(2) among any three contiguous vertices of r(P), there
exists at least one (2¢ + 2X)-convex vertez, and

(3) when A =0, r(P) is a 2¢-hull of P (Fig. 1(a)), and
when A > 0, »(P) is a 2(2¢ + 2)\)-hull of P, but the ver-
tices of P between two endpoints of a (2¢ + 2))-flat edge
e of r(P) are at most 2¢ + 2\ away from e (Fig. 1(})). g
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Figure 1: Definition of ridgepieces

Let F be a A-weakly convex chain. Just by exchang-
ing the word “polygon” into “chain” in the above defini-
tion, a (¢, A)-ridgepiece of F, r(F), can be defined simi-
larly, except that the first and last vertices of 7(F) must
be the first and last vertices of F. An (e, A)-ridgepiece

is simply called ridgepiece if no confusion arises. The
ridgepieces consisting of two or three vertices are the
simplest ones. Following properties hold for them. As-
suming F = (uy,us,...,u5), (1) »(F) consists of two
vertices iff r(F) = (u1,u;) and each vertex of F is at
most 2¢ + 2\ away from r(F), and (2) r(F) consists of



three vertices iff r(F) = (uy, ui,uy), where 1 <i < f, w;
is a (2e + 2))-convex vertex in r(F7), and each vertex of
F is at most v away from (uy,u;,vy), where v = 2¢ for
A = 0and v = 2(2¢ + 2A) for A > 0. The following two
lemmas suggest a divide-and-conquer method for com-
puting a ridgepiece of F.

Lemma 3 Let F = (u,us,...,u5,W,01,2,...,7) be a

A-weakly convex chain. If (u1,w) is a ridgepiece of U =

(u1,ug,. .., us, w) and (w,vy) is a ridgepiece of V = (w,v1,
vg,...,vy), @ ridgepiece of F consisting of at most three

vertices can be found in O(1) time using O(|F[) proces-

sors when A = 0 end in O(log|F|) time using

O(|F|/ log|F|) processors when X > 0.

(Proof:) First consider the case that A = 0. In this
case F is a convex polygonal chain. From the convex-
ity, distance function D(z,uyu,) for € F is unimodal.
Compute D(z,uyv,) for each 2 € F. If all vertices of
F are at most 2¢ away from wuiv,, (u1,vg) is a ridge-
piece of F. Assume that there exists at least one vertex
which is farther than 2e from uyvy. If D(w,u3vg) > 2¢,
(u1,w,v,) is a ridgepiece of F'. Assume D(w, u1v,) < 2e.
From the unimodality, the vertices of F father than 2e
from v, are contiguous (Fig.2). Let these vertices be
X = (z1,22,-..,2k) (k 2 1). Since w is not the vertex of
X it must be the vertex before of z; or after of z;. If wis
before of z;, (u1,21,v,) is a ridgepiece of F since z, is 2e-
convex, and for any vertex z € F if z is between u; and
z1, D(z,u121)< D(z,u1vy)< 2€ else if z is between
and vy, D(z,z1v,) <D(z,wy;) < 2¢. Similarly, we can
prove that if w is after of xx, (us, 2k, v,) is a ridgepiece
of F. From unimodality, all the above computations can
be executed in constant time using [F| processors.

Figure 2: Finding a 2e-convex vertex

Next consider the case that A > 0. Find a ver-
tex y such that D(y, uiv,)= max{D(z,u1vg) | ¢ € F}.
If D(y,u1vg) < 2¢+ 2X, (u1,v,) is a ridgepiece of F,
else (u1,y,v,) is a ridgepiece of F since y is 2¢ + 2A-
convex, and all vertices of F are at most 2(2¢+ 2)) away
from (u1,y,v,). This ends the proof since the maximum
computation can be executed in O(log|F|) time using
|F|/ log|F| processors [10]. 1

Lemma 4 Let F = (uy,uy,..., 07, W,v1,09,...,0) be a
X-weakly convez chain. Given Zy and Z,, the ridgepieces
of U = (u1, ua,. .., g, w) and V = (w,v1,02,...,9), re-
spectlvely, a ridgepiece of F can be computed in O(1)

time using O(|F]) processors when A = 0 and in O(log | F|)
time using O(|F|/log|F|) processors when A > 0.

(Proof:) Let Z; = (21,22,..., 2k, z) and Z3 = (2, Zk41, - - -,
z;), where z; e Ufor 1 < i<k, z € Viork+1<
i<h z=w 2z =u and 2z, = v,. Z = (Z1,23)
(= (21,22, -+ -+ 2Ky 2,2k 41, - - - , 21)) satisfies all conditions
as a ridgepiece of F' except that there may appear three
contiguous (2¢ + 2))-flat vertices at the junction of Z;
and Z;. To see this, let z* be the last (2¢ + 2A)-flat
vertex of Z; and z** be the first (2¢ + 2A)-flat vertex
of Z,. By the definition of a ridgepiece, z* can be z
or z and z** can be z or zry;. When 2* 2, and
2** = zp4y, three contiguous vertices zi,z,2x41 of Z
are all (2¢ + 2X)-flat (Fig. 3). We solve this problem
as follows. Let the vertices of F between z; and z be
F(z}..z) and the vertices of F between z and 243 be
F(z..2k41). Since (2, z) and (2, 2zx41) are the ridgepieces
of F(zk..z) and F(z..zg41), using Lemma 3 we can find,
»(F(zg..2641)), a ridgepiece of F(z¢..zx41) which is ei-
ther (zkxzk-l-l) or (zkryyzk-l'l)r where y € F(zkrzk+1)a
in O(1) time using O(|F|) processors when A = 0 and
in O(log | F|) time using O(|F|/ log |F|) processors when
A > 0. If »(F(2k--2641))= (2k, 2k41), delete z from Z,
and if r(F(zk..2k41))= (2&, ¥, 2k41), delete 2 and insert
y to Z. The resulting Z is a ridgepiece of F. 'l

Zk+l

(_5 2 &+ 2 A -convex vertex
in Zy
..\ 2 e + 2 A-flat vertex

®

Figure 3: Method for marging two ridgepieces

The following algorithm MakeRidgeChain(F) constructs
a ridgepiece for a A-weakly convex chain F.

Algorithm MakeRidgeChain(F)

(Step 1) Let F= (u1, ua,...,um). f m=2, (u1,u)
is a ridgepiece of F. This completes the algorithm. Else
execute the following steps.

(Step 2) Divide F into Fy and Fy such that Fi
(v1, 2,0 .., tmy2) and Fo = (umg2, Um/2415-- -, %m). In
parallel compute a ridgepiece of Fj and a ridgepiece of
Fy, recursively. i

(Step 3) Marge the ridgepiece of Fy and the ridge-
piece of F into a ridgepiece of F' by Lemma 4. 2

Algorithm MakeRidgeChain(F) uses divide-and-conquer
technique. From Lemma 4, each recursive step runs
in O(1) time using O(m) processors when A = 0 and



in O(logm) time using O(m) processors when A > 0.
Therefore, the following theorem holds.

Theorem 1 Let F be a A-weakly convez chain with m
vertices. A ridgepiece of F can be constructed in O(log m)
lime using m processors when A = 0 and in O(log2 m)
time using m processors when A > 0.

Theorem 2 Let P = (p1,p1,...,Pn) be a A-weakly con-
vez polygon with n vertices. A ridgepiece of P can be con-
structed in O(logn) time using n processors when A =0
and in O(log? n) time using n processors when A > 0.

Proof: Polygon P can be changed into a closed polyg-
onal chain P’ = (p1,p1,...,Pn,Pns1) by adding a vertex
Pn41 which is equal to p;. Construct a ridgepiece of
P!, o(P') = (41,92, --,9m), Where g1 = p1 and gm =
pns1(= q1). Let R be the polygon bound by r(P’).
Polygon R satisfies all conditions as a ridgepiece of P,
except the problem that there may exist three contigu-
ous (2¢ -+ 21 )-flat vertices at the junction, that is, all of
gm—1, @1 (= gm) and g2 may be 2¢ 4 2)-flat. Since the
same problem has been happened in Lemma 4, we solve
the problem in the same way. That is, let the vertices of
P between gm—3 and g1 be P(gm-1..q1) and the vertices
of P between ¢; and g3 be P(g;..¢2). Using Lemma 3 find
7(P(¢m—1--92)), & ridgepiece of P(gm—1..q2), which is ei-
ther (¢m-1,92) or (¢m-1,9,92), Where y € P(gm-1..q2).
If 7(P(gm-1-92)) = (gm-1,92) delete ¢; from R and if
{(P(gm-1--42)) = (¢gm-1,¥,q2) delete ¢, and insert y to
R. The resulting R is a ridgepiece of P.

For any three points u, v and w, where X(u) <
X(v) < X(w), angle uvw is said B-convex if u, v and w
are in clockwise and D(v, uw) > B. The following lemma
guarantees that the polygon obtained by removing all
(2¢ + 2X)-flat vertices from a ridgepiece is 2c-convex.

Lemma 5 Let P = (p1,p2,...,Pn) be a A-weakly convex
polygon. For any three vertices u,v and w, if there exist
vertez p between u and v and veriex q between v and w
such that angle pvq is (2¢ + 2)X)-convez then angle uvw
is 2e-conver.

Proof: Assume that angle uvw is not 2e-convex. See
Fig. 4, where l; is a line parallel to the line segment pq
and 2¢ away from v, I3 is the line passing through vertex
v vertical to lj, a is the intersection of {; and I3, and b
is the intersection of l2 and pq, respectively. It is easy
to see that if angle uvw is not 2¢-convex, at least one
of u and w is above l;. Without loss of generality, let u
be above !;. If |up| > |up], then |vp| > |up|> |ab] > 2X
holds. This contradicts with the condition that P is A-
weakly convex since however perturbing each vertex of
u, p and v within X distance angle upv can not become
convex. If Jup| < |up|, [up| > |vp| > |ab] > 2X holds.
This conducts the same contradiction. Ll

Theorem 3 Given a A-weakly convez polygon P, an c-
strongly convez 6e-hull can be computed in O(logn) time
using n processors when X = 0, and an e-strongly convez
4(2¢ + 2))-hull can be computed in O(log? n) time using
n processors when A > 0.

Figure 4: Proof of Lemma 5

Proof: Construct r(P), a ridgepiece of P. From
the definition of the ridgepiece, r(P) has the following
properties: (i) among any three contiguous vertices of
#(P) there exists at least one (2¢ 4+ 2)\)-convex vertex,
and (ii) when A = 0, #(P) is a 2¢-hull of P and when
A >0, r(P) is a 2(2¢ + 2X)-hull of P but the vertices of
P between the endpoints of a (2¢ + 2A)-flat edge e are
at most (2¢ + 2)) away from e. Let R be the polygon
obtained by removing the (2¢ + 2))-flat vertices from
r(P). Lemma 5 guarantees that R is e-strongly convex
(for any three (2¢ + 2))-convex vertices a,b,c of r(P) in
clockwise, let a, b, ¢ correspond to u,v,w of Lemma 5).
Between any two adjacent (2¢ + 2A)-convex vertices of
r( P) there exist at most two (2¢+2))-flat vertices. Since
removing one flat vertex from »(P) let each vertex of
r(P) at most 2¢ + 2X away from R, R is an e-strongly
convex 6¢-hull of P when A = 0, and an e-strongly convex
4(2¢ + 2X)-hull of P when A > 0. 8

When A = 0, A-weakly convex polygon P is a convex
polygon for which we have the following theroem.

Theorem 4 Using ezact arithmetic an e-strongly con-
vez 6e-hull of a set S of n poinis in the plane can be
computed in O(logn) time using n processors.

Proof: First, construct CH(S), the convex hull of S,
in O(log n) time using n processors [J. From Theorem 3,
an e-strongly convex Ge-hull of CH(S) can be computed
in O(log n) time using n processors. This completes the
proof. I}

4.2 Rounded arithmetic method

We implement the algorithm of Section 4.1 using rounded
P-bit arithmetic. the only geometric operation needed
in Section 4.1 is to determine if D(C, AB) < 2¢+2X (in
other words if C is (2¢ + 2))-convex). From Lemma 2,
if (D(C, AB) > 2¢ + 2\ + 16y/2) p, then D(C,AB) >
2¢ + 2X holds. Therefore, replacing 2e 4+ 2\ by 2¢ + 2A +
164/2p in the algorithm of Section 4.1 wherever it ap-
pears (in the case of A = 0, replacing 2¢ by 2¢ 4 16+/2p)
assures that the rounded version will still generate an
e-strongly convex polygon. Since determining whether



(D(C, AB) > 2¢ + 2) + 16y/2p)p brings an adding er-
ror of 16v/2p, the output is a (3(2¢ + 32v/24)-hull when
X =0 and (4(2¢ + 2X + 32v/2u)-hull when A > 0.

Theorem 5 Given a A-weakly convez polygon P, an e-
strongly convez (6¢ + 96\/§p)-hull can be computed in
O(logn) time using n processors when X = 0, and an ¢-
strongly convez (8¢+4A+ 128\/§p)-hull can be computed
in O(log? n) time using n processors when A > 0. 'l

5 Robust convex hull algorithm

In this section we construct a convex 64v/2u-hull of a
set of n points using rounded arithmetic in O(log>n)
time using n processors. Therefore an e-strongly (6¢ +
160+/2u)-hull can be constructed in O(log® n) time using
n processors from Theorem 5. Since log,(160v/2)< 7, the
robust algorithm requires only (N + 7)-bit arithmetic.

First, extract four sequences from S which cover the
vertices of the convex hull of S (Fig. 5). For each se-
quence, the z and y coordinates are monotonic function
of indices. To generate H, one of the sequences, where
both z and y coordinates are in increasing order, sort
S by increasing z coordinate in O(logn) time using n
processors|]. For each point p of sorted S, find point ¢
before p such that ¢ has the largest y coordinate, and
then draw out ¢. This can be executed by prefix max-
ima computation and the doubling technique in O(logn)
time using n processors [10]. We can generate the other
three sequences similarly.
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Figure 5: Monotonic sequences covering the vertices of
the convex huil

In the following, we describe how to construct a con-
vex 64v/2-hull for each monotonic sequence. We only
construct a convex 64+/2-hull for sequence H. The work
for other three sequences can be done in the same way.
Qur algorithm guarantees that four extreme points of S
are included in these four convex 64v/2-hulls. Putting
the four convex 64v/2-hulls together, we get a convex
64+/2-hull of S.

A line [ is defined as a support line of H if | passes
through at least one vertex of H and all other vertices
of H are below of I. A line [ is said en a-support line

(a > 0) of H if I passes through at least one vertex of H
and any vertex of H above [ is at most a away from I.
Let H, and H, be two subsequences of H separated by
a vertical line. A line segment ab is said a bridge of H;
and Hj if (i) ¢ € Hy and b € Hy, and (ii) each vertex
of Hy and Hj is under line I(a,b). A line segment a't’ is
said an a-bridge of Hy and Hy if (i) ¢’ € Hy and ¥ € Ho,
(ii) each vertex of H; and Hy above line I(a’,¥',) is at
most « away from I(a’, ).

Lemma 6 Let H = (uy,ua,...um) be a monotonic polyg-
onal chain, where both x and y coordinates of the ver-
tices are the increasing order. For the polygonal chains
Hy= (u1,U3,. . Umyo) and Hy =(umyoq1,2,...,8m), €i-
ther the following (1) or (2) holds.

(1) A 48+/2u-bridge of Hy and H> can be found using
rounded arithmetic in O(log m) time using m processors.

(2) Either |H,|/4 vertices of Hy or |H,|/4 vertices of
Hy whick does not contain the endpoinis of the bridge
of Hy and Hy can be found using rounded arithmetic in
O(log m) time using m processors.

Proof: Construct |H|/2 edges by matching each pair
of two vertices of H. Let E be the set of these edges.
Find an edge e from E such that medi =(Slop(e))p
is the mediam of {(Slop(¢’))p | ¢’ € E}. Denote the
line passing through e as I(¢). Find a 16y/2p-support
line of H whose slope is med: as follows. Compute set
A = (Abov(A,l(e)))p, the set of the vertices above line
I(e), and then find vertex p € H such that (D(p,l(e)))p=
max{(D(p',l(e)))p | p' € A} (Fig. 6). Let L be the line
passing through p with slope medi. Including the abso-
lute error causing by rounded arithmetic, L is a 16v/2u-
support line of H. That is, if vertex u of H is above L,
u is at most 16v/2u away from L. We prove the lemma
by considering the following two cases.

>g+2 P

VA,
P Vg /

Figure 6: Vertex a: not an endpoint of the bridge

(Case 1) Vertex p belongs to Hy. Find vertex ¢ € Hy




such that (Slop(pq))p = max {(Slop(pg’))r | ¢' € H2}
and determine whether (@(gp, L) < 12.27F)p.

(i) When (©(qp, L) < 12 2-P)p, pg is a 48+/2p-bridge
of Hy; and H,. To show this see that any vertex un-
der L is at most 16+/2u away from pg, since ©(gp, L) <
16-2~F holds from (©(gp, L) < 12-27F)p by Lemma 2.
For any point ¢ € H above I(p,q), if g is under L,
D(g,pg) <2V2M - 16 - 2-P=32y/2y, and if g is above
L, D{g,pq) <D(g,L)+2v2M - 16 - 2P <48/2u.

(ii) When (©(gp,L) > 12 -2-F)p, for any line seg-
ment ab € E if a € Hy and (Slop(ab))p > medi (note
that there are at least |Hy|/4 such vertices), vertex a can
not be an endpoint of the bridge of H; and H,. We show
this as follows. From conditions (©(gp, L) > 12-2-F)p
and (Slop(ab))p > (Slop(L))p, we have ©(gp,L) > 8 -
2-P and Slop(ab) > Slop(L) —4 - 2~F, respectively.
Let I be the line passing through p and ©(pg, I)= 4 -
2P, See that Slop(I)< Slop(L)—4 - 21 holds. As-
sume that a is an endpoint of the bridge ab*. Obvi-
ously, Slop(ab)< Slop(ab*) holds. If &* is under {(p, q),
a must be above I(pq) else ab* can not be the bridge.
This means Slop(ab)< Slop(ab*) < Slop(pg) < Slop(I)<
Slop(L)—4-2~F which is a contradiction with Slop(ab) >
Slop(L)—4-2~F. Ifb* is above I(p, q), from the selection
of g, b* must under 7, in the meanwhile, a must be above
pb* else ab* can not be the bridge. This means Slop(ab)<
Slop(ab®)< Slop(pb*) < Slop(I)< Slop(L)—4-2~F. This
is also a contradiction with Slop(ab) > Slop(L)-4-2~".
(Case 2) Vertex p belongs to H;. Using the proof similar
to that for Case 1, either we can find a 48v/2u-bridge of
H; and Ha, or we can prove that for any line segment
ab € E, if b € Hy and (Slop(ab))p < medi, b is not an
endpoint of the bridge of Hy and Ha.

The maximum and mediam computations can be exe-
cuted in O(log m) time using m processors [10]. It is easy
to see that other operations can be executed in O(1) time
using m processors. | ]

Lemma 7 Let H, H; and Hy be the polygonal chains in
Lemma 6. A 48\/§y-bridgc of Hy and Hy can be com-
puted Using rounded arithmetic in O(log? m) time using
m Processors.

Proof: Using Lemma 6, we can either find a 48v/2u-
bridge of H; and Hj, or delete |Hy|/4 points of H; or
|Hal/4 points of Hy which does not contain the end-
points of the bridge of H; and Hjy. After using Lemma 6
O(logn) times we can find a 48v/2u-bridge of H, and H,
finally. Therefore, a 48v/2u-bridge can be computed in
O(log® m) time using m processors. 8

The following lemma suggests a divide-and-conquer

method for constructing an approximate convex hull of
H.

Lemma 8 Let H = (u,us,...,un) be the polygonal
chain in Lemma 6, and b = u,u, be a 48v/2pu-bridge of
Hy=(u1,up, ... ,Umy2) and Hy =(tmyz41, hnpagas-- -

Um). Let Fy be a convez 64+/2p-hull of HY = (uy, uy, ...,
ug) containing vertices u; and us, and Fy be a conver

64\/§p-hulls of H? = (us,ts41,- - - Um) conlaining ver-
tices uy and u,,. Given bridge b, Fy and Fy, a convez
64v/2u-hull of H which contains vertices uy and w, can
be compuled using rounded arithmetic in O(logn) time
using n processors.

Proof: Compute By = {u | (0(u,u;, uu,)> 4-2-F)p and
u € F1}. For each vertex u of By, since (O(u,u,, uu,)> 4
2-P)p implies O(usus, uuy)> 0, u is under line I(us, u,).
Find vertex u, of B; such that its z coordinate is mini-
mum (Fig. 7). Similarly, compute By = {u | (©(usu, usu,))
>4-27F)p and u € F,} and find vertex u of By such
that its z coordinate is maximum. Let u* be the right
neighbour of 4, in Fy and u** be the left neighbour of
up in Fy. Lét Fj be the convex polygon by deleting the
vertices of Fy which are in the right of u* and T3 be
the convex polygon by deleting the vertices of 3 which
are in the left of u**. We show that convex polygon F
consisting of Fy, F3, u*v** is a convex 62v/2u-hull of H.
First, we prove F that is convex. Each vertex u of F}
except u* is under line I(u;,u;). and each vertex of u
of Fy except u** is under line I(us,u,;). Therefore, line
seqment u,uy is under line I(u,,u,;). Together with the
conditions that F; and F, are convex we conduct that F
is convex. Obviously, F' contains vertices u; and uy,.

Figure 7: Robust method for marging two convex hulls
with an approximate bridge

Next we prove that F is a 64v/2u-hull of H. For
vertex u of H which is above F, there are two cases.
(Case 1) X(u;) < X(u) < X(u*) or X(u**) < X(u)
< X(upm). Since Fy and Fy are 64v/2p-hulls of H, and
Hy, respectively. u is at most 64v/2u away from F or
Fy

2.

{Case 2) X (u*) < X (u) < X(u**). Since (O(usuy, ugtts)<
4.27P)p and (O(uiup, usu)< 4 - 27F)p imply —4 -
2P <O(uyup, ua, )< 8:27F and —4.2F <O(uyup, u,u,)<



8.2~ P respectively, any point on line {(u,, u) is at most
16v2u (= 2v/2M -8 .2-F) away from line I(u*,4**), in
the meanwhile, u,u, is a 48v/2u-bridge. Therefore, ver-
tex u is at most 64v/2x away from segment u”u*". ]

The following algorithm MakeCH(H) constructs a
convex 64vZu-hull of H using Lemma 8, where H is
a monotonic polygonal chain whose 2 and y coordinates
are in increasing order.

Algorithm MakeCH(H)

(Step 1) I |H| < 3 return H. This completes the
algorithm. Els¢ do the following steps.

(Step 2) Let H = (uy,uz,...,4m). Divide H into two
equally sized polygonal chains H; and Hy such that H, =
(u1, 1, . .. :“m/z) and Hy = (“m/2+l)um/2+l|~ ve i)
Use Lemma 7 compute U4z, a 48+v/2p-bridge of H; and
H,.

(Step 3) For H! = (uy, ug,...,u,) and H? = (ur, 441,
.+ +»tUm), the subchains of H; and Hj, respectively, recur-
sively construct CH! and CH?, the convex 64v/2p-hulls
of H! and H? respectively, in parallel.

(Step 4) construct a convex 64y/2p-hull of H from
usuy, CH' and CH? by Lemma 8. X

Theorem 6 Algorithm MakeCH(H) constructs a con-

vez 64v/2u-hull of H using rounded arithmetic in O(log® m)

lime using m processors.

Proof: The correctness of the algorithm is proved in
Lemma 8. The algorithm constructs a convex 64v/2p-
hull of H using divide-and-conquer technique. Since each
recursive level runs in O(log? m) time using m proces-
sors, the algorithm runs in O(log® m) time using m pro-
cessors. ]

Theorem 7 A convez 64v/2u-hull of a set of n points
can be constructed using rounded arithmetic in O(log” n)
time using n processors. |
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