7 o F VU X A 44—5
(1995. 3. 17)

— KR D B I D\ T

FIAEE E
BEAY T WRLER

kRO y F ¥ FHEE L TRRRE S L TE b 0l L #mofke
FKRZAFERE DD TH o7, AWTHE, L EHRED<Y F TR 12D, i
i L EH A E I S W TRTTESIM 0K (82) 2 ERT S TLT, MAX-
SATRIE BT Ao Lick), —RWICIRCOEREFHETILINPHETHS
C L ARRd, —F. BEL, UL, HRERENEACRURKMEICEESE
BT SERBFMTRHETELIEORT,

On the Editing Distance between Two-Dimensional Arrays

Tatsuya Akutsu

Department of Computer Science, Gunma University
1-5-1 Tenjin, Kiryu, Gunma 376 Japan

e-mail: akutsu@cs.gunma-u.ac.jp

This paper proposes an editing distance problem between two-dimensional arrays, in
which rows are treated in the same way as in columns. This problem is important for
approximate pattern matching between two-dimensional arrays. The problem is proved
to be NP-hard by a reduction from MAX-2SAT. However a polynomial time algorithm

is shown for a special but practical case, in which the problem is reduced to the shortest
path problem.

1 Introduction

Recently pattern matching problems for two-dimensional arrays have been studied extensively.
Two-dimensional pattern matching problems are important for handling two-dimensional im-
ages. For example, they are useful for image recognition and data compression. In such
practical cases, approximate matching seems much more important than exact matching since
errors are inevitable in most cases. However a few studies have been done for approximate
matching [1, 2, 4, 6]. Moreover errors considered in [1, 2, 4] are restricted as follows: a deletion
or insertion affects only the column it appears in. This restriction does not seem to be natural
because treatment of rows is different from that of columns. Motivated by the above facts,
we consider an editing distance problem between two-dimensional arrays in which rows are
treated in the same way as in columns. Note that most approximate matching problems are
defined using editing distances (or, equivalently differences) [5, 7, 8]. In this paper, we show
that the editing distance problem is NP-hard in general, while we present a polynomial time
algorithm for a special but practical case. .

Here we briefly review previous results. Approximate matching of strings has been well
studied and several efficient algorithms have been developed [5]. Various editing distances
have been proposed for approximate tree matching {7, 8]. Krithivasan and Sitalakshmi studied
approximate matching of two-dimensional arrays [4], while their results were improved by Amir
and Landau [1]. Amir and Farach studied approximate matching of non-rectangular figures [2].
However errors considered in these three studies are restricted as mentioned above. Recently
Landau and Vishkin proposed a new approach to pattern matching of images [6]. Although
it seems a reasonable approach towards practical pattern matching, it is not robust against
_errors that affect far positions.

2 Definition of the Editing Distance

In this section, we define an editing distance between two-dimensional arrays. Let A[1..m,1..n]
be an m x n two-dimensional array over an alphabet £. Let D = {+,—,%,]} be the set of
directions. Then editing operations are defined as below (see also Fig. 1), where we consider
only the right direction (—). Deletions and insertions for the other directions are defined in a
similar way.

Substitution: (sub(s,j,z)) Ali,j] is replaced by z € T (i.e., A[4,j] :=).

Insertion: (ins(i,,z,dir)) = € T is inserted at position (i, 7), and the contents of A[s, j..(n—
1)] are shifted to the right direction, where A, j..k] denotes the subarray that consists
of elements of row i and columns j to k (j < k). The content of Ali,n] is ignored.

Deletion: (del(3, j,z,dir)) The content of A[s, 5] is deleted, and the contents of A[3,1..(j —1)]
are shifted to the right direction. Az, 1] is replaced by z € Z.

Let Cs be the cost per substitution, C; be the cost per insertion, and Cp be the cost per
deletion, where they satisfy the triangular inequality: Cs < Cr+Cp. Let E = (ey, e, -, er)
be a sequence of editing operations, which transforms A[l..m,1..n] to B[l..m,1..n]. Then
the cost of E is defined to be the sum of the costs of e,---,ex. The editing distance from
A[l.m,1..n] to B[l..m,1..n] is defined by the minimum cost of the editing sequence which
transforms Afl..m,1..n] to B[l..m,1..n].

You may think that the definition of a deletion operation is unusual. However we employed
the above definition because we wanted to make a deletion symmetric to an insertion. Indeed,
del(i, j, +, A[i,n]) transforms B[l..m,1..n] to A[l.m,1..n] if ins(s, j, —, B[i,j]) transforms

A[l..m,1..n] to B[l.m,1..n]. Note that the results in this paper do not change even if we
use the following definition of a deletion operation.

Deletion’: (del(i, j, dir)) The content of A[i, 5] is deleted, and the contents of Afz,1..(7 — 1)]
are shifted to the right direction. A[s,1] is replaced by a special symbol #.

J

a d d)
E L= C]
2 Ter a Jog.% £
b . b g,

a o e A
c] c c

al|bjecjc|d]ble]d]|b]ec ilalblelcld]blald]b]ec ajbicic|d|bl|d|b]c|g]
d d d
<] c <!
b b b
ins(1,9,8, =) ‘ua(i.j,q, b (del,1,3,h, =)
d c d]
c| B c
B B D]
D] 2] B
a = =
c] a c
alblc|cld]b]|£]ald]b albjcjc|d]|b]gld|b]c hlalbic]c]d|bld]b]c

4 dl 4
[C| € =
b b b

Figure 1: Editing operations.

3 NP-hardness Result

In this section, we show that computing the editing distance is NP-hard by means of a poly-
nomial time reduction from MAX-2SAT.
It is well known that MAX-2SAT defined below is NP-complete [3].

Instance: A set V = {z1,-:-,zn} of variables, a collection C = {c1,-- -, cp} of clauses over
V such that each clause consists of two literals, and a positive integer K.

Question: Is there a truth assignment for V that simultaneously satisfies at least K of the
clauses in C 7

In the following, z; denotes a positive literal, Z; denotes a negative literal, and var(c;) denotes
the set of variables appearing in ¢;, where we assume without loss of generality that [var(c;)| =
2 for each clause ¢; and M > N.

From an instance of MAX-2SAT, we construct arrays A[l..m,1..n] and B[l..m,1..n] over
r={TF1,2, --,L,-1,-2,---,~L,0} in the following way (see Fig. 2), where L is a
constant such that L > M (e.g., L = 100M).

Let H be a constant such that H » LM and (H mod 2L) = 0 (e.g., H = 100LM). Let
m = (2M + 1)H and n = (N + 1)H. Here we define the following functions:

T, zj€c, F, zjec,
fl(cl','t.i) = F! T; € i, fz(Ci,zj)= T) f;ecis

1, otherwise. 1, otherwise.
L fdmedl, 1<(imod2L)SL yoy G4 H 4 L)/2H].
id(z) =¢ =L, (i mod 2L) =0, J() = LG + L)/H]

—(i mod L), otherwise. ’

Moreover we define the following notations (see Fig. 3):

posL(j) +— j<NHA(jmod Hy=H-L+1, posR(j) ¢+ j>HA(jmod H)=L+1,
posU(i) +— i<2MHA(imod H)=H=L+1, posD(i) +— i>HA(imod H)=L+1,
posT(i) +— (imod2H)=H+1, posC(j) +— j>1A(mod H)=1,
posB(i) = i>1A(imod2H)=1)
; o [Alegyzag), posU(E) AposC(j),
Then a part of A[l..m,1..n] is defined by A[i,j] = { faleriyp@aciy)s posD(i) A posC(j).
. —id(i), posC(j),
The other part of A[l..m,1..n] is defined by Ali,jj={ id(j), ~posC(j) A (posT(i) V posB(i)),

0, otherwise.

Ari..m,1..n] B[1..m,1..n]
a b c a b c
H
7 7]
aVbp HINGERIRIB)
7] a
™ = H
B 7]
aVb I=] |
7] 7]
m m H
¥, 7] -
bVe HINIEEEEE)
SEEG J
]] H
7| H _
bVe I [7] :)
8 7]
™ ™ H
H H H H H H H H

Figure 2: Arrays constructed from {a Vb, bV c}.

Next we describe the construction of B[l..m, 1..n]. We define three functions as below:
T, var(c)={zjzx} Aj<k F, var(c)={zj,zx} Nj<k,
F, var(c)={zjzx} Aj>k, glci,zj)=4 T, var(c)={zjzx} Aj>Ek
1, otherwise. 1, otherwise.

gici,z;) =

T, =z; € var(ci),

gs(cir2s) = { 1, otherwise.) .
gi{ezgiy,agiy)s - posT(i) A posL(j),
Then a part of B[l..m,1..n] is defined by Bli,j]l=3 gz(cisy,zs5)), posT(i) AposR(j),
" gs{crqiy, Tagi))» . posB(i) A posL(j).
‘ —id(j), posT(i)V posB(i),
The other part of B[l..m,1..n] is defined by B[i,j] = { id(i), ~(posT (i) V posB(i)) A posC(s),

0, otherwise.

posL(7)

X
PposR(7)

H

xVy X T posT(1)

Ul 7]
pos ()*_‘\pogn(i)

7])

xVy I=1 = _ posB(i)
7]~
posc(j)

Figure 3: Positions specified by posL(5),posR(j),--+ .

Lemma 1: Let Cs =Cp = C; = 1. Then, there exists an editing sequence from A[l..m,1..n]
to B[1..m, 1..n] with cost at most 2LM+LN+9M —2K if and only if there exists an assignment
that satisfies at least K clauses in C.
(Proof) In this paper, we only show that there exists an editing sequence with cost at most
LM + LN +9M — 2K if there exists an assignment that satisfies at least K clauses. Although
the proof for the converse property is more complicated, it can be proved in a similar way.
From an assignment that satisfies K clauses, we construct an editing sequence E in the
following way (see Fig. 4). First, we let E := {}. Next, for j =1 to N, ,
(ins(]-)jH +1,L, Jf)’ ins(lin +4L,L-1, ~L)) T ms(l,JH +1, 17*1'))
is appended to E if z; is assigned to T', otherwise
(ins((2M + 1)H,jH + 1,~1,1),ins((2M + 1)H,jH +1,-2,1),---,ins((2M + 1)H,jH + 1,-L,1))
is appended to E. Next, fori =1 to M,
(ins((2i =)H +1,(N + 1) H, 1,), ins((2i = 1) H + 1, (N + 1) H, 2,), -+, ins((2i - DH + 1, (N + DH, L, +))
is appended to E if ¢; is satisfied by z; where var(c;) = {zj, 2} and j < k, otherwise
(ins((2i — V)H +1,1,—L,2),ins((2i — DVH + 1,1, ~(L — 1), 3), -+ - ,ins((2i =)H + 1,1,-1,3))
is appended to E. Next, for : =1 to M,
(ins(2iH +1,(N + 1)H, 1,), ins(2iH + 1, (N + 1)H,2,¢),---,ins(2iH + 1,(N + 1)H, L, +))

is appended to E. Finally, substitutions for transforming to B[l..m, 1..n] are appended to E.

Then it is easy to see that the total cost of insertions is 2LM + LN. Thus we consider
the total cost of substitutions. For each clause that is satisfied, the number of substitutions
is 6+ 1 = 7. For each clause that is not satisfied, the number of substitutionsis 6 + 3 = 9.
Therefore the total cost is 2LM + LN +6M +3(M — K)+ K =2LM + LN +9M - 2K. O

Since the construction can be done in polynomial time, we obtain the following theorem.
Theorem 1: Computing the editing distance is NP-hard.

Although the size of an alphabet % is not bounded in the above reduction, it is possible
to modify the reduction so that |Z} = 5 holds. Note that deciding whether or not the editing
distance is at most K is NP-complete because it is trivially in NP.

L insertions to the

e L insertions to thé

';t bottom direction '_‘1
— —
Afl..m,1..n] _" -2
3 . -3 ——
| 3}-1]-3]-3]-1] 2l 3]-1]-a] | s]-af-af-3] v | 2] 3|-1f-2]
2
B
-1]

7| left direction
5
-2
B

|-3] 7| 2] 3]-1]-3]-3 1] al : [-3] 7§ 2] a]-1f-2}-3}r] 2]

N7

Substitutions

LI B

w |w
nla
w e

1]

B[1..m,1..n]

1 1
Iu IH I"' I”

[eledsfele]s

I-1

Figure 4: A part of an editing sequence constructed from an assignment.

4 A Polynomial Time Algorithm for a Special Case

Although a hardness result is shown, we may obtain a polynomial time algorithm for a special

. case where the form of an editing sequence is restricted. Indeed, insertions (or deletions) often

occur at consecutive positions in practical cases. Thus we consider such a case in this section.

First we consider a simple case where editing operations must be applied in the following

way (see Fig. 5), where ¢} < i3 <--- <1 and j; < jo < --- < ji hold, and '+’ means that an
adequate character is used.

ins(1, j1, *,), ins(2, j1,*,), ceeyins(in, 1, %,),
‘.ns(il + 11]'2’*1"’)‘ i"s(il + 2, j2,%, _))9 ttty ins(i2’j2x*,—')7
ins(ih—l + l,jk, *y—))q "ns(ik—l +2gjka*a 4)7 "ty ins(ik’jk!*: _'))s
ins(is, 1 +1,%,1), ins(ih]:l +2,%,1), Tty ':n's(ily.l:'h * 1),
"‘"('21]3 +1,% T)a ins(i2112 +2, *rT), R 'n3(£27131 *7T)1
zns(u,,]', + 1 * T)7 ins(ihjk + 2) *, T)a Sty ins(ikvny *, T)’
sub(ir’, j1’, *), sub(ia’, ja', ¥), cony sub(in’, Ja', %),

Note that the total cost of this editing sequence is (ir + (n — j1))Cr + hCs. Then the prob-
lem is, given two-dimensional arrays A[l..m,1..n] and B[l..m,1..n], to find a minimum cost
editing sequence S such that S has the above form (denoted by FORM-A) and § transforms
A[l..m,1..n] to B[l..m, 1..n].
This special problem can be solved in polynomial time by means of a reduction to the
shortest path problem. First we construct a directed graph G(V, E) as below:
V = {Gj)I1<i<m1<j<n} U {START,GOAL},
E = {{(L)GE+1,/N]I1<i<m1<j<n} U {((,7),(+1,5))|1<z<m,] <j'<n}u
{(START,(1,j)) |1<j<n} U {((i,j),GOAL)|1<i<m,1<j<n}.
Next we define the cost of each edge. Let LM (4, 7) denote the number of mismatches between
A[i,1..5] and B[i, 1..5] where A[i, k] corresponds to B[i,k]. Let RM(,7) denote the number
of mismatches between A[i + 1,j..n — 1] and B[i,j + 1..n] where A[i + 1,k] corresponds to
Bli,k + 1]. Then the cost of each edge is defined by:

cost(START, (1,5)) =0,

cost((i, j), GOAL) = (n— j +1)Cr + (LM(,j — 1) + i LM{(k,n))Cs,
k=i+1
cost((i,5), (i +1,5')) = (LM(i,j — 1) + RM(5,§"))Cs + (' =5 + 1)Cr (i < i

Then a shortest path from START to GOAL corresponds to a minimum cost editing sequence
from A[l..m, 1..n] to B[1..m,1..n]. Therefore the minimum cost editing sequence can be found
by solving the shortest path problem for a graph G(V, E).

Here we consider the time complexity. The number of vertices of G(V, E) is O(mn) and
the number of edges of G(V, E) is O(mn?). O(mn) time is sufficient for computing LM (3, j)’s
and RM(3,5)’s in total. Thus the time complexity depends on the time for solving the shortest
path problem. Since this graph has a special form, the shortest path problem can be solved in
O(mn?) time using a dynamic programming technique as in the conventional string alignment
algorithm. Note that O(m?n) time is sufficient even in the case of m > n by slightly modifying
the construction of a graph. Thus we have the following theorem.

Theorem 2: A minimum cost editing sequence can be found in O(mn min(m,n)) time if
each sequence must have FORM-A.

Insertions Substitutions

‘ (i7,37)

[} \
(1303:1) (1,,9,) (15.393) (111'{;) (i_-',,lj;) (17.33)

Figure 5: A simple case solved in polynomial time.

This algorithm can be extended for a more general case (see Fig. 6). We consider the case
where each editing sequence must be a sequence of & sequences of insertions, each of which
has the same form as FORM-A, followed by a sequence of substitutions. Moreover we assume
that two sequences of insertions do not cross and h is bounded by some fixed constant k. It is
a natural extension, and can be solved in a polynomial time in the following way.

In the algorithm for the original case, each vertex in G(V, F) corresponds to a position (¢, 5)
of an array. In the extended case, we construct a graph such that each vertex corresponds to
a h-tuple ((4,71), (4,72), -, (¢, 7)) such that h < k. Then the definitions of edges and costs
are almost trivial, and omitted in this paper. In this case, the number of vertices and the
number of edges are polynomially bounded since k is assumed to be a constant. Thus the

size of G(V, E) is polynomial of n and the shortest path problem for G(V, E) can be solved in
polynomial time. Therefore we can obtain a polynomial time algorithm in this extended case.

Insertions +

ﬁ}z&‘ }e_rti&‘ Substjtutions

" Figure 6: An extented case.

5 Conclusion

In this paper, we proposed an editing distance problem between two-dimensional arrays, in
which rows are treated in the same way as in columns. We presented a polynomial time
algorithm in a special case as well as a hardness result. However the presented results are
preliminary ones. There remain many problems. For example, approximability, improvement
of the algorithm, and other special and practical cases should be studied. Further studies may
lead to practical two-dimensional pattern matching algorithms.

References
{1} A. Amir and M. Farach, “Efficient 2-dimensional approximate matching of non-rectangular figures,”
Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 212-223, 1991.

[2] A. Amir and G. M. Landau, “Fast parallel and serial multidimensional approximate array match-
ing,” Theoretical Computer Science, vol. 81, pp. 97-115, 1991.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[4] K. Krithivasan and R. Sitalakshmi, “Efficient two-dimensional pattern matching in the presence of
errors,” Information Sciences, vol.43, pp. 169-184, 1987.

[5] G. M. Landau and U. Vishkin, “Fast parallel and serial approximate string matching,” J. Algo-
rithms, vol. 10, pp. 157-169, 1989.

[6] G. M. Landau and U. Vishkin, “T'wo dimensional pattern matching in a digitized image,” Proc. {th
Symp. Combinatorial Pattern Matching (LNCS 684), pp. 134-151, 1993.

[7] K. Zhang, R. Statman and D. Shasha, “On the editing distance between unordered labeled trees,”
Information Processing Letters, vol. 42, pp. 133-139, 1992.

[8] K. Zhang, D. Shasha and J. T. L. Wang, “Approximate tree matching in the presence of variable
length don’t cares,” J. Algorithms, vol. 16, pp. 33-66, 1994.

