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We consider a special case of permutation routing on the hypercube, where the
source-destination distance of every packet is small. We call a permutation = on the
set of hypercube nodes a distance-d permutation if the distance between v and w(v) is
at most d for every node v. Our goal is to exploit the distance constraint to obtain a
routing with fewer steps than in the general case. In this note, we give the following
preliminary results on distance-3 and distance-4 permutations.

(1) Let A be an arbitrary positive integer. As long as n does not exceed 18A%24-6), any
. distance-3 permutation on the n-dimensional hypercube can be off-line routed in 2 + A
steps. Putting A = 1 in particular, this gives an optimal 3-step routing as long as n < 24.
(2) We give an on-line algorithm that routes an arbitrary distance-3 permutation on the
n-dimensional hyperbube in O(y/n) steps and an arbitrary distance-4 permutation in
O(n5/®) steps.



1 Introduction

Packet routing on an interconnection network
is a fundamental algorithmic problem in par-
allel computation. Let a network be repre-
sented by a digraph G. We are given packets
residing on the vertices of G and asked to de-
liver each packet to its specified destination
vertex. The routing process counsists of syn-
chronous steps. In each step, each packet can
either stay on its current vertex or go across a
single edge in the direction of the edge. Mul-
tiple packets on a single vertex may go out
simultaneously as long as no edge is shared
by more than one packet. Similarly, multiple
packets may arrive simultaneously to a single
vertex as long as they come in across distinct
edges. A routing algorithm is off-line if it
sees all the source-destination pairs of pack-
ets in deciding their moves. It is on-line, if
it is executed in a distributed manner so that
each vertex decides its action based solely on
the packets it has received so far and on its
own previous behavior. A permutation rout-
ing problem is a routing problem in which ev-
ery vertex is a source of at most one packet
and a destination of at most one packet. Per-
mutation routing has been a favorite subject
of theoretical study (see [3] for an extensive
discussion).

In this note, we are concerned with permu-
tation routing on the hypercube network. The
n—dimensional hypercube Q,is a digraph with
2" vertices where each vertex is identified with
an n-bit string and there is an edge from u to
v if and only if the bit strings u and v differ at
exactly one bit position. A classical result of
Benes [1] provides an off-line algorithm that
routes any permutation on the n~dimensional
hypercube in 2n — 1 steps. The randomized
routing scheme of Valiant and Brebner [5]
provides an on-line algorithm that routes any
permutation in O(n) steps with high proba-
bility. These algorithms are optimal (up to a
constant factor) as long as general permuta-

tions are concerned. The question we address
here is whether we can reduce the number of
steps if the given permutation is known to
have short source-destination distance. More
precisely, an instance of the permutation rout-
ing problem on Q, is said to be distance-d if
the distance on @, from the source of each
packet to its destination is at most d. Can
we route every distance-d permutation in o(n)
steps (or, better, in O(d) or even exactly d
steps) when d is small?

Naturally starting from the simplest case
d = 2, we immediately observe that a
straightforward on-line algorithm routes any
distance-2 partial .permutation in 2 steps.
This is because, for an arbitrary permutation
problem not necessarily distance-2, each edge
e has at most one packet that may use e in
the first step and at most one packet that
may use e in the last step. The next tar-
get d = 3 appears to be much more difficult.
Neither the existence nor the absence of an
off-line algorithm is known that achieves a 3-
step routing for an arbitrary distance-3 per-
mutation. We give a partial answer to this
question: as long as n < 24, any distance-3
permutation on @, can be off-line routed in
3 steps. If we allow 4 steps, then the result
holds up to n = 84. Theorem 2 in section 2
states these results in a more general unified
form. We also give an on-line algorithm that
routes an arbitrary distance-3 permutation in
O(+/n) steps and an arbitrary distance-4 per-
mutation in O(n®/®) steps.

Before diving into the main sections, we
briefly discuss a type of assignment problems
that will be encountered in both our off-line
and on-line algorithms.

Let P be a setl of packets and E be a set
of edges. To each packet p € P is associated
a subset E, of E, called the candidale edges
for p. For our application, the cardinality of
E, is uniformly s, a small constant. We are
asked to assign each packet p to an edge in E,,
so that each edge is assigned at most A pack-




ets, where ) is some predetermined capacity
of each edge. The following proposition is a
corollary to the Hall’s Marriage Theorem.

Proposition 1 An assignment as above ex-
ists if and only if |Q| < M U,eoq Ep| for every
QCP

With s a constant and |P}, |E| < m, such
an assignment can be obtained in O(Am!®)
time using the bipartite matching algorithm
of Hopcroft and Karp [2]. A variant of the
problem, which we call the minimum capacity
assignment problem, is to minimize A so that
an assignment within capacity A exists. With
a straightforward binary search, this can be
solved in O(Am?2®logm) time. If we are sat-
isfied with an approximate solution (which is
often the case), a greedy algorithm runs in
O(mlogm) time and achieves an assignment
with capacity within s times the optimal [4].

2 Off-line routing
of distance—3 permuta-
tions

Suppose an instance of the distance-3 permu-
tation problem is given. Let P be the set of
packets for which the source-destination dis-
tance is exactly 3. Then, each p € P has
6 distinct paths of length 3 from its source
to destination. Let E, denote the set of the
second edges of these 6 paths.  Our off-line
algorithm first assigns each p € P to an edge
in E, so as to minimize the required capacity
A of the edges. This assignment determines
the path each packet in P takes. Consider-
ing the congestion of at most A on the second
edge, the routing is done in 2+ X steps. Those
packets with source-destination distance less
than 3 are moved only in the first and the last
steps, which causes no conflict.

Theorem 2 Let A be an arbitrary positive in-
teger and suppose n < 18)% + 6). Then the

above off-line algorithm routes any distance-3
permutation on Q, in 2 4 X steps.

Proof: Suppose the permutation is given
and let P and E, for each p € P be defined as
above. If suffices to show that an assignment
with edge capacity A exists. By Proposition 1,
it in turn suffices to show that |Q| < A|Eg| for
every subset Q of P, where Ey is defined to be
Upeq Ep- Suppose to the contrary that there
is a subset Q of P such that |Q] > AlEg]|.
For each e € Ey, let g, denote the number of
p € Q such that e € E,. Since |E,| =6 for
each p, we have Leep, 9. = 6|Q| > 6A|Eg|,
so that the average of g. over all ¢ € Eg must
be strictly greater than 6A. For each vertex
v of the hypercube, let F, denote the set of
edges in Eg that go out of ». Choose a vertex
v such that the average of g. over all e € F,
is strictly greater than 6A. Among the edges
in F,, choose eg such that g,, > 6A. Let I,
be the set of all packets p such that that ey €
E,. For each p; € F, 1 < i < g, there are
exactly two edges in E,, N F,, of which one is
ep and the other we call e;. Then for each pair
1 #37,1<14,5 < g, the edges e; and e; must
be distinct since otherwise the destinations of
p; and p; are identical. Therefore, F,, contains
at least ge, +1 edges and therefore ¥ ¢, e >
6A(ge, + 1) > GA(GX + 2). Since each packet
p with I, N F, # § contributes exactly 2 to
this sum, the number of such packets is at
least 3A(6A + 2) + 1. Since the sources of
these packets are at distance 1 from v, this
is impossible under our assumption that n <
3A(6A +2). o

3 On-line
routing of distance—3
and distance—4 permu-
tations

Our online algorithm for distance-3 permuta-

tions operates in 3 phases. In the first phase
(which consists of a single step), every packet



at distance exactly 3 of its destination is sent
out through arbitrary one of the 3 edges to-
wards the destination. Thus, at the begin-
ning of the second phase, every packet is at
distance at most 2 of its destination. In this
phase, each node v performs the following.
Let P be the set of all packets on v that are at
distance exactly 2 of their destinations. Then,
each packet in P has exactly two candidate
edges that would bring the packet closer to
the destination. We approximately solve the
minimum capacity assignment problem using
the greedy algorithm mentioned earlier (let
A be the capacity obtained). Then we send
the packets in P through the assigned edges
in X steps; other packets on v stay. The third
phase completes the routing in an obvious sin-
gle step.

Theorem 3 The above algorithm routes an
arbitrary distance-8 permutation on Q in

O(y/n) steps.

Proof: We show that the optimal value of
) in the second phase of the algorithm is at
most 1/(n +1)/2 at every vertex. Since we
are using a 2-approximation algorithm for the
assignment, the value of A actually obtained is

then at most \/2(n + 1). Let P be as defined

above. Note first that |P| < n+ 1. There-
fore, by Proposition 1, it suffices to show
IQ] < /|Pl/2|Eq| for every subset Q of P,
where Eg is the set of all edges to which
some packet of @Q is potentially assigned. But,
since each packet in P has a unique pair
of edges to which it can be assigned, |Q] is

at most (|E2‘2|), from which it follows that
V20Ql < |Eql, or |Q] £ /IQI/2IEqg], estab-
a

lishing the result.

The on-line algorithm for distance-4 per-
mutations is similar. In the second phase,
an assignment problem is solved at each ver-
tex for all the packets with distance exactly 3
of their destinations. In the third phase, the

same is done for the packets with distance ex-
actly 2 of their destinations.

Theorem 4 The above algorithm roules an
arbitrary distance-4 permulalion on Q, in
O(n%/%) steps.

Proof: By a similar argument to the above,
each edge is assigned at most O(n?/?) packets
in the second phase. Therefore, at the be-
ginning of the third phase, each node has at
most O(n®?) packets. Again by a similar ar-
gument, each edge is assigned at most O(n®/®)
packets in the third phase. ]
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