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Abstract.

Detecting an object in an image is a central problem in pattern recognition and computer
vision. This paper presents a polynomial-time algorithm for computing an optimal separation
of a connected region from the background in the criterion due to discriminant analysis in two
basic cases. In one case an image is partitioned into two parts by z—monotone curve so that
the interclass variance is maximized. In the other it is scparated by two r—monotone curves.
The latter problem is named admissible partition, and equivalent to separating a connccted
region which is vertical-convex (that is, intersection with each colunn is connected). Proposed
algorithms run in O(n?)-time and O(n2%)-time, respectively, for an image consisting of n
pixels. We also give an cfficient. approximation scheme to obtain an e-approximation solution
in O(e~!nloglognlog(nH)) time, where H is the total sum of brightness levels of au iinage.
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1 Introduction

One of the most important operations that should be performed by a computer vision
system is the separation of objects from the background. This operation is commonly called
"segmentation”. For the scgmentation of intensity images, there are five main approaches
[3]: threshold techniques, edge-based methods, region-based methods, hybrid techniques, and
connectivity-preserving relaxation mcthods.

(A) The threshold techniques [16] are effective only if all pixels in objects have brightness
levels within a certain range which can be distinguished from those of the background. Since all
of the spatial information is neglected, they do not cope with blurring at region boundaries. (1)
The edge-based methods [5] highly depend on edge-detection. A difficulty is in how to connect
disconnected edges to form a closed curve especially in bluired portion. (C) A typical region-
based method [17, 8] cousists of the following steps: Partition an entire image into connected
regions by grouping neighboring pixels having similar brightness levels, and merge two adjacent
regions under some criterion such as homogeneity [15, 4] or weakness of region boundaries. A
strict criterion gencrally leads to creation of many small regions, while a loose one may casily
merge two regions which should be scparated but adjacent by blurred boundaries. (D) There
are also several methods [13, 3] in which the above two criteria are combined. (E) "Snakes:
Active Contour Models” [10] starts with some initial shape of boundary represented by Spline
curves and changes their shape according to some energy function. One of the disadvantages

of the method is that it may fall into a local optimum.

Different from thosc previous oncs, our basic standpoint is to formulate the segmentation
problem as an optimization problem under certain geometric constraints. One important con-
straint on the scgment is the councctivity. Unofortunately, the following problem is NP-hard.

Connected-image segmentation problem: Given a positive integer K < n, find a
connected region of G containing K pixels which maximizes total sumn of brightuness levels.

The NP-hardness can be proven by reducing to the connected covering problem of a planar
graph with maximum degree 4 [6]. Accordingly, it looks difficult to solve optimization problems
on the segientation under the connectivity constraint.

Hence, we strengthen the constraint to be vertical-convex as well as connected, and solve the
associated optimization problems in polynomial time. Hcrég, a region S is called vertical-conver
if the intersection of S with any vertical line is connected. Equivalently, the boundary of S
consists of two z—monotone chains. In short, we call a region admissible if it is vertical-convex
and counnected. We mainly consider the following problem:

Admissible-image segmentation problem: Partition an image into an admissible re-
gion Sy and its complement S| so as to maximize interclass variance V(Sy, Sy) (sce Section 2
for its definition) used in discriminant analysis [7].

We first consider an casicr case where the boundary of Sy consists of a single a-monotone
chain (together with boundary of the grid). We present O(n?)-time and Q(n)-space algorithm
for finding an optimal partition for an image consisting of n pixcls. Then, we extend the
algorithm so that an image is partitioned by two z-monotone chains into an admissible region
and its complement. The proposed algorithm runs in O(n2?) time. We also give an efficient
algorithm to compute an e-approximation solution in O(e~'nloglognlog(nH)) time, where H
is the total s of the brightness levels.



2 Segmentation Problem

Let G be an N x N grid planc. i.ce., G = {(4.7) | ¢ =1,2.....N, j = 1,2,. ... N} and gij
be the brightness level of a lattice point (2, 7) of a given image on G.

Let n denote the number of pixels of G. Throughout the paper, we assume that we are
interested in all pixels in the grid, thus » = N x N. The image is usually required to be
connected.

We want to find a partition (Sy. S)) of G satisfying certain connectivity constraints so that a
given objective function is maximized. Let p = (3¢ jea gij)/n be the average brightiness level
over the whole image. Let n; and p; (1 = 0,1) be the cardinality of a set S; and the average
brightness level in the sct S;, respectively. Formally, they are defined by ng = |Sol. 1 =
IS1l, o = 7,‘; Z(i,j)e.s"o Gij 1 = ﬁ Z(i.j)esl Giz-

A typical objective function is

V(So.S1) = no(p — po)® + ni (i — p1)

which is called the interclass variance in discriminant analysis 7). The interclass variance is
proportional to the sum of squares of standardized means [12].

The maximization of V(Sy.S)) is known to be equivalent [7} to the minimization of the
mtraclass variance U(Sy, S1) = Z(i,j)eso(gij — )+ Z(,-_j)es](_q,tj — p1)?, which is another
typical objective function used in clustering (c.g.[9]).

3 Optimal separation by a monotone chain

3.1 Rewriting the objective function

The objective function V(Sy. S| ) can be rewritten as ngny (pro— )% /n (we omit the details).
Thus, our problem can be written as

maximize D(Sy, S1) = iy — p1] = Vo [(1+ 1y /ng) Yijyese i — Hj,

where H = E(!J)EG Gij-
Let P(k) denote the subproblem that is to maximize t.hc above objcctive function under the
“ constraint that ng is fixed to k. The algoritlnn solves suproblems P(k) forall k=1.2,....n.
Among those solutions, an optimal solution to the original problem is included. We ignore the
connectivity of Sp and S; for a while, and show an algorithm for solving P(k).
Foreachj =1,2,.... N, define f;(x;) = Ef;l gij» xj=0,1,..., N. The sun is understood
to be 0 if z; = 0. Letting t = ny /ng. P(k) can be formulated as follows:

N N
P(k) : maximize 1/1/t (14 1) Z — H| subject to Z zj=k.

j=t
In this formulation, x; is a decision variable associated with the jth colunn implying that in
the jth column in the grid plane G, lattice points (1,7).(2,7),....(x;.j) belong to Sy, while
(z; +1,7), (x; +2,7),....(N.j) belong to Sj.

It is clear that P(k) can be solved by computing optimal solutions of the following two
problems Py (k) and P_(k), and taking the onc with the larger objective value.



Py (k) : maximize /1/t((1+ 1) Zj-\;l fi(z;) — H) subject to ZJ\’=1 zj=k.

P_(k) : maximize /1/t(H — (1 + 1) 25\,:1 fi(x;)) subject to ZJN:l xj =k

We shall concentrate on how to solve Py(k). Since t, k, and H are constants, the objective
function of Py(k) is a function on kuy = ZJN=  Jilzj), and monotonically increasing with
respect to it. Thus, P, (k) is cquivalent to the following key problem:

Key problem. maximize Zj’y:, filz;) subject to Ef;[ xj=k.

3.2 Dynamic programming algorithm

To solve the key problem, we define its restricted case where the image Sy intersects only
the first = columus of G.

F(k,m) = max| TJL, fi(z)| Sty a5 = k ).

F(k, N} together with the associated values of z; for j = 1,2, ..N gives the solution of the key
“problem. It is easy to sce the following inductive formula:

F(l\!, m) = max,  —o,..N [fm(a:m) + F(]' = Ty, N — 1)]

This formula leads to a dynamic-programming-based algorithm for computing F(k, N). Since
m <N, x, < N,and k < n, the complexity of the dynamic programming is O(N2n) = O(n?).

In the algoritlun shown above, we ignored commectivity of image segment Sy. However, it
is not difficult to fix the algoritlun so that it outputs a connected scgmentation.

Theorem 1 Given an image with n pizels, an z—monotone path to give an optimal partition
can be computed in O(n?) time and O(n) space. Moreover. it can be computed in ()(log2 n)
time using O(n?/log? n) processors on an EREW PRAM.

4 Segmentation by two monotone chains

If two'monotone chains cuts a counccted region Sy, the partition induced by such mounotone
chains is called an admissible partition. The image segment becomes an admissible image.

We design an algorithu so that it can find an optimal adinissible partition with respect to
the interclass variance. S is the image-segment, and S, =G - Sy is the background.

For each j = 1,2,..., N, and for each interval I C [O,N], we define f;(I) = ¥;c; gij. We
allow an interval to be empty. |I{ is the nunber of integers in the interval.

Letting t = ny/ng, we consider the problem under the cardinality condition, for which we
use the same notation Py (k) as that for the problem in the previous section, since it will not
cause any confusion.

Py(k) : maximize /T/E{(1 + t)Zf;l fild;)— H}
subject to (i) f’:, ;| =k, aud (ii) 1 < 3a < 3b < N such that Ii=0ifj<aorj>b, and
LNl #0ifa<j<b-1.

In this formulation, if I; =[x}, y;]. x; and y; are decision variables associated with the jth
column implying that lattice points (2, 5), (zj+1,7),---,{(yj,j) belong to Sy, while the other
points in the column belong to 8. It is clear from (ii) that a solution of Py (k) is an admissible
partition.

Similarly, we define P_(k). We shall now concentrate onrselves on how to solve Py(k).



4.1 Naive implementation

To solve the problem using dynamic programming, we define F[k, I,m] to be the maximum
weight of Sy over all admissible partitions of the columns 1 through m under the constraint
that the m-th column of Sy is an interval I (I can be an empty sct). We also define F(k,t,m)
to be the maximum weight of Sy over all admissible partitions of the colunns 1 through m
under the constraint that the pixel (£,9m) must be included in the sct Sy. For convenience's
sake, we introduce F(k,0,m) to be the maximum weight of Sy over all adinissible partitions of
the columm 1 through m containing no pixel in the mth colummn.

Since maxg, |s,|=k 2(ijjes, %ii = MaAX¢=0,1,..,N F(k,t, N), it suffices to compute F(k,t, N)
for all k and t.

F(0,t,m) = F[0,I,m] = 0. For k > 0, F(k,t,m) and F[k, I,m] can be computed as follows:

F(k,t,m) = leéztle[k:.I,1)L]. (1)

Here, we adopt a convention that 0 € @,

Flk,I,m] = fi(I)+ x?aIxF(l\: I lm=1)if I#0 (2)
€
Flk,0,m]= max F(k,l.m—1).
1=0,1,..,N

These recursions lead to a dynamic programning algorithin.

There are O(N?2) possible choice of I and O(N) possible choice of I to compute F(k,t,m).
The number of combinations of k. t. and m becomes O(N*). Hence, a naive implementation of
such dynamic programming procedure runs in O(N7) = O(n3) time.

4.2 Efficient implementation

Let us cfficiently compute F[k.I,m] by using formula (2). We define w(k, I, m) = maxie; F(k.1,m—
1). Then, (2) is written as F[k, I.mn] = f,,(I) + w(k — |I|, I,m). Thus, it suffices to compute
w(q, I, m) for all I, ¢ and m.

We have the following formula: w(q, [¢, 7 + 1], m) = max{w(q.[¢,j],m), F(q,7 + 1,m — 1)}

We classify the intervals by their starting indices. The ¢—th group is {[¢, ], [#,i+1])....,[¢, N]}.
Among each group, we compute w(q, I,m) by using the formula (3). which can be processed
in O(N) time for fixed ¢ and m. Thus, the total time complexity for computing (2) for all &,
I and m is O(N®) = O(n3").

Next, we consider efficient computation of the formula (1) for fixed & and m. For each
interval I, we counsider a horizontal segment in the plane whose y-coordinate is Flk,I,m)]
and projection on the x-axis is I. Then, the computation of formula (1) is equivalent to a
visibility problem: “For each of x-coordinate values {1,2,..N}, report the highest scgment
whose projection contains the value,” and can solved in O(N?) time.

Hence, formula (1) can be computed in O(N®) = O(n25) time for all k and m.

Theorem 2 Given an image in a grid with n pizels. the optimal admissible partition can be
computed in Q(n%") time and O(n'>) space.



5 A Fast Approximation Algorithm

In this section, we give a [ast approximation scheme to compute a solution Sy such that
D(S0,51) 2 (1 = €)Dopr in O(e~'nloglognlog(nt)) time, where D(Sy,$)) = VV (5. 87) as
defined in Section 2. Here, 1),, is the optimal value of D, and If = 2 2(i,j)eG Ginj-

We formulate the segientalion problem as a paramelric optimization problem, and de-
vise the approximation algorithm by using it. Let us consider the cost function Up(Sq) =
N3 (i j)eSo irj — B15u] for a parameter 6.

Problem Q(#): Compute the admissible image Sy which maximizes Ug(.Sy).

A prool of the [ollowing theorem can be found in [2].
Theorem 3 Q(8) can be solved in O(nloglogn) time.

We consider relation between Uy and D(Sy, S)) as target functions.
Lemma 1 Let Sy be the sel marimizing D(Sy, S1). Then, Sy maximizes Uy for a 6.

Proof: Maximizing D(Sy, 51) is equivalent to maximizing +/[Sa[[S1](jt0 — s1). Let us cousider
the function Fy(k) = maxs,|=k Um+a(So) for £ =0,1,..,n. It is easy to veryly that Uy (Sy) =
VISol(ln =TSel) D(Su, 1)

Suppose the maximum value D,y of D(Sp,S)) is taken on S§ such that |Si| = v, and
consider (x,y)—plane in which all points (z, Fo(x)),= = 1,2,...,n — | are plotted. Then, the
curve y = Dyy(a(n — x))'/% 1ouches (x, Fy(x)) at * = v becanse it is clear that Iy(v) =
VISslin = S§ID(S5.G — S3). and all the other points (z, Fy(x)) lie helow (or on) the curve
y = d(z(n — 2))"/? from the maximality of D

Since the second derivative of Doy /x(n — ) is negative if 0 < & < n, the curve y =
Doptr/2(n — ) is concave in a. Hence, all points (2, Fy(x)) lie below (or on) the tangent line
{ of this curve at (v, Fy(v)). Let 8* be the slope of I. Then, Fy(k) is maximized at k = », and
the set maximizing Ujr4o- is Sj. a

From Lemma 1, maximizing I)(Sy,.S1) reduces to solving the parametric problem Q(#)
for all possible values of §. Iowever, there are too many possible values of 8, and hence we
shall propose an efficient algorithm to obtain an e-a.pprméimat.ion solution. Its running time
is O(¢"'nloglognlog(nll)). Namely, the proposed algorithm solves Q(8) for O(e~"log(nil))
distinct values, and chooses the best one. The idea of the algorithm is similar to the one given
in [11]. This algorithm is much faster than previous one when 2 is large, and is useful for
practical purposes. The algorithm is based on the following lemma.

Lemma 2 Let 8* denote the oplimal parameler value with which an optimal solulion Sy of
Q(H + 6*) mazimizes D(Sy,5,). If #* # 0, then an optimal solution of Q(H + (1 + €)6*)
produces an e—approximale solulion of our segmentation problem.

Proof. Let v = |S¢| and Doyt be those defined in the proof of the previous lemma. As shown
in the proof of the previous lemma, Fy(v) = Dypi/v(n — v). The derivative 8* of the curve



y = Dop/r(n—x)at x=wis \/-u((ll—%'i The tangent line of the curve y = Dypy/a(n — 1)
!

at (v, Fy(v)) is given by

I),,,,,(n - 21/) -
Y= + Dopryfv(n —wv).
v= 2/ v(n—v) -V ot/ V1 /)

As shown in the proof of Lemnma 5, S maximizes Ug 1g-. Now let us consider the subset S§ that
maximizes Uy y(14¢)9-- Then we claim that (5§, G — S5)) is an e—approximate solution of our
segmentation problem considered in previous sections. In order to prove this, let us consider
a line in (x,y)-plane whose slope is (1 + €)8*. Among all points (v, Fo(x)) 2 = 1,2,...,n— 1,
consider the one that maximizes —(! + €)8*z + Fy(x) (i.e., the one corresponding to an optimal
solution of Q(H —(1+¢€)8*)). Let it be (v, Fo(v')). We shall show that 1)’ = Fy(v')/\/v'(n — V)
is at least (1 — €) Doy (Which proves our claim). From the maximality of (¢, Fy(¢")), the point
(v, Fo(v)) is below the line y = %’{)ﬁ(m — ')+ Fy('). Hence, the point (¢, Fy(v')) is
above (or on) the line

|+:)D 4(11—21')(7_,_ v) + Dq,“/y(n,«- V).

v{n—v)

Since (', Fy(¢')) is on the curve 4 : y = D'\/x(n — z), the concave curve v intersects the line
[. Thus, the minimumn 7., of the values y/Dopr/2(n — x) on the line [ gives a lower bound
on D'/Dgy. We shall show that r,,;, is at least 1 —e.

. 1 (1 +¢e)(n - 21/) .
Tinin = mm{\/m(n _ﬂ‘_)( =) (x=v)+Ju(n—-v))|0<z<n}. (3)

The term to be minimized in (3) is rewritten into

(a\/;r/(n.—:r)+b\/(n—:t)/;r')/(Q\/u(n—l/)). (4)

Here, @ = (n — v){(n + e(n — 21))/n,b = v(n — e(n — 20))/n.

Letting t = /z/{n — x), the minimum of (4) is attained at ! = Vb/a. Thus, the minimum
value r,,;, of (3) is \/1_13/\/1/(11 —v)=/nT—e(n—-2v)%/n > V1 —¢€? > | —e. This proves
the lemma. _ a

From the assumption of the imtegrality of g;;, |6*| satisfies 1/2 < |6*| < nll/2, unless
6* # 0. Let us define the sequence {6, —6;} of parameters § by 8 = (1 +¢)'"}/2 for 0 < [ <
K = |log(nH)/log(1 + €)].

Then, the approximate algorithm solves parametric problem P(8) for all values of the above
defined sequence and chooses the one that maximizes D(Sy, S;). It is clear from Lemma 2 that
such a solution is an e—approximation of our problem. The number of parameters generated as
above is O(log(n )/ log(1 + ¢)). The running is O(e~!n log log n log(nH)), since log(l +¢€) =€
for a small e.

6 Discussions

In this paper we have discussed the problem of detecting an object region with x—monotone
boundary in an intensity image. We presented polynomial-time algorithms for detecting an



optimal region in the sense of the discriminant analysis. To the authors’ knowledge, this is the

first computational-geometric altempt to the region segmentation problem.

An issue to be pointed out is that the monotonicity ol object boundaries is a constraint

far from practical applications. However, if we imagine a small floating window over an image

in which optimal monotone boundaries are computed, we may obtain a new image-[iltering

or edge-detection scheme with conflidence weighted by inter-cluster distance. We ave now

implementing experiments in this direction and the results will be presented at the symposium.
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