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A New Lower Bound and Linear Time Approximation Algorithm for
Maximum Matching of General Edge-Weighted Graph
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For a general edge-weighted graph with n vertices, it is shown that the lower bound of the
maximum matching is (':"(_El)) if 7 is even and 3(—%_:';—(———]") if n is odd where w(E) and w(l,)
denote the total edge weight sum and minimum of the total weights of the incidence edges.
It is proved in two ways; onc is to usc the property 4CYCLE and the other by a lincar time
construction. 4CYCLE is the property that any transformation along the cycle of length 4
does not increase the weight of the matching. The matching constructed by the latter way
does not necessarily satisfy 4CYCLE.
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1 Introduction

Let G = (V, E) be an edge-weighted graph without loops and multiple edges. Let [V]| = n. For subsct
E, C E, w(E,) denotes the sum of weights of edges of E,, and V(E,) the set of end vertices of the edges
of E,. For subsct V, C V, w(V,) dcnotes the sum of weights of edges whose both end vertices are in V
{edges of the induced subgraph defined by V,). For two disjoint vertex subsets V1,V C V, w(Wy; V3) is
the sum of weights of all edges cach connecting a vertex of Vi and that of Va. Let I, denotes the set of
edges incident to a vertex v. A matching M is a subset of E such that no two edges of M are incident to
a common vertex. A maximum matching is a matching the sum of whose cdge weights is maximum of
all matchings. Since we are concerned with maximum matchings, we assume without loss of generality
that the weight of any cdge is nou-negative.

Even the simplest case, the cardinality matching in a bipartite graph, requires O(n‘r’/ 2) time for its
cxact solution [5]. In applications, somectimes we need only approximated solutions or simply the lower
bound. However, these algorithius for exact solutions are too slow for the purpose. It is strongly hoped
to develop practically uscful algorithms, actually linear time algorithms, in trade-off to accuracy but with
guaranteed approximation.

So far the best known lower bound for maximum matchings is | E|/n for unweighted case[?7?]. Its proof
is purcly combinatorial and scems no gencralization is possible for the weighted case.

As for the lower bound, we prove a result for general weighted case. It includes as a special case
a strict improvement to the existing result for the unweighted case. The proof is made in two ways
analytically and constructively. The property called 4CYCLE plays a key role which is a claim that an
alternating cycle of length 4 does not incrcase the weight by the change. As for the fast algorithm, a

lincar time algorithin which provides a solution within the above mentioned lower bound is presented.

2 Theorems on Lower Bounds and Algorithms

2.1 Better Lower Bounds

Theorem 1: Let M,,4; be a maximum matclling of G(V, E), then

if |[V]iseven @ w(Myez) > T:,—UIL%
if [V]isodd : w(Mez) > -%lla—‘)/l_w—;h) YveV.

a

In the case of niodd, the vertex v should be taken the one whose w(l,) is minimum to provide the
lower bound tightest.

This theorem is exclusively described by the number of vertices and total weight of cdges. However,
if the graph is special or some additional information is available, we may have a tighter lower bound.

One example is the following claim.

Corollary 1: Let G(V, E) be a bipartite with partition V = Vi U V. Then

- w(E)

fnis en . w(M, > —_

if n is even w(Mipaz) > max([Val, [VaD

P w(E) - w(l,)

fnisodd : w(Mpez)> ————rr YoeV.
) max(|Vz|, |Vr|)



2.2 Linear Time Algorithms

Theorem 2 : There cxists an O(|V]?) time algorithin to obtain a matching satisfying the claim in
Theorem 1. ]

Theorem 3 : If the graph is unweighted, there cxists an O(|V] + |E|) time algorithm to obtain a
matching M satisfying

o 1l |&]
5 CVe . >
if |V| is even M| > V-1
VL |E| - 1|
s : > Vi g
if [V]is odd |M| > V=2 v EV.

3 Analytical Proof

For simplicity of our discussion, we assume that G(V, E) is a complete graph by adding zero-weighted
cdges if necessary. Furthermore, a maximum matching is assumed to consist of n/2 edges. A pair of two
cdges ¢, and e}, of a matching M belongs to two cycles (alternating cycles) cach of length 4. Let one of
them be e,,,¢l,,, €q, €, such that ¢,, ¢}, ¢ M. If it holds

4CYCLE w.r.t. a matching edge pair (¢, ¢}, )
w(evn) + ’w(c:n) 2 w(_c,.) + 'w(c:n)v

the transformed matching (M — {e., €, })U{cn, €, } is not heavier than M. If M is a maximum matching,
4CYCLE is satisficd with respect to any pair of matching cdges.

3.1 Proof of Theorem 1
The theorem is proved for the case of n being even. The case of 7 being odd is proved as its corollary.

Case : n is even Notice that G(V, E) is complete and that My, consists of n/2 cdges. For cach
pair of edges in M,,,z, there are two alternating cycles. Since 4CYCLE is satisfied for every pair
of matching cdges, we have two incqualities for cach pair of edges of M,,.4z. If we list all of these
2 x ;.Cz inequalitics, every edge of My,u4z belongs to 2(n/2 — 1) inequalitics while every edge not
in M,,.qz appears cxactly once. Therefore,

2('”'/2 - l)w(Mmuz) 2> "”(E - Mvuaz)-

("’ - Z)W(Mmaz) 2 w(E) - W(Mma::)-

Thus (E
w
W( Mpnaz) 2 .

n—1

~

Case: nisodd Forv € V, let G' be the graph obtained from G by deleting v. The edge set is

E'= E~1I,. Let M), be a maximum matching in G'. Since the number of vertices of G is even,

W(Myaz) > w(M, ) > w(E') - w(E) — w(ly)
maz ;) . mazr/ — n— 2 n— 2 .




3.2 Proof of Corollary 1

The corollary is not a special case of Theorem 1 but its proof follows a similar logic.
Assume that ng, = |V | < np = |Vg|.

Case : n is even Since the graph is assumed to be complete, there exists a maximum matching M4
such that it consists of ny, edges cach connecting a vertex of Vy, and that of Vg and (ngp —nz)/2
edges connccting the vertices of Vg, the latter consists only of zero-weighted edges. The former
cdge set is denoted by Mpp and the latter by Mpr.

Since V = V(Mrr) U V(MRgg) is a partition,

w(V(MLr)) + w(V(Mrr)) + w(V(Mir); V(Mnrr)) = w(E) (1)

Of two altcrnating cycles defined by cach pair of matching edges in Mg, one is a cycle exclusively
cousisted of the edges connecting the vertices in Vg, and those in Vi, (The other cycle is one
containing two zcro-weighted cdges which produce a trivial inequality by 4CYCLE.) Summing up
all incqualitics obtained by applying 4CYCLE to such cycles, we have

(np - Vw(Mpr) > w(V(MLr)) — w(MLr) (2)

Morcover, applying 4CYCLE to all alternating cycles defined by one edge in Mpr and one in Mpp,
we have 2 x (ng x M;—"‘-) inequalitics. Their sum lcads to

np—mn
2 (225 L w(Mur) + new(Mar)) 2 w(V(Myn)V(Mrr) @)
Taking the sum of (1),(2), and (3) with w(Mgrr) = w(V(Mgr)) = 0 and w(MLr) = w(Mpmas), We
conclude

an(Mmuz) > w(E)

Case : n is odd The same technique of deleting one vertex as used in the proof of Theorem 1 leads
the claim. ]

4 Constructive Proof by O(|E|) Time Algorithms for General
Case

The algorithm constructs a matching, starting with the cpty set by augmenting the cardinality onc by
one. Let the current matching be M = {e1, ez, -+, ¢m}, ex = (t&,br). For this current matching M, the
temporary condition is defined as:

CurCondition(M): For a matching M,

w(V(M))

v 2 W= 1

A vertex not in V(M) is called the outside vertex and an edge whose end vertices are both outside is
called the outside cdge. Since graph G(V, E) is assumed to be complete, any pair of vertices is considered

to represent an edge.
Let (e, 3) be any outside cdge, Define the swap-gain 6(cy) and 6’(cx) of ex € M to (e, 3):

o(ex)
o'(er)

Il

w(ty, a) + w(b, B) — wler) — w(a, p)
'w(tkvﬂ) + w(bkv (l) - 'w(ck) - w(“*/})

It



Though the notation is symmetric, we call the former and the latter parallel gain and cross gain respec-
tively.

Find a maximum in {8{e1),8'(e1), -, 6(cm ), 8'(€m)}. Without loss of generality, we assume that it is
a parallel gain 6(c,.) = w(t,, @) + w(by, B) — w(e,) — w(a,B).

If 6(e,) €0, (@, B) is called SwapNonPositive We describe only the case when n is even since the

casc when n is odd is obtained as a corollary.
ALGORITHM for a weighted graph with {V|: even

(Initialization): M = 0.
{Loop): Continuc until V(M) =V for arbitrary outside edge (e, B);

If condition SwapNonPositive is satisfied, let

M < MU {(a,B)}
Otherwise, i.c. §(c,.) > 0, lct
M < MU {{tr, @), (b, 8)} — {er}

Lemma 1 : If CurCondition(M) is satisficd and (a, B) satisfics SwapNonPositive, the augmented

matching M' = M U {(«, 8} satisfies CurCondition(M').
Proof : From the assumption of CurCondition(M), we have

w(V{(M)) < (2m — 1w(M). (4)

Since every swap-gain to («, ) is non-positive,

m

Z 8ler) +6'(ex) < 0.
k=1
Then, the above is equivalent to
w(V(M); {a, B}) - 2w(M) — 2mw(a, ) < 0. (5)

The sum of (4) and (5) is
w(V(M))+ w(V(M);{a,B}) < (2m + l)w(M) + 2mnw(a, B).
or
w(V(M)U{a,B}) < (2m+ 1)w(M U (a,B)).
This is CurCondition(M"). ’ a]

Lemma 2 : If the current matching M satisfies CurCondition(M) but the outside edge (a, 8) docs not
satisfy SwapNonPositive, the augmented matching

M =Mu {(tn (l)v (b,., ﬂ)} - {cr}
satisfies CurCondition(M’).
Proof : Since 6(e,.} is maximum,

m

Zb'(ck) + 8'(er) < 2mné(e,.)
k=1



or
w(V(M);{a, B}) — 2w(M) — 2mw(e, 3) < 2mé(c,.). (6)

The sum of (4) and (6) Icads to
w(V(M)) +w(V(M);{a,5}) < (2m + 1)w(M) + 2mw(a, 3) + 21né(e,)
or

w(V(M)) +w(V(M);{o, 8}) +w(e, B) < (2m+ 1)(w(M) +w(a,B)+ 6(e,)) ~ 8(c,)

By assumption of SwapNonPositive not being to hold,
8(er) = wltr, @) + w(by, ) — wler) — wia, f) > 0.
This is CurCondition(M’).
w(V(M) U{a,B}) < (2m+ Dw(M U {(tr, ), (b )} = {er})

n]

The initial inatching trivially satisfics CurCondition(#). Then by induction, CurCondition(M) is met
when |M| = n/2, which is the theorem itself. (End of proof for Theorem 1)

Example: A counstructing cxample will be shown.
G(V, E) is given where

V:1,2,---,8, and

Edges and weights: w(1,2) = 3,w(1,3) = 4,w(2,4) = 1,w(3,5) = 4,w(3,4) = 3,w(4,6) =
1,w(5,6) = 3, w(5,7) = 20,w(6,8) = 30,w(7,8) = 40,w(4,7) = 40. Other cdges are all
weight 0.

Suppose it has been M = {(1,2),(3,4),(5,6)} in order all by simple addition and now let (a, ) =
(7,8). Since the swap gain of (5,6) is positive, we have M = {(1,2),(3,4),(5,7),(6,8)} with W(M) = 56
and cnds. M satisfies the CurCondition(?) definitely as 56 > ':T(—gi)' = 123,3 ~ 21.3.

We observe that 4CYCLE is not satisficd in a length 4 cycle consisting of (3,4),(5,7) € M and
(3,5),(4,7) ¢ M. If we were to apply augmentation, we could have M’ = {(1,2),(3,5), (4, 7), (6,8)} with
w(M') =17

4.1 Proof of Theorem 2

The algorithm counstructed in the proof of Theorem 1 runs in O(E) time. To sce if SwapNonPositive
holds for cach pair (a, f) is to find a maximum of 2mn swap-gains and it takes O(sn). Either the maximum
gain being positive or not, cach time |V(M)| ingreases by two. Hence the total complexity is O{nin) =
O(n?) = O(|E}).



5 Constructive Proof by an O(|V| + |E|) Time Algorithm for
Unweighted Case

The lack of edges is an essential information to be used for reducing the time complexity. To represent

this information, we introduce a property for a matching edge ¢,, = (¢,0) in M:

3LOCM(e,n) For any two distinct outside vertices @ and 3, there is no path between « and 3 of length
three containing e,y,.
In the following, an algorithm which constructs a matching starting with the cmpty set by augmenting

onc edge after another is sketched. Let M denote the current matching on the way.
ALGORITHM for unweighted graph with |[V|: even
Step (simple addition): For cach cdge ¢ € B, if ¢ is an outside cdge, add it to M.

Step (augmentations): For cach matching edge ¢ € M, if 3LOCM(e) is not satisficd, say there exist
outside vertices e and f such that (¢, @), (b, 8) € E, augment M to

M < MU{{a) @8} -{(tb}
End of the algorithm

Lemma 3 : The resultant matching M satisfies

|E]
vi-1

|M| >

Proof : First we prove that any matching edge e € M satisfics 3SLOCM(e). Notce that no outside vertex
is created by any steps. Let M’ be the new matching created from M by an augmentation inside Step
(augmentations). There are two new members ¢’s. Each satisfics 3LOCM(e) in M’ because there
have been no outside edges with respect to M. Once a matching edge e is verified to satisfy SLOCM(e),
this property is kept in succeeding transformations in Step (augmentations). Thus in the resultant
matching M, cvery edge ¢ in M satisfies SLOCM(e).

Let m = [M].

1. There is no cdge between the outside vertices.

2. Make all n — 2in outside vertices into "‘22"‘ pairs arbitrarily. The number of edges between one

of such pairs and onc of matching edges is at most 2, since otherwise, those outside vertices had
been augmented. Therefore, the total number of cdges between V(M) and the outside vertices is
at most Z%ﬁﬂ = m(n - 2m).

3. The possible maximal subgraph induced by V(M) is a complete graph. Thercfore, the number of
the edges in it is at most w =m(2m — 1).
4. Thus, |E| < m(n — 2m) +n(2m — 1) = m(n - 1).

5. It suffices to show that m > #?1— This holds with cquality.

Lemma 4 : Thc computational complexity of the algorithmn is O(|V| + | E|).
Proof : Following discussion is valid if the graph data is stored in adjacency list.
After the Step (simple addition), the total computation so far spent is O(JV| + | E|).



In Step (augmentations), the dominant term is the computation to test 3SLOCM(e). For cach
vertex, make a list (outside list) of its adjacent outside vertices. Let a matching edge e = (¢, b). Check if
the first clements in lists of ¢t and b are distinct (distinction test). If yes, the 3SLOCM(e) is not satisfied.
If no, and if onc list contains another clement, 3LOCM(e) is not satisfied.

Investigating other casces, we conclude that 3LOCM(e) is satisfied if and ouly if cither list is empty
or both lists consist of identical onc clement. Anyway, at most onc time distinction test and two times
of next clement scarch are cnough for checking 3LOCM(e) for cach matching cdge e. Therefore, the
complexity liere is O(|M|) for all matching edges.

Constructing the outside lists is possible in O(|V] + |E}). Reuewal of the outside lists is simply
deletion of the outside vertices. Therefore if cach current outside vertex maintains pointers which direct
the address in every outside list, deletion is possible in constant time. Since cach clement in the list is
deleted at most once, the total computation time is O(|E|).

=]

6 Conclusion

A local property of matching called 4CYCLE is abstracted and proved that a matching constructed so
as to satisfy this condition scquentially is guarantced in its approximation. Since 4CYCLE is a local
condition, an algorithm that runs in lincr time is possible. It is possible to think a property 2kCYCLE as
a generalization. Increasing k, the approximation of the algorithm satisfying 2kCYCLE will be improved.
A challenging subject is to establish the relation among approximation and & and speed of the algorithm.

We conjecture that as long as k is coustant, the fastest algorithm will work in lincar time.
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