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This paper considers the following problemn: given two point sets in d-dimeusions, find a
point set of the maximum cardinality congruent to a subset of each set. This problem is
important for several pattern matching problems. A naive deterministic algorithm works in
O(n®logn) time in two-dimensions. This paper presents a randomized algorithin which works
in O(n*polylog(n)) time. Moreover the time complexitics can be reduced using a known result
in combinatorial geometry. The presented algorithm can be generalized for higher dimensions.
Moreover a random sampling technique used in the algorithm can also be applied to a protein
structure alignment algorithm.

—105—



1 Introduction

Finding a common part of two structures is important in several applications. In particular,
it is important in molecular biology. For DNA sequences and amino acid sequences, such a
problem has been studied as sequence alignment or string alignment. For thrce-dimensional
protein structures, such a problem can be formalized as protein structure alignment. Several
studies have been done for protein structure alignment [1, 8, 9]. However, the proposed
algorithms do not seem sufficient since most of them have no theoretical proofs for the qualities
of obtained aligniments. Although we have developed a protein structure alignment algorithm
which has a theoretical proof, the time complexity is high (O(n®)) [1]. Although the average
case time complexity can be reduced using several techniques [1], it is desirable to develop an
algorithm with better worst-case time complexity. For that purpose, we consider the largest
common point set problem since it is closely related to the protein structure alignment problem.
Moreover this problem seems important in other pattern matching problems.

The largest common point set problem (LCP, in short) is, given two point sets 7 and Q in
d-dimensional Euclidean space R?, to find a point set of the maximum cardinality congruent
to a subset of each set. In this paper, we present a randomized algorithm for LCP in R2. It
works in O(-’;—;—) tiine, where K denotes the size of the largest common point set, and O(f(n))
is a notation meaning O(f(n)) = O(f(n)polylog(n)) . Since a naive algorithm works in Om®)
time, it is a considerable improvement. Moreover, we show that the time complexity can be
reduced using a result in combinatorial geometry.

Here we briefly review previous work. A lot of studies have been done for geometric pat-
tern matching in computational geometry. Although most of them concern with approximate
matching, several studies have been done for exact matching, which is considered in this paper.
Alt et al. showed that the congruence of d-dimensional point sets can be tested in O(n*~2logn)
time [3]. Rezende and Lee showed that whether or not a point set of sizc m matches any subset
of a point set of size n can be tested in Q(mn?) time [7]. LCP for more than two point sets was
discussed in [2]. Heffernan developed an approximate matching algorithm, which can also be
applied to LCP [6]. However, the previous algorithms are not better than the naive algorithm
if they are applied to LCP.

2 A Naive Algorithm

Let P = {py, ", P} and @ = {q;,"**, ¢, } be point sets in RY. We assume m < n without
loss of generality, from which m = O(n) follows. A point set C is called a common point set
between P and Q if there exist subsets P’ C P and Q' C @ each of which is congruent to
C. LCP(P,Q) denotes one of the largest commmon point sets between P and Q. Although we
focus on the two-dimensional case (d = 2) in this paper, the discussion can be generalized for
higher dimensional cases.

LCP can be solved in polynomial time by the following naive algorithm [2]. Counsider all
combinations of (p; ,p;,) and (q;,,q;,). If [p; P;,| = |q;,q;,|, this combination determines
uniquely an isometric transformation T such that T'(p,,) = q;, and T(p;,) = q;, except a
mirror image. Note that, in this paper, we ignore mirror images without loss of generality.

We then count the points matched. Taking the maximum over all combinations, we can find
LCP(P,Q). This approach yields an O(m? x n? x nlogn) = O(n’logn) time algorithm.
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3 A Randomized Algorithm

3.1 A Simple Algorithm

In this section, we apply a randomn sampling technique and obtain a faster randomized al-
gorithm. To develop such an algorithm, we do not consider the optimization problem, but
consider the following decision problem (LCPD): given a positive integer K and two point
sets P and Q, output a common point set C such that |C| > K if such C cxists, otherwise
output 'No’. Once we obtain a randomized algorithm for LCPD, we can obtain a randomized
algorithm for LCP by means of the following proposition, where randomized algorithms con-
sidered in this paper arc ones with onc-sided errvor (i.c., they always output 'No’ if there is no
solution).

Proposition 1: If there is an O(f(n)) time randomized algorithm for LCPD with success
probability at least p, we can obtain an O(f(n)) time randomized algorithm which outputs
LCP(P,Q) with probability at lcast g, where 0 < p < 1 and 0 < ¢ < 1 arc any fixed constants.
Proof: First note that the success probability for LCPD can be increased to 1 — (1 —p)?loslog»
by repeating the algorithm [bloglogn] times. Then we apply binary scarch to solve LCP.
Choosing an appropriate constant b, the success probability becomes (1—(1 —p)“"g lognylogn > o
for sufficiently large n. O

Next, we describe propositions useful for developing a randomized algorithm for LCPD.

Proposition 2: Let S be a set with n elements, and S’ be a subset of § with K elements.
If U is a multi-set with [7+1n -l—i—a] elements randomly drawn from S, [U N S’| > 1 holds with
probability at least q.

Proof: If |U| = ¢, the probability that U contains no element in S is (1 — {—;)’ To satisfy
1—-(1- {1—‘)' > q, it is sufficient that ¢t > —;:— In 1_—1—6 holds since
K K 1K 1 K
Inl—¢q) > In(1 - =) = —t(—4+=(=)2+=(=13+--). O
n n o 2'n 3'n

Proposition 3: Let S be a set with n elements and S’ be a subset of S with K clements. If
U is a multi-set with 2[ & In Ti—q] elements randomly drawn from S, |U N S’ > 2 holds with
probability at least (1 — %)q'z.

From these propositions, we need not test all combinations of two elements from cach
point set. If we test all combinations between all pairs from U C P and all pairs from @
where |U| = O($}), we can find a common subset with K elements with high probability if

|[LCP(P,Q)| > K. This yields an O(—K—;—) time randomized algorithin.

3.2 An Improved Algorithm

When K is large, the above randomized algorithm is a considerable improvement of the naive
algorithm. But, when K is small, it still requires 0.(17,'5) time. To develop an o(n®) time
algorithm, we make some improvement.

Let Tzy denote an isometric transformation such that Tpy () = 0 and 0Ty (y) is parallel
to z-axis, where o denotes the zero vector. Then, procedure LCPD(P,Q, K) describes the
randomized algorithm for LCPD, where the followings are associated with cach By (sce Fig.
1). dist(By) denotes the distance between the points of cach pair in By. set(B),) denotes a
set of points {thqh(q]') | g; € Q, (g,,,9;,) € Bx}. For cach q € set(By), list(q) denotes
a subset {(q;,,q;,) | (3¢’ € Q)(Tq“ q”(q') = q)} of Bi. Bi[1.|B|] is an array of integer,
where each index is associated with an element (a pair of points) in Bjy.
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Procedure LCPD(P,Q, K)

Randomly choose a multi-set U C P such that [U| = O(52);
Let B be the sct of all pairs of distinct points in Q;
Partition B into By, - -, By, so that cach set consists of the pairs of the same distance;

for all pairs (p,,,p;,) of distinct points in U do
Find By, such that dist(By) = |p;, Py, 1 ;
Initialize each element of an array Byi[1..|Bi|] to 0;
for all p € TP.,P.'Z(P) do
if there is g € set(DBy) having the same coordinates as p then
for all s € list(q) do Increment By[s];
if By[s] 2 K for some s then
Output a common point set with K elements; halt;
Output 'No’;

Theorem: Procedure LCPD(P, (), K) solves LCPD in 0.(77'\‘—) time with high probability.
Proof: First, note that the total size of set(By)’s is O(n?) and they can be computed and
preprocessed in O(n?®) time.

For each element s € By, Byi[s] is incremented no more than K times. Otherwise, a
common point set would be output and the procedure would halt. Since |By| is at most O(n?)
for each By, the number of increments does not exceed Kn? for each pair (p;,p;,). Since

O((’—"v)g) pairs are tested, the total computation time is O(n® + (%)21{712) =0 -'1'—:,-). O

From Proposition 1 and the fact that " decreases if K increases, we can see that LCP
can also be solved in O(* ) time with high p1oba.b1hty

Corollary: LCP can be solved in O(" ) time with high probability.

The time complexity can be reduced combining with the results in combinatorial geometry.
For exa.mple it is known that the number of unit distances determined by n points in the plane
is O(n3) [4]. Using this, we can prove that the time complexity of LCPD(P, Q, K) is bounded
by O(n® + (2 )2K713) =00+ "(mm
algorithm can be reduced using a sumlal discussion, it is still O(Kn 3 ). Thus, the randomized
algorithm is still better than the deterministic one. Further improvement would be possible
combining with further results in combinatorial geometry.

2——). Although the time complcxxty of the deterministic

Q set ( Bx)

~Tq,q,(9)

qu q2 (q.?)

Tq,q,(9,)

*—H—=e

——

dist ( By )

Figure 1: Construction of set(By) in procedure LCPD(P,Q, K), where Ty, and Ti,,, are
omitted in this figure.
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4 Concluding Remarks

In this paper, we have presented a randomized algorithm for computing a largest common
point set of two point sets in two-dimensions. The algorithm can be generalized for higher
dimensions. Morcover, the random sampling technique used in the algorithm can be applied
to an approximate alignment algorithm for three-dimensional protein structures [1]. Using the
technique, the time complexity can be reduced from O(n8) to O(7L8/K3), where K denotes
the size of an obtained alignment. Although the quality of an obtained alignment becomes
slightly worse, the randomized algorithmn is inuch more useful since K is usually large. Details
of implementation and the experimental result will be reported elsewhere.
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