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Nonadaptive Fault-Tolerant File Transmission in Rotator Graphs
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A directed graph G = (V,E) is called the n-rotator graph if V = {ajaz---an | ajas---a, is a
permutation of 1,2,---,n} and E = {(ajaz---an,biby---b,) | for some 2 < i < n, bby---b, =
Gg---QiG1Qi41 - An}. We show that for any pair of distinct nodes in the n-rotator graph, we can
construct n — 1 disjoint paths, each length < 27, connecting the two nodes. We propose a nonadaptive
fault-tolerant file transmission algorithm which uses these disjoint paths.

1 Introduction

Graphs can be conveniently used to represent complex networks consisting of processors and communica-
tion links. In the graph models of processor networks, the nodes represent the processors and the edges
represent the communication links. The topology of a processor network plays an important role in the
overall efficiency and reliability of communication in the system. We assume that all the nodes in the
graph are synchronized with a global clock.

The rotator graphs were proposed by Corbett[1] as interconnection network models. The n-rotator
graph is a directed regular graph with N = n! nodes and (n — 1)n! links. Both the indegree and the
outdegree of each node are n—1 = O(log N/loglog V). The rotator graphs are not bounded degree graphs,
but the n-rotator graph has relatively small diameter n — 1 compared with other popular networks, e.g.
hypercubes, butterfly networks and shuffle-exchange networks. Corbett [1] showed the uniqueness of the
shortest path between any two nodes and the existence of a Hamiltonian cycle in the n-rotator graph.

He also showed that the n-rotator graph remains strongly connected even if n — 2 faulty nodes exist {1].



In the case of file transmission, we can send a file along a single path, and retransmit along a different
path in case of failure. Such a transmission scheme is said to be adaptive. In general, an adaptive file
transmission entails a loss in time whenever failures are encountered. A transmission method propose by
Yamakawa et al.[5] for the n-rotator graph is adaptive, and both the time and communication complexities
of the method are O(n?) when the number of faulty links in the network is less than n. An alternative
method is nonadaptive file transmission. That is, we can create multiple copies of the file, and send a
copy along each of disjoint paths connecting the source node and the destination node. This will result
in increase of communication load, but it will be good at transmission time and reliability.

In this paper we propose a nonadaptive fault-tolerant algorithm for file transmission in rotator graphs,
and analyze its time and communication complexities. For any pair of distinct nodes, we can construct
n — 1 disjoint paths, each length < 2n, connecting the two nodes. Our file transmission algorithm uses
these disjoint paths. The size of each message through any link in a single step is assumed to be O(n log n).
When the size of the file is O(n log n), the time and communication complexities of the file transmission
algorithm are O(n) and O(n?), respectively. For the case where the size of the file is larger than O(n log
n), the file is transformed into small pieces and then the Rabin’s Information Dispersal Algorithm (IDA)
is used[3, 4]. The time and communication complexities of the file transmission algorithm for large files
are also analyzed. Furthermore, We estimate the reliability of the file transmission algorithm when failed

links are randomly distributed in the n-rotator graph.

2 Preliminaries

Let aja; ---a, be a permutation of n symbols 1,2,---,n. For an integer 2 € ¢ < n and a permuta-
tion ajay---an, a rotate operation is defined as Ri(ajaz - -an) = azaz-:-@ia1aiy1---an. Note that
R,(ajay---a,) = azaz---ana;. For any integer 2 < ! < n and any permutation v of 1,2,---,n, R{(v)
denotes v, and Rf*!(v) denotes R;(RF(v)) for any integer k > 0. A directed graph G = (V, E) is called the
n-rotator graph if V = {a,a;---a, | ajaz - -a, is a permutation of 1,2,---,n} and E = {(u,v) | u,v €
V and v = R;(u) for some :}. From the definition of the n-rotator graph G = (V,E), |[V| = n! and
|E| = {(n — 1)nl. The 3-rotator graph is shown in Figure 1. The n-rotator graph can be inductively
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Figure 1: The 3-rotator graph.

constructed in the following way. Suppose that the (n — 1)-rotator graph has been constructed. Make n



copies Gy, Gy, --+, G of the (n — 1)-rotator graph. Foreach 1 <¢ < n, append symbol n to the right
end of the label of each node of G;, and exchange 7 and n in the modified label of each node. For each
node ajas - - an, add a directed link (ajaz -« -a,, a2 ana). Then the resultant graph is the n-rotator
graph.

A transmission from aja - - - a, to biby -+ -b, can be executed in the same fashion as a transmission
from f(a;)f(as)--- f(an) to 12---n, where f(by) = k for each k(1 < k < n). Hence, it is sufficient
to consider transmission from each node to the destination 12---n. Consider a transmission from s =
ajas---a, tot =12---n (s # t). Let i be the largest subscript such that a; > ai4+;. Then the subsequence
ajas - - - a;, the subsequence a;41a;49 -+ - @, and a; are called the unsorted prefix, the sorted suffix, and the
boundary symbol of s, respectively. The shortest path from s to ¢ is unique. It is obtained by successively
inserting the first symbol of a current node in a position so that the length of the sorted suffix increases
by one each time. The shortest path from 1643257 to 1234567 in the 7-rotator graph is shown in Figure 2.
The distance from s to t equals to the length of the unsorted prefix of s. This implies that the diameter
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1643257 6431257 4312567 3124567 1234567
-------- unsorted prefix sorted suffix

Figure 2: The shortest path from 1643257 to 1234567.

of the n-rotator graph is n — 1. Corbett[1] proposed an algorithm for transmitting a message froin a node
to a node in the n-rotator graph with no faults. For any pair of nodes, the algorithm uses the shortest
path connecting the two nodes.

A path, s, R, (s), Ri,(Ri, (8)),- - Ri,, (- (Ri,(Ri, (5))) - - ), can be denoted by a pair of the node s
and the sequence 7,is - - - i,,. That is, the sequence 7173 - - - 1, together with s denotes the path specified
above. If s is clear from the context, we may denote the path by i,i;---¢,,. Paths connecting a pair of
nodes are said to be disjoint if they have no common nodes except for the start node and the destination
node. The efficiency of a file transmission algorithm is measured by its time and communication quantities

necessary to complete the transmission.

3 Construction of Disjoint Paths
3.1 Paths from lay---a, to 12---n

In this subsection, we show how to construct n — 1 disjoint paths, each length < 2n, from node laz---a,

to node 12---n. The following two lemmas are immediate.

Lemma 1 For any nodev # 12---n, the boundary symbols of the nodes except for 12---n on the shortest
path from v to 12---n are identical.

Lemma 2 For any nonnegative integers k, k' and 2 <i < j < n, 1> i, and any node v of the n-rotator
graph, path R;(v), Ri(R:(v)),-- -, RF(R:(v)) and path R;(v), Ri(R;(v)),---, R (R;(v)) are node disjoint.



Lemma 3 Let lay---a; and ajy-- - an be the unsorted prefiz and the sorted suffiz of node s, respectively.
Then the boundary symbols of the following n — 1 nodes are distinct, and there are node disjoint paths,
excepting s, each length <1 —1, from s to these n — 1 nodes:

axag - - a,-_laglaH_l crrQp, G20a3 - - aiﬁla;ai+lla;+2 MR R PN ¢ 5 X TR ¢ T ¢ P10 FTS (lnl,
a3as -+ ai—10;021Qi4) - An, Q4As - -~ G;_1QiG2a31A54 1 - Qp, -0, QG- ;11 -+ ay.
Proof: The boundary symbols of the n—1 nodes given in the lemma are a;, aj41, -+, Gn, 02,03, Qig.

These are obviously distinct.

Consider the n — 1 adjacent nodes from s. Among these adjacent nodes, azay - - ca;—jailaipy - an,
0203 * @i-1QiQi+11Gi42 < @pn,* -, a2a3 -+ -@i_1a;ai4y - a,1 are contained in the set of nodes given in
the lemma. We choose the links between s and these nodes as the paths connecting s and these nodes.
Then the length of each of these paths is 1. For each 2 < k& < i — 1, choose the shortest path from
az- - aplagyy-c @n t0 agyy e a@iag---aklaiyy -+ - an, and connect the path to the link between s and
az---aglagsr - - an. Then the length of th path from s to agyq ---aias -+ -arlaiy; -~ a, is k+ 1. Hence,
the length of each path constructed in this way is at most .

As for the path from s to agty---a;az---arlajyr -+ a, (2 <k <i—1), the immediately left symbol
of symbol 1 in the label of each node on the path, excepting s, is a, (when 1 is the leftmost symbol, the
immediately left symbol of 1 means the symbol at the ith position). This means that the n — 1 paths
constructed in this way are node disjoint, excepting s. a]

Theorem 1 There are n — 1 node disjoint paths, each length < 2n — 3, from las---a, to 12---n.

Proof: Consider the shortest path from each node given in Lemma 3 to ¢ = 12---n. From Lemma 1 the
boundary symbols of the nodes, excepting ¢, on the shortest path are identical. For each node, excepting
t, on the shortest path, the immediate left symbol of 1 is the boundary symbol of the node. We construct
a path from la; - - -a, to t by connecting the shortest path to the corresponding path given in the proof
of Lemma 3. Then from Lemma 3 the n — 1 paths from las - --a, to t constructed in this way are node
disjoint.

Suppose that the boundary symbol of laz - - an is a;. Then the length of the shortest path from any
node given in Lemma 3 to ¢ is 7 — 1. Hence, from Lemma 3 the length of each path from las---an to t
constructed in this way is at most i —1+4¢ = 2{ — 1. Since i < n — 1, the length of each of these paths is
at most 2n — 3. a

3.2 Construction for a General Case

For a general case the construction of n — 1 node disjoint paths from the source node s = ajaz -+ a,
to the destination node ¢ = 12-- - n is more complicated. However, the basic idea of the construction is
similar to the case of s = lay -+ - a,, although for a general case a more careful case analysis is required.
As in the previous subsection, for the construction in a general case we also use n — 1 intermediate nodes
such that their boundary symbols are distinct. These nodes are called the 2nd intermediate destination,
the 3rd intermediate destination, ---, and the nth intermediate destination. For each 2 < r < n, the path
from s to the rth intermediate destination is called the rth route.

The construction of the rth route is described by the following procedure Mk.route(r,a a; - - - Gn).
If the procedure is called for r := 2 to n, then n — 1 node disjoint routes from s to all the intermediate

destinations are constructed. The procedure consists of three parts, Part I, Part IT and Part III, and



for each r only one part is used. According to the relative position of 1 in ayas - - - a, to the position of
the boundary symbol of ajas - - - a,, the procedure decides which part should be used. In the procedure,
Queue is used to store the rth route where a sequence of integers is stored (note that integer ¢ means
rotate operation R;). Note that Part I is the case of a; = 1, and that the case was discussed in the

previous subsection.

else begin {Part III (1 < k < 1)}

Mk_route (r,ajaz - - an) Add r to Queue;
{calculates the rth route from ajaz - - - an Case r of
in Queue for a given r(2 < r < n)} r < k: begin
begin for x :=1tor—1do
Let k be the subscript such that ax = 1; Add i to Queue;
Let i be the subscript of the boundary symbol for r:=1to k—r do
of araz---an; Add i -1 to Queue;
Let j be the subscript such that j > Add 1 to Queue;
and that a; < a; < aj4, end;
(a1 < aj4; holds whenever aj4, exists); k< r<i:begin
Queue := nil; forz:=1tok~1do
ifk=1 Add i to Queue;
then begin {Part I (k = 1)} for r:=1tor—kdo
Add 7 to Queue; Add i — 1 to Queue;
ifr<i end;
then for r := 1 to r do r =1: begin
Add i to Queue; forz:=1tok—-2do
end Add i — 1 to Queue;
elseifk=i+1 Add ¢ to Queue;
then begin {Part II (k=1+1)} end;
Add r to Queug; i1 <r<j:begin
Case r of forz:=1tok—-2do
r<i:forzx:=1tor—1do Add r — 1 to Queue;
Add 1 to Queue; Add r to Queue;
i< r<j: begin for z:=1tor—kdo
forz:=1to:—1do Add r -1 to Queue;
Add r — 1 to Queue; end;
Add r + 1 to Queue; end;
end; end;
end; Return Qucue;
end end.

Lemma 4 Any two boundary symbols of the n — 1 intermediate destinations determined by the n — 1
calculated routes are distinct. Furthermore, any two of the n — 1 paths along the calculated routes are
disjoint.
The proof of this lemma is omitted in this version due to the space limitation. We only give Table 1 and
Table 2 that show the correspondence between value r and the rth intermediate destination for Part II
and Part III, respectively. In both the tables, 4, j and k denote the subscripts defined in the procedure
Mk_route.

Since any two boundary symbols of the n — 1 intermediate destinations are distinct, any two shortest
paths from the intermediate destinations to ¢ are disjoint. For each r(2 < r < n), we define an rth

path from s to ¢ as the path from s to the rth intermediate destination along the rth route followed



Table 1: The rth intermediate destination and its boundary symbol for Part II(k =i+ 1).

[ r the rth intermediate destination [ the boundary symbol |
r <t A1Qry1 - Q02 " ~GrQiy * " Qg ar
r=i,r2>j Az ApQ1Qpgyy - 0n a1(7‘=z),a,-(7'=]),ar(r>j)
1<r <y Aipz " ArQ2 QA1 Qr418i410r42 """ COn Uyt

Table 2: The rth intermediate destination and its boundary symbol for Part ITI(1 < &k < 7).

] T i the rth intermediate destination I the boundary symbol |
r<k Ak41°°° Q502 """ Qpr_1Q1Ap41 " "Ak—10rAkAi4] - An [¢78
k<r<i A Qg1 - AiGg - 0k _10k41 "~ ArGfGiyy * O ar
r=1 Q41" Q342 - Ak -1 Q1 0kCi4y * ' " Qn ay
i<r§j" Ay Qk_1A10k41 " QrQkGry] *** Gn ar
T:k,T‘)j Az ApA1Qp41 - 0n ai(rzk)var‘(r>j)

t If : = j then this case 1s empty.

by the shortest path from the rth intermediate destination to t. We call the path from s to the rth
intermediate destination along the rth route, the rth preceding path. We call the shortest path from the
rth intermediate destination to t, the rth subsequent path. So as to establish n — 1 disjoint paths from s

to t, we need to show the following lemma.
Lemma 5 For distinct r_and r', the rth preceding path and the r'th subsequent path are disjoint.

Lemma 6 Let L be the mazimum length of the n — 1 disjoint paths from s to t. Then,

Lo -3 k=1
- 2n —1 fk=i+lorl<k<i,

where i and k are the subscripts defined in the procedure Mk_route.
From Lemma 4, Lemma 5 and Lemma 6, we have the following theorem.

Theorem 2 There exist n — 1 node disjoint paths with length shorter than 2n between any two nodes in

the n-rotator graph.

4 Reliability of Nonadaptive Routings

In the previous section, we have constructed n — 1 disjoint paths with length shorter than 2n between
any two nodes in the n-rotator graph. In this section, we consider point-to-point routings in a faulty
n-rotator graph. We assume that all nodes are healthy, and that each node knows failures of its incident
links, but does not know the conditions of the other links.

Firstly, we assume that the size of a message is O(nlogn). A naive nonadaptive routing in the faulty
n-rotator graph exploits the n — 1 disjoint paths to transmit each of n — 1 copied messages concurrently.
Thus the communication complexity of the naive nonadaptive routing algorithm is (n—1)(2n—1) = O(n?)
while the time complexity is 2n — 1 = O(n).

Since the connectivity of the n-rotator graph is n — 1, no routing algorithm succeeds in the worst case

if more than n — 2 links fail. However, if we assume that links fail randomly, the nonadaptive routing can



tolerate much more faulty links with high probability. Next we show the relation between the probability
with which the routing succeeds and the probability with which the links fail randomly.
Suppose that links fail independently with a fixed probability p = c¢/2n, where ¢(0 < ¢ < 1)is a

constant. Since the length of each path used by the naive nonadaptive routing is less than 2n,
Prob{the path is healthy} > (1 — 2—6—)2" >1—c.
n

Hence, the probability of a path being faulty is less than c. Since the links fail independently, the disjoint
paths also fail independently. The probability that all the n — 1 paths used by the naive nonadaptive

routing fail simultaneously is less than ¢”~!. Thus we have the following theorem.

Theorem 3 The naive nonadaptive routing succeeds with probability higher than 1— "1 if the links fail

independently with probability c/2n.

It means that the naive nonadaptive routing succeeds with high probability even when the links fail with
probability O{1/n) (In this case, the expected number of faulty links is O(n!)).

We next consider the case that the size of a message is not O(nlogn). In this case, the message is split
so that the size of each piece of the message is O(n log n), and each picce is transmitted one by one. Let m
denote the size of the message. Then, the communication complexity of the naive nonadaptive routing is
O(n*(m/nlogn)) = O(nm/logn). Observe that the communication complexity of any routing algorithm
is Q(n(m/nlogn)) = Q(m/ logn). If m is Q(n® logn), we can reduce the communication complexity of the
naive nonadaptive routing algorithm to O(m/ logn), by using Rabin’s Information Dispersal Algorithm
(IDA)[4].

In Rabin’s IDA, a message M of size m is transformed into n — 1 messages My, My, -+, M;,_1. The
size of each M; (i = 1,2,---,n— 1) is m/d(n — 1), where d(0 < d < 1) is supposed to be a constant such
that d(n—1) is an integer. Any d(n— 1) messages of My, My, ---, M, suffice to reconstruct the original
message M. We transmit M, My, -+, M, _; through the n—1 disjoint paths respectively. If m/d(n— 1),
the size of M;, is not O(nlogn), then the transformed message M; is split so that the size of each piece
of the message is O(rnlogn). Each piece of M; is transmitted one by one through the same path, but
no piece of M;(j # i) can use the same path as M;’s. If no more than (1 — d)(n — 1) paths are faulty,
the message M can be reconstructed at the destination. In this case, the communication complexity is
1/d(n — 1) of that of the naive nonadaptive routing.

We discuss the reliability of the nonadaptive routing using Rabin’s scheme. In our probabilistic

consideration, we will use the following lemma known as Chernoff bound|[2].
Lemmal[2] Let X be the number of successes in a series of n Bernoulli trials with success probability p.

For any constant € with 0 < e < 1,

— € 2 n
Prob{X < epn} <e” e

We still assume that the links fail independently with probability ¢/2n, where ¢(0 < ¢ < 1) is a
constant. Let d be the constant described above and we choose two constants ¢ and d such that d < 1 —c.

Theorem 4 The nonadaptive routing using Rabin’s IDA as described above succeeds with probability
(—c=d)? (n-1)

higher than 1 — e~ 20-9

Proof: Let X denote the number of successes in a series of n —1 Bernoulli trials with success probability
1 — ¢. From Chernoff bound, we have

Prob{ X <d(n—1)} < Prob{ X < I_-Cé_c.(l —c)(n—-1)}



e~ (-1 (1-a)(n-1)/2

1A

1—c=d)?
- e~ 7“‘_C (n—1)

Let Py, Py, -, P,_, denote the events that the n — 1 paths from a source to the destination are healthy.
Since the n — 1 paths are node disjoint, events P;, P,,---, P,_; are probabilistically independent. We
have Prob{P;} > 1 ~cfori=1,2,---,n — 1 since the length of each path is shorter than 2n. Thus,

Prob{less than d(n — 1) events of Py, Py, -+, P,_; take place} < Prob{ X < d(n—1)}.

Hence, the nonadaptive routing using Rabin’s Information Dispersal Algorithm succeeds with probability

—c—d)?
higher than 1 —e™ == O

5 Concluding Remarks

Corbett showed that the n-rotator graph remains strongly connected in the presence of n — 2 faulty
nodes(1], that is, connectivity of the n-rotator graph turns out to be n — 1. We described the procedure
which explicitly derives how to construct n — 1 node disjoint paths in the n-rotator graph. All the n —1
paths were shown to have length shorter than 2n. Using the n — 1 node disjoint paths, we proposed two
nonadaptive fault-tolerant routing algorithms and showed the probabilities that the algorithms succeed.

For further investigations, we note permutation routing and sorting in the n-rotator graph. Rabin’s
IDA[4] is also one of the useful tools for permutation routing since we can ignore the overflow of the
buffer of each node to a certain extent. We conjecture that the n-rotator graph has the high bisection
width n!. Thus, it is interesting to consider the load balancing problem in the n-rotator graph. We lastly
mention a disadvantage of the rotator graph family that the numbers of nodes are considerably discrete.
However, since rotator graphs are constructed inductively, it is worth studying how to connect several
(n — 1)-rotator graphs and extra nodes so that the diameter of the graph constructed may not exceed

n—1.

References

[1] P. F. Corbett, “Rotator graphs: an efficient topology for point-to-point multiprocessor networks”,
IEEE Transactions on Parallel and Distributed Systems, vol. 3, pp. 622-626, 1992,

{2] T. Hagerup and C. Rub, “A guided tour of Chernoff bounds”, Information Processing Letters, vol.
33, pp. 305-308, 1990.

[3] Y-D. Lyuu, “Fast fault-tolerant parallel communication for de Bruijn and digit-exchange networks
using information dispersal”, Networks, vol. 23, pp. 365-378, 1993.

[4] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance”,
Journal of the ACM, vol. 36, pp. 335-348, 1989.

[5] P. M. Yamakawa, H. Ebara and H. Nakano, “A routing algorithm in a faulty n-rotator graph”,
Proceeding of Joint Symposium on Parallel Processing, pp. 65-72, 1994.



