7 A =) X 4 4611
(1995. 7. 20)

MBALES 2 SRICHTIRERT—U 5K
SE 3
SRR BORMETRRZERT

B8 SV SBT3 R — U v 7B REAT 5. 2 ofR, BASSRE
MBS CE 4 b e hE Y = T FRHEOREECEN % K 5 SZFAREF LSRG
bhb.

A Capacity Scaling Algorithm for Convex Cost
Submodular Flows

Satoru IWATA

Research Institute for Mathematical Sciences, Kyoto University

Abstract: This paper presents a scaling scheme for submodular functions. A
small but strictly submodular function is added before scaling so that the resulting
functions should be submodular. This scaling scheme leads to a weakly polynomial
algorithm to solve minimum cost integral submodular flow problems with separable

convex cost functions, provided that an oracle for exchange capacities are available.

1 Introduction

The submodular flow problem, introduced by Edmonds-Giles [3], is one of the most
important frameworks of efficiently solvable combinatorial optimization problems.
It includes the minimum cost flow, the graph orientation, the polymatroid inter-
section, and the directed cut covering problems as its special cases. There have
been proposed a number of combinatorial algorithms, which rely on an oracle for
exchange capacities (cf. Frank-Tardos [6], Fujishige [8] and references therein).
In particular, Cunningham-Frank [2] developed a primal-dual algorithm, which
achieves a weakly polynomial time complexity with the aid of the cost scaling
technique.

The scaling technique was introduced by Edmonds-Karp [4] to solve the min-
imum cost flow problem, where capacities and demands were scaled rather than
arc costs. One of the advantages of the capacity scaling approach is that it can
easily be applied to minimum cost integral flows with separable convex cost func-
tions (cf. Ahuja-Magnanti-Orlin 1, Chap. 14], Hochbaum-Shanthikumar [9], and
Minoux [11]).

The main purpose of the present paper is to develop a polynomial algorithm for
integral submodular flows with separable convex cost functions. It is quite natural

to adopt a capacity scaling approach, i.e., to scale capacities as well as demands,
which are given by a submodular function.

A straightforward attempt to scale a submodular function, however, destroys
the submodularity. To be more specific, for a submodular function f:2Y — Z, it

seems natural to consider a function f defined by

This function f is, however, no longer submodular if there exist X1, X C V such
that f(X1) + f(X2) = f(X1U X3) + f(X1 N X3) bholds with f(X1), f(X2) odd and
f(X1U X3), f(X1N X;) even numbers.

Thus how to extend the capacity scaling approach to submodular flows is a
nontrivial issue. In fact, no good algorithms for submodular flows with separable
convex cost functions have been known, although an optimality criterion is given
in Fujishige [8, §12].

As we have seen above, a straightforward scaling scheme may fail particularly
when the submodular function has a modular pair, or in other words, when the base
polyhedron has a degenerate face. In order to avoid such a phenomenon we perturb
the base polyhedron by adding a small but strictly submodular function before
scaling. This process makes the algorithm somewhat complicated and leads to a
rather higher order polynomial complexity. Hence the capacity scaling approach
may not be attractive for submodular flow problems with linear cost functions.
It still has some significance, however, in the context of separable convex cost

submodular flows, where no other good algorithms have been known.

2 Separable Convex Cost Submodular Flows

Let G = (V, A) be a directed graph with a vertex set V' of cardinality n and an arc
set A of cardinality m. Functions¢: A — Z and ¢: A — Z are upper and lower
capacities, respectively. Suppose that f : 2 — Z is a submodular function with
f(V) = 0. Let B(f) denote the base polyhedron, i.e.,

B(f) ={z |z € RY,z(V) = (V), VX C V : 2(X) < f(X)}

For each arc a € A, let 4, : R — R be a convex cost function. Our problem to be
considered in this paper is as follows:

Minimize 2;4%(@((1)) (1)
subject to ¢(a) < p(a) <¢(a) (a € A) (2)
dp € B(f), € Z” 3)

A feasible solution of this problem is said to be an integral submodular flow. The
feasibility of this problem can be checked efficiently [5]. Once we have a feasible
solution, we can transform the problem to another optimization problem in the
form of (1)-(3) with ¢(a) < 0 < ¢(a) for a € A and f(X) > 0 for X C V. Hence
we may assume without loss of generality that ¢(a) = 0 for a € A is feasible.

It should be remarked here that Edmonds-Giles [3] formulated the submodu-
lar flow problem in terms of crossing-submodular functions. On the other hand,
however, it has been pointed out by Fujishige {7] that a base polyhedron of a
crossing-submodular function can be expressed as a base polyhedron of a fully-
submodular function. Since the main part of the algorithm to be presented in this
paper is concerned with geometric properties of the base polyhedron, we deal with

fully-submodular functions for the sake of simplicity.

3 A Capacity Scaling Algorithm

We present a capacity scaling algorithm, which performs a number of scaling phases
for different values of a parameter A. Each scaling phase is a successive shortest
path algorithm, where the amount of augmentation at once is exactly A. When
there is no possibility of augmentation, the algorithm reduces the value of A by a
factor of two.

For a given value of A = 2¢ for £ = —1,0,1,2,..., we consider a function
fa : 2V — Z defined by

ss) =120 1 agux),

where 5(X) = |X|- |V — X|. Note that fa for A = 1/2 coincides with f. The
second term above ensures the following lemma, which is crucial for our capacity

scaling scheme.
LEMMA 1. The function fa is submodular for A = 2¢ (¢ = —1,0,1,2,...).

In this short paper, we assume that the dependence function dep, for fa can
be computed efficiently. In fact, such a procedure is presented in [10, §4], provided
that exchange capacities for f are available.

Given a flow ¢ : A — Z and a base z € B(fa) for a value of A, we construct
an auxiliary network Ga(p,z) =(V, Aa(p,)) with

Aa(p,z) = Aa(0) U Aa(p) U Aa(2),
where
An(p) = {ala€ Ap(a)+[A] <T(a)},
Aa(y) {alae€ A p(a) = [A] > ¢la)} . (a: reorientation of a),
Aa(z) = {(u,v)|u € depp(z,v) — {v}}.

The arc length €4 : Aa(@,z) — R is defined by

{(alp(a) + [A]) = %alp(a))}/[A] (a € An)
€ala) = ¢ {1a(e(a) = [A]) — %u(e(a)}/TA] (a€ Aa)
0 ((1 c AA)

For a node potential = : V — R, we put
€a(a) = €a(a) +7(0%a) — 7(97a),

which is called the reduced arc length. Note that z € B(fa) is a m-maximum base
if and only if £%(a) > 0 for every a € Aa(z). We also denote

Sa = {vlz(v) > dp(v)},
Ta = {v]z(v) <9p(v)},

where vertices in Sa and Ta are called sources and sinks, respectively.
Then we have the following theorem, which gives an optimality criterion of the
problem (1)-(3) when A = 1/2. See Theorem 12.1 of [8].

THEOREM 2. For a given value of A = 2! (£ = —1,0,1,2,...), consider the follow-
ing problem:

Minimize) 7a(¢(a))

a€A

subject to ¢(a) < p(a) < T(a) (a € A)
9¢ € B(fa),
¢(a): multiple of [A] (a € A).

Then a feasible solution ¢ is an optimal solution if and only if there exists a node
potential : V' — R such that £3(a) > 0 for every arc a € Ax(p,z) in Ga(p,)
with z = Jy.

We are now ready to present an outline of the algorithm. A scaling phase with
a specific value of A is referred to as the A-scaling phase. Initially, the value of A
is set to be 218U} where

U = max{mag e(a)|, max[c(a)l, s £ (X))

The flow ¢ and the node potential 7 are initialized by ¢(a) = 0 for each arc a € A
and 7(v) = 0 for each vertex v € V, respectively. Note that this ¢ is a feasible
solution because of our assumption in Section 2.

In the A-scaling phase, the algorithm keeps a flow ¢, a node potential 7, and
a base z € B(fa) such that ¢(a) and z(v) are multiples of [A] for every arc
a € A and every vertex v € V, respectively, and that ¢%(a) > 0 holds for every arc

a € Aa(p,z). In order to reduce Y {z(v) — dp(v)}, it repeats augmentations of
vESA
the flow ¢ by [A] along a shortest path from Sa to Ta with respect to {3 as well

as updates of the node potential = and the base z. When 9y coincides with z, the
flow ¢ is an optimal solution to the problem in Theorem 2. Then the algorithm
cuts the value of A in half and starts the new scaling phase. Eventually, after
O(log U) scaling phases, A becomes 1/2. The flow ¢ obtained at the end of this
scaling phase turns out to be an optimal solution of the original problem. Note
that, except for the last scaling phase, [A] = A.

Suppose, at the beginning of the A-scaling phase, we have a flow and a node
potential 7 such that ¢(a) is a multiple of 2A for each arc @ € A and &f4(a) > 0
for every arc a € Asa(p,dp). This is certainly satisfied for the first scaling phase
because Ayp and Aj, are empty. The algorithm starts the A-scaling phase with
finding a 7-maximum base = € B(fa) that is sufficiently close to d¢ with z(v) a
multiple of A for each v € V. How to find such an appropriate base is postponed to
the end of this section because it is irrelevant to the correctness of the algorithm.

It then checks the condition £X(a) > 0 for each arc @ € Aa(p) U Aa(p). This
condition is automatically satisfied at the last scaling phase with A = 1/2 because
&4 coincides with £, in this case. Hence we may assume here [A] = A. Note that
either a € Aa (i) or its reorientation @ € Aa(yp) satisfies this condition because of
the convexity of v,. If ¢X(a) < 0 for a € Aa(¢p), the algorithm augments the flow
value p(a) by A. In this case, before the augmentation, we have

Ya(ip(a) + A) = 1a(¢(a)) + An(8%a) — Ar(8=a) < 0, (4)

which implies EZ(&) > 0, where EZ denotes the reduced arc length after the aug-
mentation. On the other hand, it follows from the supposition that

Ya(p(a) + 2A) — va((a)) + 2A7(8%a) — 2A7(87a) > 0.. : (5)
Combining (4) and (5), we have
Ya(p(a) + 24A) — va(p(a) + A) + An(dta) — Ax(8”a) > 0, (6)

which implies €% (a) > 0. A similar argument justifies reducing the flow value ¢(a)
by A if é£(@) < 0 for @ € Aa(). Thus the algorithm obtains a flow ¢, a node
potential 7, and a base z € B(fa) with é%(a) > 0 for every arc a € An(p, z),
being ready to start the successive shortest path procedure. Note that @(a) is now
a multiple of A for each arc a € A.

In the auxiliary network Ga(y,z) with nonnegative reduced arc length &L, let
d : V — R be a shortest path distances from S, to all nodes in Ga(p,z) and P
be a shortest path from Sa to Tx with minimum number of arcs. It follows from
the triangular inequality

d(0"a) < d(0*a) + €4 ()

that
én(a) + (8 a) — m(87a) + d(d*a) — d(d7a) > 0

holds for every arc a € Aa(p,). Hence updating 7 to 7 + d retains the nonneg-
ativity of the reduced arc length. In particular, the reduced arc length becomes
zero for each arc in the shortest path P. It is clear that augmenting ¢ along P by
[A] does not violate the capacity constraints nor the nonnegativity of reduced arc
length €% (a) for a € Ap(p) U Aa(y). The base z € B(fa) is also updated along P
so that z(v) = dp(v) holds for every inner vertex v of P, which is possible because
of the minimality of P. See Lemma 4.5 of [8]. For the starting point s € Sa
of the shortest path P, either Op(s) increases or z(s) decreases by [A]. Hence
> {z(v) — dp(v)} reduces exactly by [A]. Repeat this process until the sources

vESA
Sa and consequently the sinks 75 become empty. Then we obtain a flow ¢ with

- 9p € B(fa) and a node potential 7 such that {3 (a) > 0 for every a € Ax(p, Ip)
and that ¢(a) is a multiple of [A] for each a € A. According to Theorem 2, the
flow ¢ is now an optimal solution to the problem therein.
An algorithmic description of the capacity scaling algorithm is now given as
follows:
algorithm capacity scaling
begin
A = 2[long;
for a € A do p(a) := 0;
for v € V do 7(v) := 0;
while A > 1/2 do
begin {A-scaling phase}
find an appropriate 7-maximum base r € B(fa);
for a € Aa(yp) do if €X(a) < 0 then ¢(a) := p(a) + A;
for a € Aa(p) do if £5(a) < 0 then ¢(a) := p(a) — A;
while z # 9y do
begin
determine shortest path distances d : V — R from S,
to all other nodes in G(¢p,z) with respect to £3;
let P be a shortest path from S5 to T, with minimum number of arcs;
for v € V do 7(v) := 7(v) + d(v);
for a € PN Aa(p) do o(a) := ¢(a) + [A];
for a € PN Ax(p) do ¢(a) := p(a) — [A];
for a € PNAx(z) do z(8%a) := 2(8%a)—[A], z(8"a) := z(8~a)+[A];
end;
A= Af2
end
end.

We now specify how to find the “appropriate” 7-maximum base z € B(fa)-

Since one augmentation reduces »_ {z(v) —dp(v)} by A, we should choose a base
vESA
sufficiently close to 9y in order to obtain an efficient algorithm.

Let 7y > w2 > --- > m; be the distinct values of 7(v) and put
Vi={v|rw)>m} (= 1,2,---,1)

and Vy = 0. Consider a submodular function fA defined by

¢
Fa(X) =Y Afa((XnV)u Vi) - fa(Vi)} (X CV).
1=1
Then B(fA) is the set of m-maximum bases of B(fa). We define ng from fa in
the same way, i.e.,

ha(X) = Z{fm (X NnV;)u — faa(V)} (X CV),

and then 8¢ € B(fza) at the beginning of the A-scaling phase. Since [2A] =
=[A] + |A] for A =2! with £ =-1,0,1,2,..., we have

Vie1)

Fa(X) = Fa(X) < Z{AL 1)y _pa 0y xn i) £0)

+[A]- g{b((x NV;) U Viiy) = b(Vi)}

A 1X]|+[A]-8(X) <n[A] -|X]

IA

for any X C V.
Consider a vector Z € ZV defined by Z(v) = 9p(v) — n{A] for each v € V.
Then it holds for every X C V that

2(X) = 0p(X) — n[A] - |X| < faa(X) = n[A] - 1X] < fa(X),

which means € P(fa). Hence there exists a base z € B(fa) with = > Z, which
can be found by the greedy algorithm starting from Z. See Theorem 3.19 of [8].
We adopt this z as an “appropriate” base in the algorithm.
We conclude this section by analyzing the number of shortest path computa-

tions in the algorithm. It is clear that

Y {2(v) - Bp()} < 2(V) - &(V) < n*[A]

vESA
at the beginning of the A-scaling phase. Adjusting the flow ¢ to remove the arcs
with negative reduced arc length from the auxiliary graph Ga(y,z) changes the
left-hand side at most m[A]. Thus each scaling phase performs the shortest path
augmentation at most n? +m times, and the whole algorithm requires O(n?log U)
shortest path computations.

4

Conclusion

We have presented a capacity scaling algorithm for integral submodular flows with

separable convex cost functions. The total amount of computation is bounded by

a polynomial of the input size of the problem, provided that an oracle for exchange

capacities for the original submodular function is available. It is remarked finally
that the function b in the definition of fo can be replaced by any other strictly

submodular functions of network-type.

References

(1]

2]

3]

[4]

(5]

[6]

[7]

(8]
[9]

[10]

[11]

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin: Network Flows — Theory,
Algorithms, and Applications, Prentice Hall, 1993.

W. H. Cunningham and A. Frank: A primal-dual algorithm for submodular
flows, Math. Oper. Res. 10 (1985), pp. 251-262.

J. Edmonds and R. Giles: A min-max relation for submodular functions on
graphs, Ann. Discrete Math., 1 (1977), pp. 185-204.

J. Edmonds and R. M. Karp: Theoretical improvements in algorithmic effi-
ciency for network flow problems, J. ACM, 19 (1972), pp. 248-264.

A. Frank: Finding feasible vectors of Edmonds-Giles polyhedra, J. Combin.
Theory, Ser. B, 36 (1984), pp. 221-239.

A. Frank and E. Tardos: Generé,lized polymatroids and submodular flows,
Math. Programming, 42 (1988), pp. 489-563.

S. Fujishige: Structures of polyhedra determined by submodular functions on
crossing families, Math. Programming, 29 (1984), pp. 125-141.

S. Fujishige: Submodular Functions and Optimization, North-HolIa,nd, 1991.

D. S. Hochbaum and J. G. Shanthikumar: Convex separable optimization is
not much harder than linear optimization, J. ACM, 37 (1990), pp. 843-862.

S. Iwata: A capacity scaling algorithm for convex cost submodular flows,
RIMS-1015, Research Institute for Mathematical Sciences, Kyoto University,
1995.

M. Minoux: Solving integer minimum cost flows with separable convex objec-
tive polynomially, Math. Programming Stud., 26 (1986), pp. 237-239.

