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We newly define a generalized edge-ranking of a graph G as follows: for a positive integer c, a
c-edge-ranking of G is a labeling (ranking) of the edges of G with integers such that, for any
label ¢, deletion of all edges with labels > i leaves connected components, each having at most
c edges with label i. The problem of finding an optimal c-edge-ranking of G, that is, a c-edge-
ranking using the minimum number of ranks, has applications in scheduling the manufacture
of complex multi-part products; it is equivalent to finding a c-edge-separator tree of G having
the minimum height. We present an algorithm to find an optimal c-edge-ranking of a given
tree T for any positive integer ¢ in time O(n?logA), where n is the number of vertices in T'
and A is the maximum vertex-degree of T'.
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1 Introduction

An edge-ranking of a graph G is a labeling of edges of G with positive integers such that every
path between two edges with the same label ¢ contains an edge with label j > 1 [1]. Clearly
an edge-labeling is an edge-ranking if and only if, for any label 7, deletion of all edges with
labels > i leaves connected components, each having at most one edge with label i. The edge-
ranking problem is to find an edge-ranking of a given graph G using the minimum number of
ranks (labels). The problem seems to be NP-complete in general [2]. However, polynomial-
time algorithms have been reported for trees. de la Torre et al. [2] have given an algorithm
to solve the edge-ranking problem for trees T by means of a complicated greedy method in
time O(n®logn), where n is the number of vertices in T'. Very recently a simple and efficient
algorithm to solve the edge-ranking problem for trees T in time O(n?log A) has been presented
in [4, 5, 6],! where A is the maximum vertex-degree of T'.

In this paper we newly define a generalization of an ordinary edge-ranking. For a positive
integer ¢, a c-edge-ranking ( or a c-ranking for short) of a graph G is a labeling of the edges of
G with integers such that, for any label i, deletion of all edges with labels > i leaves connected
components, each having at most ¢ edges with label i. Clearly an ordinary edge-ranking is a 1-
edge-ranking. The integer label of an edge is called the rank of the edge. A c-ranking of G using
the minimum number of ranks is called an optimal c-ranking of G. The c-ranking problem is to
find an optimal c-ranking of a given graph G. Fig. 1 depicts two optimal 2-rankings ¢ and 7 of
a tree T using four ranks, where the ranks are drawn next to the edges. Connected components
obtained from T by deleting all edges with labels > i for the 2-ranking ¢ of Fig. 1(a) are drawn
in ovals in Fig. 2.

(a) Supercritical 2-ranking ¢ (b) Subcritical 2-ranking m

Figure 1: Two optimal 2-rankings of a tree T'.

The problem of finding an optimal c-ranking of a graph G has applications in scheduling
the parallel assembly of a complex multi-part product from its components, where the vertices
of G correspond to the parts and the edges correspond to assembly operations. Let us consider
a robot with ¢ + 1 hands which can connect at most ¢+ 1 components at a time. If we have as
many robots as we need, then the problem of minimizing the number of steps required for the
parallel assembly of a product using the robots is equivalent to finding an optimal c-ranking of
the graph G. Fig. 2 shows that one can assemble in parallel a product of Fig. 1(a) in four steps
using seven robots of three hands. Note that there are seven connected components which are
not an isolated vertex in Step 1. In each step robots simultaneously connect at most three
connected components of the previous step.

The c-edge-ranking problem is also equivalent to finding a c-edge-separator tree of minimum
height. Consider the process of starting with a connected graph and partitioning it recursively

!The algorithms in [4] and [5] contain flaws, and the algorithm in [6] corrected them.



Step 4

delete 4

Step 3

delete 3

Figure 2: A 2-edge-separator tree of the tree in Fig. 1(a).

by removing at most ¢ edges from each of the remaining connected components until the graph
has no edge. The tree representing the recursive decomposition is called a c-edge separator
tree. Thus a c-edge-separator tree corresponds to a parallel computation scheme based on the
process above. Fig. 2 illustrates a 2-edge-separator tree of the tree T depicted in Fig. 1(a).

In this paper we give an algorithm to solve the c-edge-ranking problem on trees. It is the
first polynomial-time algorithm, and takes time O(n?log A) for any positive integer c. Thus it
is as efficient and simple as the best algorithm known for the ordinary edge-ranking problem

(6]-

2 Preliminaries

In this section we define some terms and present easy observations.

Let G = (V, E) denote a graph with vertex set V and edge set £. We often denote by V(G)
and E(G) the vertex set and the edge set of G, respectively. We denote by n the number of
vertices in a tree T = (V, E) and by A the maximum vertex-degree of T. T is a “free tree,”
but we regard T as a “rooted tree” for convenience sake: an arbitrary vertex of T is designated
as the root of T. The maximal subtree of T rooted at a vertex w € V' is denoted by T'(w). Let
e = (v,w) be an edge in T such that w is a child of v. Then the tree obtained from T'(w) by
adding e is denoted by T(e). We denote by T — T'(e) the tree obtained from T by deleting all
edges and all vertices of T'(e) except v. We will use notions as: root, internal vertex, child and
leaf in their usual meaning.

Let ¢ be an edge-labeling of a tree T with positive integers. The label (rank) of an edge
e € E is represented by ¢(e). An edge e of T is visible from vertex w under  if e is contained
in T(w) and every edge in the path from w to e has a rank < ¢(e). An edge visible from the
root of T' is often called a visible edge for short. In Fig. 1 all visible edges are drawn in thick
lines. For a subtree T’ of T, we denote by ¢|T" a restriction of ¢ to E(T"): let ¢ = ¢|T”, then
¢'(e) = ¢(e) for e € E(T'). Then one can easily observe that the following lemma holds.



Lemma 2.1 An edge-labeling ¢ of a tree T is a c-ranking of T if and only if
(a) @|T(w) is a c-ranking of T(w) for every child w of the root of T; and

(b) no more than ¢ edges of the same rank are visible from the root under . o

Since it is not so simple to find an optimal c-ranking, we focus on specific types of optimal
c-rankings. Before formally defining them, we need to define some terms.

One may assume without loss of generality that a c-ranking ¢ of tree T uses consecutive
positive integers starting from 1 as the ranks. Thus the largest rank is equal to the number of
ranks used by . The list L(¢) of a c-ranking ¢ of tree T is a list containing the ranks of all
edges visible from the root, that is,

L(p) = {p(e) | e € E is visible from the root}.

The ranks in the list L(i) are sorted in non-increasing order. The list L(y) may contain
same ranks with repetition < ¢. For an integer ! we denote by count(L(y),!) the number
of I’s contained in L(y), that is, the number of visible edges with rank /. By Lemma 2.1
count(L(yp),!) < c for each rank [. The c-ranking ¢ in Fig. 1(a) has the list L{p) = {4,3,2,1,1},
and hence count(L(yp),4) = count(L(p),3) = count(L(¢),2) = 1 and count(L(y),1) = 2. On
the other hand, the c-ranking 7 in Fig. 1(b) has the list L(n) = {4,3,3, 1}.

For a list L and an integer 7, we define a sublist [ < L] of L as follows:

i<Ll={eLli<li).

Similarly we define sublists [¢ < L], [L < ¢] and [L < i] of L. For lists L and L' we use L C L'
and LU L' in their usual meaning in which we regard L, I’ and LU L’ as multi-sets. We define
the lezicographical order < on L and I’ as usual, and write L < L’ if either L = L/ or L < L.

We are now ready to define notions of optimality. A critical c-ranking ¢ of tree T is defined
to be a c-ranking with the lexicographically smallest list L(). Every critical c-ranking ¢ is
optimal, because all edges of the largest rank are visible and hence the topmost rank in L{y)
is equal to the number of ranks used by ¢. The optimal c-ranking ¢ depicted in Fig. 1(a)
is indeed critical, but the optimal c-ranking 7 in Fig. 1(b) is not critical since L(yp) < L(n).
A c-ranking ¢ of tree T is supercritical if the restriction ¢|T(v) is critical for every vertex v
of T. Thus a supercritical c-ranking is critical and hence optimal. The c-ranking ¢ depicted
in Fig. 1(a) is indeed supercritical. A c-ranking ¢ of tree T is subcritical if |T(v) is critical
for every vertex v of T except the root. Although a supercritical c-ranking is subcritical, a
subcritical c-ranking is not always critical and is not always optimal. For example, the optimal
c-ranking 7 in Fig. 1(b) is subcritical, but is not critical.

3 Optimal c-ranking
The main result of this paper is the following theorem.

Theorem 3.1 For any positive integer ¢ an optimal c-ranking of a tree T can be found in
time O(n?log, A), where n is the number of vertices in T and A is the mazimum vertez-degree

of T. : @]

In the remaining of this section we give an algorithm to find a supercritical c-ranking of a
tree T'in time O(n?log A). Our algorithm uses the technique of “bottom-up tree computation.”
That is, it repeats the following operation for each internal vertex v of a tree T from leaves
to the root: constructs a supercritical c-ranking ¢ of subtree T(v) from those @1, @5, -, pq
of the subtrees T'(w;), T(w3),- -+, T(wq). For such a strategy to succeed, it is favorable that



a supercritical c-ranking ¢ of T'(v) could be extended from 1,2, - -,94 by appropriately
labeling the edges e; = (v, w;), 1 < i < d, without changing the labeling of the subtrees.

For notational convenience we may assume that v is the root of tree T and hence T'(v) = T'.
We first have the following lemma.

Lemma 3.2 Every tree T has a supercritical c-ranking . Furthermore for any supercritical
c-rankings p; of T(w;), 1 <1 < d, T has a supercritical c-ranking ¢ which is an ezxtension of
wi, that is, o|T(w;) = ¢; for everyi, 1 <i<d. o

In the remaining of this section we present a sequence of lemmas and corollaries which help
us to decide the d ranks in time O(dnlog(d+1)). Repeating the same operation for all internal
vertices v of T' from bottom to top, we can find a supercritical c-ranking of T in time

0 (Z d(v)nlog(d(v) + 1)) = 0(n’logA),

veV

where d(v) is the number of children of v in T'. Note that }_,cy d(v) = n — 1.

The key idea of our algorithm is to decide the d ranks in non-increasing order. Let E(v) =
{ei = (v,w;) | 1 £ i < d}. For a c-ranking ¢ of tree T, let m, be the maximum rank of edges
in E(v), that is, m, = max{p(e;) | e; € E(v)}. Let n,, be the number of edges in E(v) labeled
by m,. We then have the following lemma.

Lemma 3.3 Let ¢ and 1 be two subcritical c-rankings of tree T'. If (m,,n,) < (my, ny), then
L(p) < L(n). :

The following corollary is an immediate consequence of Lemma 3.3.

Corollary 3.4 The following (a) and (b) hold:

(a) if ¢ is a supercritical c-ranking of tree T and n is a subcritical c-ranking of T, then
(Mg, np) 2 (Mg, ny); and

(b) every supercritical c-ranking ¢ of T has the same pair (my,n,). o

We thus denote by fep the same value m,, for all supercritical c-rankings ¢ of T', and call S5y
the super rank of tree T. Then Corollary 3.4 immediately implies the following.

Corollary 3.5 The super rank fBs., of tree T is equal to the minimum integer 3 for which T
has a subcritical c-ranking ¢ of m, = 3. O

Let f be a positive integer, and let L; = L(y;). Let j, 1 < j < d, be an index such that
sublist [L; < §] is the lexicographically largest among all [L; < 8], 1 < i < d, that is, if ¢; was
labeled by B then the sublist of ranks in L; hidden by 8 would be lexicographically largest.
Then the following lemma holds.

Lemma 3.6 Let j be the indez defined for § as above, and assume that tree T has a subcritical
c-ranking n of my, = B. Then T has a subcritical c-ranking ¢ such that ¢(e;) = my, = B and
L(p) = L(n). o

The following corollary is an immediate consequence of Lemma 3.6.

Corollary 3.7 Let j be the indez defined for 8 = fep, that is, let [L; < Bsup] be the lezico-
graphically largest one among all sublists [L; < Bsup), 1 <t < d. Then tree T has a supercritical
c-ranking v such that ¢(e;) = fsyp. O



Thus, once Bsyp is decided, one can easily decide an edge e; to be labeled by Bsyp. Furthermore
we have the following lemma.

Lemma 3.8 Let j be the index defined for B = feyp, and let T = T — T(e;). Then any
supercritical c-ranking ¢’ of T' can be extended to a supercritical c-ranking ¢ of T as follows:

Bsup  if € =¢j;
w(e) = {%(e) if e € E(T(w;)); and
o'(e) ifee E(T).

Using Corollary 3.7 and Lemma 3.8 one can easily verify that the following algorithm
UPDATE correctly decides the ranks of ej, e, - -, €4 if algorithm SUPER-RANK, given later,
could correctly find the super rank of trees.

Procedure UPDATE(v);

begin
1 T :=T(v);
2 for d:= d(v) downto 1 do { decide the d(v) ranks in non-increasing order,
where d(v) is the number of children of vin T }
begin
3 let w;,, w;,, -, w;, be the children of v in T”;

4 find the super rank fsup of tree 7' by the algorithm SUPER-RANK;
{ SUPER-RANK will be given later }
5 find an index i;, 1 < j < d, such that [L;; < fBsp] is the lexicographically
largest one among the d lists [Li, < fBaup}, 1 < k < d;

6 label edge e;; = (v,w;;) with Bsup; { cf. Corollary 3.7 }
7 T =T - T'(e;); { cf. Lemma 3.8 }
end
end;

Clearly line 1 can be done in time O(1). Lines 3-7 are executed d = d(v) times. One
execution of lines 3 and 5-7 can be done in time O(n). Therefore if one execution of line 4,
i.e., SUPER-RANK, takes time O(nlog(d + 1)), then the algorithm UPDATE runs in time
O(dnlog(d + 1)) as we claim. Thus it suffices to give the algorithm SUPER-RANK for finding
Bsup of 2 tree in time O(nlog(d + 1)).

By Corollary 3.5, in order to find s, we need to check the existence of a subcritical c-
ranking ¢ with m, = 3 for some integers 5. A necessary and sufficient condition for the
existence is given in Lemma 3.9 below.

Lemma 3.9 Let 1 < ¢’ < ¢, and let 7 be the indezx defined for B as before. Tree T has a
subcritical c-ranking ¢ such that p(e;) = m, = § and ¢, < ¢’ if and only if the following three
conditions hold:

(a) count(Ut_ L;,B) < ¢ —1;
(b) count(UL,L;,7) < c for all ranks v € [B < L;]; and
(c) ifd > 2, then tree T' = T — T(e;) has a subcritical c-ranking ¢’ such that

(i) if count(Ul, L;,B) < ¢’ — 2, then my = and ¢ < ¢ where ¢ = ¢ —nj — 1 and
n; = count(L;,B); and

(i) if count(UL,L;, ) = ¢/ — 1, then there is an integer §/, 1 < ' < B — 1, such that
count(Ui,‘L;, By € ¢~ 1, and furthermore my = B for the largest B among all

i#]
such integers. 0



Let B={y]1<~y<n-1and count(UL, L;i,y) < ¢ — 1}. Then T necessarily has a
subcritical c-ranking ¢ such that m, = g for some integer 3 € B. Thus B is a set of integers
eligible for feup. From Lemma 3.9 one can easily derive the following recursive algorithm
CHECK to decide whether T has a subcritical c-ranking ¢ of m, = f and ¢, < ¢’ for a given
integer S € B by checking the conditions (a), (b) and (c) in Lemma 3.9.

Procedure CHECK(T, 3,¢');

begin
8 if count(UL,L;,8) > ¢ -1
then return false { the condition (a) does not hold}
else begin {the condition (a) holds}
9 let wy,wsq,- -+, wqg be the children of v in T {d>1}

10 let 7,1 < j < d, be an index for which [L; < 8] is the lexicographically
largest among all [Lx < 8], 1 < k < d;

11 if count(U%, Li,v) > c for a rank v € [8 < L;]
then return false {the condition (b) does not hold}
else {the condition (b) holds}
12 if the root v of T has exactly one child {obviously the condition (c) holds}
then return true
else begin {d > 2}
13 T :=T - T(e;);
14 if count(Ul_, L;,8) < ¢’ — 2 then begin
15 n; = count(L;,B);
16 = —-nj-1,;
CHECK(T”,8,¢") {check the condition (c) by recursively calling CHECK}
end else {count(UL ,Li,B) = ¢’ ~ 1}
17 if there is no integer #', 1 < §' < § — 1, such that count(UL L;,f)<c—1
then return false {the condition (Zé)] does not hold}
else begin
18 let §/,1 < ' < B -1, be the largest one among all integers

such that count(U‘;,‘Li,ﬂ’) <c-1;

CHECK(T", ', ¢) {chef]J{ the condition (c) by recursively calling CHECK}
end
end
end
end;

By Corollary 3.5 and Lemma 3.9, fsup is the smallest integer § satisfying the conditions
(a), (b) and (c) for ¢’ = c¢. Therefore we have the following algorithm SUPER-RANK to find

Bsup of tree T

Procedure SUPER-RANK(T);
begin
19 B:={y|1<y<n-1and count(Ut,L;,y) <c—1};
20 choose the smallest integer § € B satisfying the conditions (a), (b) and (c)
by executing CHECK(T, 8, c) for all 8 € B;
21 fPaup =B

end;

We can prove the following lemma.



Lemma 3.10 The algorithm CHECK takes O(n) time. o

By Lemma 3.10 the straightforward implementation of SUPER-RANK takes O(n?) time
since |B} < n — 1. We will improve the time-complexity O(n?) to O(nlog(d + 1)). Our idea is
to use the binary search.

If count(U?_, L;,7) < ¢ for all ranks v € UL, L;, let & = 0. Otherwise, let a be the largest
rank v such that count(UL,L;,v) > ¢+ 1. Then Bsup 2 a+ 1. Let B < B3 < --- < B3 be
the smallest d integers such that 8; > a + 1 and caunt(uleL;,ﬂ,-) < ¢— 1. We then have the
following lemma by Corollary 3.5 and Lemma 3.9.

Lemma 3.11 The following (a) and (b) hold:

(a') ﬂsup € {ﬂl?ﬂZr' t ,ﬂd}; and
(b) let i be an integer such that 1 < ¢ < d, then Bsup € {B1,82,-++,Bi} if and only if T has a
subcritical c-ranking  of m, = f;. m]

Replace line 19 of Procedure SUPER-RANK with the following;:
B := {p1,B2,--,Ba}.

Then, using the binary search technique, one can find smallest integer S at line 20 by calling
CHECK at most [log(d+1)] times. Clearly line 19 can be done in time O(n), and line 21 can be
done in time O(1). Therefore the algorithm SUPER-RANK can be done in time O(nlog(d+1)).

4 Conclusion

We newly define a generalized edge-ranking of a graph, called a c-ranking, and give an algorithm
for finding an optimal c-ranking of a given tree. This is the first polynomial-time algorithm
for the generalized edge-ranking problem, and is as simple and efficient as the best algorithm
known for the ordinary edge-ranking problem [6].
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